首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
针对国内大蒜收获现状及大蒜收获机机械落后的情况,研制了打捆式大蒜联合收获机。介绍了打捆式大蒜联合收获机的主要结构、工作原理和技术参数等。运用Solid Works建立样机的三维模型,对挖掘装置、柔性夹持输送装置、定量打捆装置等关键部件进行了进一步研究。通过对整机的田间试验,结果表明,打捆式大蒜联合收获机的损失率为2.3%,伤蒜率为0.4%,成捆率为97%,均满足技术要求,同时确认了样机的结构合理性与质量可靠性。  相似文献   

2.
分段式大蒜收获机的设计与试验   总被引:1,自引:0,他引:1  
针对目前国内大蒜收获强度大、收获效率低及收获成本高等问题,设计了分段式大蒜收获机。该机主要由挖掘装置、限深装置及夹持装置、打捆装置等组成,采用手扶拖拉机作为动力源和安装平台,夹持装置采用链条设计,打捆装置可实现收获后大蒜的打捆作业。该机可一次完成三行大蒜的挖掘、夹持输送、打捆等收获作业,省时省力,高效低耗。应用CAD、SolidWorks等软件进行图样的设计和三维模型的建立,并对挖掘装置、夹持装置等关键装置进行重点设计。在山东兰陵县神山镇进行了大蒜种植田间试验,结果表明:该机器生产率0.1 hm~2/h,漏蒜率为1.9%,伤蒜率为0.58%,损失率为1.9%,挖掘深度为8cm。研究结果可为大蒜收获机械的研究提供参考。  相似文献   

3.
圆盘式大蒜挖掘装置的设计与试验   总被引:2,自引:0,他引:2  
针对现有大蒜收获机挖掘装置存在的挖掘率低、伤蒜率高、机前壅土等问题,设计一种圆盘式大蒜挖掘装置。利用解析作图法对圆盘铲刀进行了运动学分析,以大蒜收获农艺要求及低能耗为目标,通过理论计算得出圆盘铲刀的主要结构参数及工作参数。将圆盘式大蒜挖掘装置安装到田园管理机上,对圆盘工作倾角、机组前进速度、圆盘转速等因素进行了三因素三水平正交试验并对试验结果进行分析,以挖掘率最高、同时兼顾伤蒜率最低为原则得到装置最优工作参数:圆盘工作倾角为8°、机组前进速度为0.85m/s、圆盘转速为152r/min,此时,挖掘率为99.56%,伤蒜率1.57%,符合大蒜收获的技术指标要求。  相似文献   

4.
针对大蒜收获劳动强度大和成本高,结合目前我国大蒜收获的机械化和全自动化程度低的现状,设计了一款大蒜全自动联合收获机,可实现大蒜挖掘、夹持输送、变排传输、根茎切除和蒜头自动装袋全自动一体化收获。首先,阐述了大蒜全自动联合收获机的整体设计结构和各部分工作原理,并对仿形定位料杯和浮动柔性弹簧切根刀具等关键结构进行数值计算分析;其次,通过三维建模分析收获机整体结构尺寸的合理性;最后,制作样机进行多指标正交试验,并综合分析收获机重要部件的作业参数。田间试验计算收获效率为0.04 hm2/h,相较于人工收获效率提高87.5%。   相似文献   

5.
针对油菜薹机械化有序收获装备缺乏的问题,设计了一种对行式油菜薹有序收获机,完成油菜薹对行、夹持切割、柔性输送、有序铺放等收获环节。阐述了收获机整机结构和作业过程,根据切割、输送和铺放过程中油菜薹的运动学和动力学分析,确定了单圆盘切割器、夹持输送装置和导流板等部件的结构和运行参数,解析收获机参数对切割损伤率和铺放角变异系数的影响规律。研制对行式油菜薹有序收获机样机,以机器前进速度、切刀转速、输送带速度和导流板倾角为试验因素,以切割损伤率和铺放角变异系数为评价指标开展四因素三水平Box-Behnken田间试验。利用数据分析软件Design-Export 10建立试验指标与因素之间的二次多项式回归模型,分析各因素对试验指标的影响规律;求解切割损伤率和铺放角变异系数优化模型,得出最优参数组合为:机器前进速度0.5 m/s,切刀转速910 r/min,输送速度0.75 m/s,导流板倾角49°。验证试验表明,较优参数组合条件下切割损伤率为4.95%,铺放角变异系数为9.55%,与预测值之间的相对误差小于5%,能够满足油菜薹有序收获需求。  相似文献   

