首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 375 毫秒
1.
基于RGB-D相机的单株玉米株高测量方法   总被引:4,自引:0,他引:4  
玉米株高是反映作物长势的重要指标。为了实现田间单株玉米株高的快速测量,提出了一种基于RGB-Depth(RGB-D)相机的玉米株高测量方法。以拔节期玉米为观测对象,首先利用RGB-D相机获取田间玉米的彩色图像和深度图像。对玉米彩色图像进行灰度化、二值化和去噪处理,提取出包含待测玉米的二值图像。利用改进的分水岭分割算法对玉米的灰度图像进行分割,对分割结果进行圆形拟合操作,定位玉米的中心区域。对玉米的二值图像进行骨架化处理,检测骨架的交叉点和末端点,确定玉米骨架的中心点,并检索其到末端点的最短路径。对各条路径的点云数据进行求差与比较,确定玉米的最高点,并对最高点附近的点云数据进行直方图统计,获得地面点。最后,通过计算玉米最高点和地面点的差值,实现单株玉米株高参数的测量。对玉米样本进行测试试验的结果表明:单株玉米株高的平均测量误差为1.62cm,均方根误差(RMSE)为1.86cm,测量精度满足实用要求。  相似文献   

2.
为了满足田间作物长势快速检测与指导变量管理的需求,以玉米为例设计了基于多光谱成像的田间作物植株叶绿素检测系统,包括可见光(RGB)和近红外(Near-infrared, NIR)图像采集模块、主控处理器模块、模型加速模块、显示及电源模块,用于实现玉米植株智能识别与叶绿素指标一体化检测。首先,采集玉米苗期和拔节期冠层图像数据集,比较了植株冠层实例分割与株心目标检测两种深度学习模型,构建了基于MobileDet+SSDLite(Single shot multibox detector lite)轻量化网络的玉米植株定位检测模型,实现玉米植株识别。其次,提取被识别的植株株心RGB-NIR图像,开展RGB和NIR图像匹配与分割,提取R、G、B和NIR灰度值计算植被指数,使用SPXY算法(Sample set portioning based on joint X-Y distances)和连续投影算法(Successive projections algorithm, SPA)分别对数据集进行样本划分及特征变量筛选,选择高斯过程回归(Gaussian process regression, ...  相似文献   

3.
为实现田间作业过程中对玉米茎秆的定位,提出了一种基于图像玉米茎秆位置的标记方法。以3~5叶期的玉米秧苗为观测对象,利用相机获取玉米秧苗的彩色图像。首先,根据玉米图像样本进行灰度化、加权滤波、直方图均衡进行预处理;对图像进行Ostu阈值分割,提取玉米秧苗区域信息;通过形态学处理去除噪点,得到最大连通域作为玉米秧苗区域。然后通过投影法,对该区域进行列向和横向向量求和,得到的最大值标记为玉米茎秆根部近似位置。对100株玉米秧苗图像进行测试,与图像手动标注位置进行对比,横向误差平均值为7.55,标准差平均值为1.04%,列向误差平均值10.85,标准差平均值为2.26%,实际误差平均值为12.33。该研究可为需要保护玉米秧苗的田间作业提供参考。  相似文献   

4.
基于RGB-D点云的田间原位玉米株高测量试验研究   总被引:1,自引:0,他引:1  
为满足田间原位玉米株高的测量需求,避免破坏性取样后进行株高测量难以捕捉植株在自然环境下生长的真实情况与表型的动态变化,提出了一种基于RGB-D相机的田间原位玉米株高的测量方法。首先,通过RGB-D相机同时获取可见光图像和其对应的深度信息,计算相机的内参,得到玉米植株的三维点云数据;其次,通过基于欧几里得距离的统计滤波算法和随机采样一致性算法(RANSAC)的阈值分割快速去除三维点云中的离群点、环境噪声及复杂的自然环境背景(包括土壤面和滴灌管等),并通过OBB包围盒验证滤波效果;最后,通过单株玉米植株分割,提出了一种基于俯视视角下玉米株高的测量方法,并计算出田间原位玉米的株高参数。试验中,在玉米快速生长期中选取两天的试验数据,其试验用5个品种的平均测量误差分别为1.47cm和2.70cm,均方根误差(RSME)分别为1.68cm和2.80cm,人工实测结果和算法测量结果进行线性拟合后得到待测系数R~2分别为0.9831和0.9797。试验结果表明:利用RGB-D相机对田间原位玉米的表型测量与株高分析具有可行性,所提出的测量与计算方法最后获得的玉米株高参数具有较高的准确性,可以为玉米表型参数提取提供更为有效地技术手段。  相似文献   