6.
4SD-1700型悬挂式三七收获机设计与试验   总被引:1,自引:0,他引:1  
针对西南地区中草药三七人工收获难度大及无机械收获等问题,设计了一种以36.75k W东方红拖拉机为动力的悬挂式三七药材收获机,主要由机架、挖掘铲及升运筛等组成。利用解析作图法及受力分析法对挖掘铲进行分析,确定挖掘铲的挖掘倾角为15°,铲长为350mm;对升运筛设定线速度为0.7~0.9m/s进行理论分析,得出振动频率为1.9~2.4Hz。以挖掘深度、升运速度、筛面倾角及前进速度为影响因素,以收净率、损伤率为评价指标,进行田间试验,对影响收获性能的参数进行分析,获得最优参数组合为:当挖掘深度为148mm、升运速度0.8m/s、筛面倾角15°、前进速度0.5m/s时,收净率为95.22%,损伤率为1.6%。样机收获试验表明:该机性能流畅,作业稳定,损伤率小于4.7%,收净率大于92.5%,满足设计要求。  相似文献   

7.
履带自走式分拣型马铃薯收获机设计与试验   总被引:1,自引:0,他引:1  
丘陵山区和小地块是国内马铃薯的主要种植区域,针对这类地形的马铃薯机械化收获技术与装备匮乏的瓶颈问题,并结合马铃薯种植农艺和收获需求,采用自动对行挖掘-薯土分离-人工辅助捡拾相结合的马铃薯机械化单行收获方案,设计了一种履带自走式分拣型马铃薯收获机。该机主要由履带式底盘、自动对行挖掘装置、分离装置及分拣装置等关键部件组成,具有附着力大、高频低幅振动碎土、自动对行挖掘、人工辅助分拣和液压驱动模式等技术优势。在阐述总体结构及工作原理的基础上,结合马铃薯运动学模型和碰撞特性分析,确定了分离筛倾角为30°,分离筛末端与分拣筛始端之间的跌落高度为120mm等关键部件的结构参数和运行参数。由于采用人工辅助分拣的集薯方式,减少了薯块跌落与翻滚次数,缩短了马铃薯的分离行程。田间试验结果表明:样机作业速度为1.0、1.2km/h,分离筛运行速度分别为0.61、0.72m/s,分拣筛运行速度分别为0.42、0.50m/s时,生产率分别为0.10、0.12hm2/h;利用电子马铃薯采集的碰撞加速度平均值分别为51.02g、51.85g,碰撞加速度峰值均小于马铃薯临界损伤阈值,没有出现薯块漏捡和薯块表皮破损情况,收获效果良好,各项性能指标均满足相关标准的要求,研究可为马铃薯收获机分离分拣装袋工艺和马铃薯收获机的结构优化改进提供参考。  相似文献   

8.
4 YZPDK-4玉米收获秸秆打捆一体机的设计和试验   总被引:1,自引:0,他引:1  
针对目前我国玉米秸秆回收利用率不断增长的实际需求和穗茎兼收型玉米收获机有效供给相对不足等问题,研制了一种玉米收获秸秆打捆一体机,前割台进行玉米果穗收获,中部通过甩刀式秸秆切碎装置对秸秆进行切碎收获和打捆装置打捆,使机器同时进行玉米果穗收获与秸秆打捆收获。为此,对整机机构及关键部件进行了理论分析,确定了整机结构参数;以机具前进速度、粉碎刀辊转速、打捆装置输入转速作为试验因素对草捆密度进行三因素三水平二次回归正交试验;通过Design-Expert 8. 0. 6数据分析软件,建立各因素与指标的响应面数学模型,分析了各因素与评价指标之间的关系,并对影响因素进行了综合优化。试验结果表明:各因素对草捆密度均有显著影响,影响主次顺序为粉碎刀辊转速机具前进速度打捆装置输入转速;各试验因素最优参数组合:机具前进速度为0. 53m/s,粉碎刀辊转速为1 747r/min,打捆装置输入转速为711r/min,对应的草捆密度为180. 676kg/m~3。根据该试验参数组合,进行田间试验验证,得到评价指标与理论优化值相差0. 876kg/m~3,相对误差为0. 48%,优化预测模型可靠。该研究实现了玉米果穗收获和秸秆打捆一体化,为穗茎兼收型玉米收获机提出了新的思路,可为畜牧业饲料收集提供新的途径。  相似文献   

9.
针对我国大蒜平作种植收获过程中存在的人工挖掘效率低、生产成本高及传统挖掘机具因挖掘深度不均匀导致的伤蒜问题,创新设计一种适用平作大蒜种植的大蒜收获机限深挖掘装置。主要介绍了大蒜收获机限深挖掘装置的整体结构和工作原理。建立了仿地形限深挖掘数理模型,阐述了仿地形限深的条件。通过对装置的田间试验和数据采集,得出了大蒜收获机限深挖掘装置的作业参数。试验表明,当挖掘深度为11.99 cm,入土倾角为24.5°时,试验指标挖掘阻力最小,为3 163.9 N,满足了大蒜挖掘收获要求。   相似文献   

10.
分段式大蒜收获机械试验研究   总被引:4,自引:1,他引:3  
分段式大蒜收获机械结构简单、成本低廉、操作简便,可减少用工,具有很大的开发潜力,但缺乏成熟机具.针对市场上三种典型的分段式大蒜收获机进行了田间性能试验,试验了挖掘深度、机具行进速度和输出轴转速等参数对收获性能的影响;评价了各种机型的损失率、伤蒜率、含土率、生产率等主要性能指标,为分段式大蒜收获机的改进设计提供参考.  相似文献   

11.
优化平贝收获机工作参数是提高平贝收获质量的关键。首先对平贝收获机振动机构进行运动分析,通过Matlab优化工具箱对振动机构的偏心轮角速度和偏心距进行优化。并以收获机的挖掘深度、筛网倾角、运行速度为自变量,采用响应曲面法中的中心组合设计方法,研究各自变量及其交互作用对收获损失率和损伤率的影响。通过响应曲面优化法计算得到最优的工作参数:挖掘深87.14 mm,筛网倾角9°,行进速度3.35 m/s。此工作条件下平贝实际损失率为1.75%,损伤率为1.71%。  相似文献   

12.
模块化大蒜联合收获机设计与试验   总被引:2,自引:0,他引:2  
为提高大蒜收获机对不同种植模式、不同行距大蒜机械化收获的适应性,设计了集扶禾、破土、输送、断秧、集果于一体的大蒜联合收获机,并对其关键功能部件进行了深入研究。将扶禾、起送蒜、破土、齐蒜断秧等大蒜收获所必需的功能集中设置,构建相对独立的收获单元功能模块。用户可根据需要加挂收获单元功能模块,配合输送单元,实现1~n行大蒜联合收获机的自由组合。同时,收获单元功能模块之间间距可在0~300mm或更大范围内无级调整,实现70~420mm之间不同行距大蒜的机械化收获。建立了大蒜拉拔力理论分析模型,在对影响因素研究的基础上,得到了结构参数对拉拔力影响的规律。试验表明,拉拔力随大蒜假茎包角增加而增大;当同步带张紧力超过2800N时,同步带所提供的拉拔力大于松土后大蒜所需拉拔力,可保证大蒜拉拔收获顺利完成。建立了破土力理论分析模型,得到了箭铲入土角、箭铲入土深度、整机前进速度等参数对破土力的影响规律。正交试验结果表明:入土深度、土壤湿度对箭铲破土力影响显著;当土壤湿度为30%、入土深度为80mm时,破土力为520N。样机田间试验结果表明,大蒜联合收获机的各项技术指标均满足设计预期效果,大蒜收净率为98.3%、总损失率为3.5%、生产率为0.14hm2/h。  相似文献   

13.
分置式大蒜收获机设计与仿真   总被引:2,自引:0,他引:2  
邢立冉  李汝莘  王铁新  张姬 《农业机械学报》2012,43(Z1):137-140,111
针对大蒜收获的农艺要求,设计了一种分置式大蒜收获机,主要由蒜秧剪切和蒜头挖掘两部分组成,分别配置于小四轮拖拉机的前后两端,可一次完成蒜秧剪切、蒜头挖掘及蒜土分离.蒜秧和蒜头分别铺放,便于收集和运输.蒜头用网兜收集后直接晾晒,避免漏收、节省工时和场地.采用偏心连杆机构实现挖掘铲的振动,减小了牵引阻力,降低了能耗.运用Pro/E软件对偏心振动机构和挖掘铲进行运动仿真及分析,使整机结构和运动参数得到了优化,为样机试制奠定了基础.  相似文献   

14.
针对川麦冬收获时根土分离难度大、易损伤茎苗等问题,设计了一种前置挖掘式小型履带麦冬收获机,由挖掘装置、输送筛选装置、液压装置和行走装置等组成。为确定收获机的可行性,根据三因素三水平响应面试验法构建入土角度、振动链的输送速度、振动轮的振动频率对麦冬收获损伤率、明茎率和带土率的回归模型,优化回归模型得到最优参数组合,即机器的前进速度为0.1m/s、入土角度为20°、振动链的转速为190r/min、振动轮的振动频率为600Hz。试验结果表明:在最优参数组合下,麦冬收获损伤率为2.94%,明茎率为96.7%,带土率为12.5%,达到了较为理想的收获效果。研究可为麦冬收获机的完善和作业参数优化提供参考。  相似文献   