5.
基于机器视觉的苗期杂草实时分割算法   总被引:26,自引:9,他引:17  
对利用植物的位置来识别作物苗期田间杂草的方法进行了研究。根据苗期田间植物的位置特征 ,建立了基于机器视觉的分割苗期田间杂草的算法 DBW。通过比较分析各种算法的分割效果图和所耗费的时间 ,运用超绿色法灰度化原始图像 ,然后应用最大方差自动取阈法二值化图像 ,最后运用种子填充算法分割作物和杂草。研究表明 ,算法 DBW在实时性方面表现出一定的优越性 ,处理一幅 5 4 4× 117像素的图像只需大约 6 0 ms  相似文献   

6.
基于双目立体视觉的苗期玉米株形测   总被引:4,自引:2,他引:2  
将田间正常生长的待测玉米植株带土移至测定台上,标定双目立体视觉系统,提取、分割叶片图像,以Douglas-Peucker多边形法逼近叶片边缘,去除两幅对应图像中没有匹配关系的多边形顶点,结合投影矩阵计算出叶片边缘点的三维坐标.分别投影叶片边缘点到植株平面和植株水平平面,对投影的离散点分段二次拟合、Cardinal样条插值,得到代表叶片形状的曲线,计算出叶长、叶片着生高度、茎叶夹角、叶片方位角等株形指标.测量实验表明,本方法快速、准确、自动化程度高,能够满足苗期玉米株形测量的要求.  相似文献   

7.
基于动态网格和分区域聚类的玉米苗带识别算法研究   总被引:1,自引:0,他引:1  
针对基于计算机视觉的玉米苗带中心线提取受自然环境干扰严重的问题,提出基于6×6动态网格与分区域特征点聚类的玉米行定位算法。首先将获取的玉米苗带图像进行像素归一化,采用改进的过绿特征和最大类间方差法分割玉米苗带与土壤背景,得到二值图像;然后通过动态网格扫描二值图像,获取候选玉米苗带特征点,并对候选玉米苗带特征点采用分区域聚类算法,得到玉米苗带特征点;最后通过最小二乘法对特征点进行线性拟合得到玉米苗带中心识别线。田间试验表明,该算法具有较好的抗干扰性能,能够很好的适应较为复杂的田间环境。玉米苗带识别准确率为93.4%,处理一幅分辨率为1 920像素×1 024像素的图像平均耗时320 ms。  相似文献   

8.
针对当前三维点云处理方法在玉米植株点云中识别雄穗相对困难的问题,提出一种基于超体素聚类和局部特征的玉米植株点云雄穗分割方法。首先通过边连接操作建立玉米植株点云无向图,利用法向量差异计算边权值,并采用谱聚类方法将植株点云分解为多个超体素子区域;随后结合主成分分析方法和点云直线特征提取植株顶部的子区域;最后利用玉米植株点云的平面局部特征在顶部子区域中识别雄穗点云。对3种点云密度的15株成熟期玉米植株点云进行测试,采用F1分数作为分割精度判别指标,试验结果与手动分割真值相比,当点云密度为0.8、1.3和1.9个点/cm时,雄穗点云分割的平均F1分数分别为0.763、0.875和0.889,分割精度随点云密度增加而增高。结果表明,本研究提出的基于超体素聚类和局部特征的玉米植株点云雄穗分割方法具备在玉米植株点云中提取雄穗的能力,可为玉米高通量表型检测、玉米三维重建等研究和应用提供技术支持。  相似文献   

9.
张宝来  张乐佳 《农业工程》2017,7(3):163-168
玉米长势是指玉米生长的状况与趋势,在生长期内实时掌握长势是玉米生产调控的关键,玉米长势可以通过叶面积、叶尖距、叶基角等特征参数来衡量。吉林省是我国主要的玉米种植区域,种植规模多为小地块,如果采用传统人工方式测量玉米长势,需要耗费大量人力、物力,而遥感技术适用于大面积种植,因此采用人工测量与遥感技术都具有明显的局限性。该研究采用数字图像处理技术,利用固定影像采集设备获取不同生长期玉米多尺度影像,首先利用灰度化和增强技术对影像进行前期预处理,然后使用迭代阈值分割算法提取影像中玉米植株区域,通过图像细化技术并结合参照物标定方法获取玉米植株的株高、叶尖距、叶基角和冠层面积等特征参数,最后对获取的特征参数使用回归分析建立玉米长势模型。试验结果证明,提出的方法有效可行,可以作为人工测量和遥感技术必要有益的补充。   相似文献   

10.
基于运动恢复结构的玉米植株三维重建与性状提取   总被引:1,自引:0,他引:1  
针对传统的玉米植株性状测量方法存在主观性强、劳动强度大、有损伤等问题,提出了基于运动恢复结构(Structure from motion,Sf M)的户外玉米植株三维重建方法,并提取了株高、单株最小包围盒体积、茎粗、叶面积、叶片数、叶夹角等11个性状参数。采用前期研制的小车,在户外采集不同视角下的玉米植株图像(采集间距为5~6 cm),基于Sf M算法获取玉米植株三维点云;运用直通滤波、圆柱拟合和条件欧氏聚类算法自动分割单株、茎秆和叶片等点云数据,基于距离最值遍历、三角面片化等算法实现株高、茎粗、叶面积等11个性状的准确、无损测量。结果表明,与人工测量值相比,测得的株高、茎粗和叶面积的平均绝对百分比误差分别为3. 163%、4. 760%和19. 102%,均方根误差分别为3. 557 cm、1. 540 mm、48. 163 cm2,决定系数分别为0. 970、0. 842、0. 901。研究表明,本文方法适用于作物表型户外测量,为表型研究提供了一种新的作物表型户外测量方法,同时还证明,株高和单株最小包围盒体积可以显著区分低地上部生物量玉米植株和高地上部生物量玉米植株。  相似文献   

11.
为了能够快速、准确地获取花生出苗质量,提出了基于机器视觉的花生出苗质量评价方法。首先通过田间自走机器人获取花生图像信息,然后采用机器视觉的方法获取图像中花生苗的数量、花生苗冠层投影面积以及花生苗中心点坐标位置。将花生缺苗率和花生苗活力指数作为花生出苗质量评价指标,以花生苗数量结合花生苗坐标计算花生缺苗率,以花生苗叶片包络面积计算花生苗活力指数。针对花生图像识别易受环境干扰的问题,提出了鲁棒性强的花生苗提取算子,采用K均值聚类方法对花生苗提取算子进行分类,结合花生苗和土壤自适应分类算法,有效地将花生苗从土壤中提取出来。针对花生苗棵数误判现象,提出了采用图像全局分割和区域分割相结合的方法对图像进行分割,并基于形态学方法剔除田地杂草等噪声。试验结果表明:采用机器视觉识别花生苗数量的平均准确率为95.4%,花生苗株距计算平均误差为5.35 mm,验证了所提出的图像自适应分类算法的可行性。基于机器视觉所得花生缺苗率结果与人工测量结果两者之间的相关性为0.991(皮尔逊相关系数),人工评价与基于机器视觉评价具有较高的一致性。  相似文献   

12.
基于深度相机的玉米株型参数提取方法研究   总被引:1,自引:0,他引:1  
提出了一种基于骨架提取的改进算法,可实现在大田环境下,使用PMD深度相机快速、无损测量玉米株型参数。首先利用深度图像RGB伪彩色和深度距离信息,提取深度图像的骨架,排除复杂背景干扰,得到单株玉米的二值骨架图像;然后利用基于角点检测的改进归类算法提取骨架图像特征点;最后建立骨架图像中特征点与深度图像的对应关系,利用空间几何数学方法,结合特征点计算出玉米的3种株型参数,即株高、茎粗、叶倾角。农田实验对比分析表明,所提方法的株高测量结果与人工测量结果的相关系数 r 为0.986,最大相对误差小于2 cm,农田作物育种抗逆性分析还表明玉米株型参数与抗倒伏性具有显著相关性。  相似文献   

13.
针对目前采用三维数字化等方法获取大田作物冠层结构信息时需要手动干预、费时费力的问题,利用超微小型无人机分别获取了苗期大田玉米群体的航拍图像、去掉周边植株后成熟期单株及多株的玉米小群体航拍图像。基于伪极点Crust方法构建了玉米苗期和成熟期的冠层结构模型,并基于大田原位手动测量的株高、叶长、最大叶宽、叶面积等参数对所构建的冠层结构模型进行了精度评估。结果表明,苗期、成熟期玉米株高、叶长、最大叶宽的R^2均不小于0.91,RMSE、rRMSE、ME均较小;苗期叶面积的R^2为0.96,RMSE、rRMSE、ME均较小;成熟期叶面积的R^2为0.76,RMSE、rRMSE、ME稍大。本研究可为大田冠层结构、表型信息的高通量获取提供新的途径。  相似文献   

14.
目前对玉米出苗动态检测监测主要是依靠人工观测,耗时耗力且只能选择小的样方估算整体出苗情况。为解决人工出苗动态管理不精准的问题,实现田间精细化管理,本研究以田间作物表型高通量采集平台获取的高时序可见光图像和无人机平台获取的可见光图像两种数据源构建了不同光照条件下的玉米出苗过程图像数据集。考虑到田间存在环境背景复杂、光照不均等因素,在传统Faster R-CNN的基础上构建残差单元,使用ResNet50作为新的特征提取网络来对Faster R-CNN进行优化,首先实现对复杂田间环境下玉米出苗识别和计数;进而基于表型平台所获取的高时序图像数据,对不同品种、不同密度的玉米植株进行出苗动态连续监测,对各玉米品种的出苗持续时间和出苗整齐度进行评价分析。试验结果表明,本研究提出的方法应用于田间作物高通量表型平台出苗检测时,晴天和阴天的识别精度分别为95.67%和91.36%;应用于无人机平台出苗检测时晴天和阴天的识别精度分别91.43%和89.77%,可以满足实际应用场景下玉米出苗自动检测的需求。利用表型平台可获取时序数据的优势,进一步进行了玉米动态出苗检测分析,结果表明利用本模型得到的动态出苗结果与人工实际观测具有一致性,说明本研究提出的模型的具有鲁棒性和泛化性。  相似文献   

15.
基于图像处理和聚类算法的待考种大豆主茎节数统计   总被引:1,自引:0,他引:1  
为了实现待考种大豆植株主茎节数的快速、高效测量,提出一种基于图像处理和聚类算法的待考种大豆主茎节数统计方法。首先,获取不同视角下的已脱叶待考种大豆植株图像,随机抽取训练集与验证集样本植株,并设定初始图像采集间隔与抽样步长;其次,通过植株分割、骨架提取、主茎节点去噪等操作,获取分布于植株主茎上的待检测大豆茎节点;通过基于空间距离的数据转换方法将分布离散的大豆茎节点转换至便于聚类的数据集内;利用HDBSCAN聚类算法对不同采集视角下的待检测大豆茎节点进行聚类,统计、记录主茎节数识别准确率,筛选最优采集间隔;最后,利用最优采集间隔对剩余样本植株主茎节数进行统计、分析。在63株 “中黄30”待考种大豆植株中抽取21株植株作为训练集,并进行实验测试,发现在采集间隔为90°时,以最小聚类簇为2,融合处理4幅大豆图像,大豆主茎节数识别效果最优。据此对42株验证集样本植株进行主茎节数识别和分析,结果表明,大豆主茎节数识别准确率可达98.25%。该方法能够快速、准确获取大豆主茎节数,可满足大豆考种需求。  相似文献   

16.
苗期作物三维结构的精准高效重建是获取表型信息的重要基础。传统的三维重建大多基于运动恢复结构-多视图立体视觉(Structure from motion and multi-view stereo,SFM-MVS)算法,计算成本高,难以满足快速获取表型参数的需求。本研究提出一种基于神经辐射场(Neural radiance fields,NeRF)的苗期作物三维建模和表型参数获取系统,利用手机获取不同视角下的RGB影像,通过NeRF算法完成三维模型的构建。在此基础上,利用点云库(Point cloud library,PCL)中的直线拟合和区域生长等算法自动分割植株,并采用距离最值遍历、圆拟合和三角面片化等算法实现了精准测量植株的株高、茎粗和叶面积等表型参数。为评估该方法的重建效率和表型参数测量精度,本研究分别选取辣椒、番茄、草莓和绿萝的苗期植株作为试验对象,对比NeRF算法与SFM-MVS算法的重建结果。结果表明,以SFM-MVS方法重建点云为基准,NeRF方法重建的各植株点云点对距离均方根误差仅为0.128~0.395cm,两者重建质量较接近,但在重建速度方面,本文研究方法相比于SFM-MVS方法平均重建速度提高700%。此外,该方法提取辣椒苗株高、茎粗决定系数(R2)分别为0.971和0.907,均方根误差(RMSE)分别为0.86cm和0.017cm,对各苗期植株叶面积提取的R2为0.909~0.935,RMSE为0.75 ~3.22cm2,具有较高的测量精度。本研究提出的方法可以显著提高三维重建和表型参数获取效率,从而为作物育种选苗提供更为高效的技术手段。  相似文献   

17.
山地丘陵区遥感影像阴影检测与去除方法   总被引:4,自引:0,他引:4  
阴影是山地丘陵区遥感影像最为普遍的干扰因素,去除阴影有助于提高影像解译和地物识别的准确性和有效性。构建了阴影植被指数(SVI),并提出应用波段回归模型法实现HJ-1多光谱影像阴影的去除。将该方法应用于试验区HJ-1数据,结果表明:SVI可增大山地丘陵区水体、阴影区及明亮区之间的差异,利用阈值法可以实现影像阴影的有效检测;相关分析显示,各波段拟合模型R2均在080以上;比较阴影去除前、后影像的统计指标说明,在植被最为敏感,即受阴影影响最为严重的近红外波段,随着阴影的去除,波段平均值有了较大幅度的增大;去阴影后影像的标准差均比原影像要小,尤其是在近红外波段。试验结果表明,SVI对山地丘陵区HJ-1影像阴影的检测效果较好,而波段回归模型法可以较为有效地实现阴影的去除。  相似文献   

18.
为探讨玉米节水灌溉方式的理论依据,通过桶栽试验研究了分根区交替灌溉(APRI)方式下,不同生育期水分亏缺对夏玉米生长、干物质累积质量、籽粒产量、总耗水量和水分利用效率(WUE)的影响.结果表明:常规灌溉(CI)方式下,苗期和全生育期水分亏缺的株高、叶面积和总耗水量均显著低于充分灌溉,但苗期水分亏缺可以提高WUE.相同的灌水方式和亏缺时期,中度亏缺的根干物质质量、地上和总干物质质量以及籽粒产量均显著高于重度亏缺;相同的灌水方式和灌水水平,苗期水分亏缺的株高、叶面积、根干物质质量、地上和总干物质质量以及总耗水量均显著的低于灌浆期,但籽粒产量和WUE均显著高于灌浆期;相同的灌水水平和亏缺时期,APRI的根干物质质量和总耗水量均显著低于CI的,但APRI的籽粒产量和水分利用效率均显著高于CI的.本研究结果表明,APRI在苗期进行中度亏缺有利于营养生长的调控,并达到节水高产,提高WUE的目的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号