15.
4HBL-2型花生联合收获机复收装置设计与试验   总被引:2,自引:0,他引:2  
针对4HBL-2型花生联合收获机果土分离及输送中花生果实的漏果、掉果问题,设计了花生联合收获机复收装置。在花生联合收获时,对土壤中遗漏的果实和夹持输送过程中掉落的果实进行复收、清选、集果等作业。并对复收装置进行了设计与试验研究,确定了该装置的最优结构参数和工作参数:复收装置安装角度为20°,复收链输送速度1.2 m/s,复收链杆条间隙10 mm。在机组前进速度为0.6 m/s时,实现收获花生平均净果率为90.16%,平均漏果率为0.12%,提高了花生的收获质量,减少了花生二次复收的劳动强度和作业成本。  相似文献   

16.
针对现有根茎类药材收获机功能单一及根系脱土效果差等问题,设计了一种新型的根茎类药材收获机,可一次性完成药材挖掘、根土分离、茎秆分离及铺放作业。阐述了收获机的整机结构和工作原理,运用矢量投影定理、动能定理、运动学及ADAMS仿真等分析方法对关键部件进行结构设计及参数确定。以甘草的脱土率为试验指标,以行进速度、栅条板倾角和拨杆数量为因素进行田间试验。正交试验分析表明:当收获机行进速度为0.4m/s、栅条板倾角为8°、拨杆数量为6个时,收获机的工作性能较优,此时脱土率为99.8%,满足根茎类药材收获的技术要求。  相似文献   

17.
芦蒿有序收获机切割器动力学仿真与试验   总被引:3,自引:0,他引:3       下载免费PDF全文
切割器作为芦蒿收获机的重要工作部件,其切割性能直接影响作物的收获质量和后续输送效果。采用虚拟样机设计方法,对自走式芦蒿有序收获机中往复式切割器的结构参数和芦蒿茎秆的物理参数进行研究,建立了切割部件的三维实体模型和茎秆的柔性简化模型,并进行刚柔耦合动力学仿真分析。以切割系统的切割速度vg、切割角度α和前进速度vm为影响因素,选取切割器对茎秆切割力F和重割率γ为评价指标,设计了三因素三水平虚拟正交试验,运用统计学软件进行响应面回归分析和方差分析,并进行田间试验验证。结果表明,响应面模型(RSM)优化组合vg=1.6 m/s,α=15°,vm=1.0 m/s时,F、γ明显降低,割茬质量最好,与试验结果相比,切割力误差小于10.9%、重割率误差小于11.3%。分析结果验证了预测模型的有效性和准确性,表明所设计的往复式切割器满足对芦蒿的有序收获要求。  相似文献   

18.
针对现有韭菜收割机作业时出现的不完整、漏割等问题,结合韭菜的物理特性,设计一种兼具扶禾、切割、收集组合式韭菜收集机械。对关键部件圆盘刀进行结构参数、运动参数的确定,开展切割理论分析;利用MATLAB软件,选取机具作业速度分别为0.2 m/s、0.3 m/s、0.4 m/s、0.5 m/s,对切割圆盘进行运动仿真,得到不同作业速度下的切割区域变化规律;以机具的作业速度为试验因素,以割台损失率、漏割损失率为指标,进行单因素试验,确定机具作业速度范围。结果表明,当韭菜收获机圆盘刀转速为3 000 r/min时,作业速度为0.4 m/s,韭菜切割收获装置性能最优,此时韭菜割台损失率均值为2.8%、漏割损失率均值为2.2%。  相似文献   

19.
4UZL-1型甘薯联合收获机刮板链提升机构设计与台架试验   总被引:1,自引:0,他引:1  
针对4UZL-1型甘薯联合收获机作业过程中损失率大、伤薯率高等问题,本文在分析4UZL-1型甘薯联合收获机整机结构的基础上具体阐述其工作原理,进行该机弧栅交接刮板链输送机构的设计及参数确定,并依托该机和甘薯种植模式搭建弧栅交接刮板链输送试验台。以薯块提升输送过程中损失率和伤薯率为主要评价指标,开展以挖掘输送机构角度、刮板链输送角度、挖掘输送机构速度、刮板链输送速度、刮板角度和弧栅安装距为试验因素的单因素台架试验,并分析各因素对各性能指标影响显著性和影响规律及原因。试验结果表明,挖掘输送机构角度、刮板链输送角度、挖掘输送机构速度和刮板链输送速度对各性能指标影响显著,刮板角度和弧栅安装距对各性能指标影响不显著。当挖掘输送机构角度为24°、刮板链输送角度为60°、挖掘输送机构速度为1.15 m/s、刮板链输送速度为0.69 m/s时,弧栅交接刮板链输送机构效果较好,损失率和伤薯率分别为0.75%和0.13%。研究结果可为甘薯联合收获机的结构完善和参数优化提供参考。  相似文献   

20.
以根茎类收获机配备的梯形对称双铲为研究对象,结合机械动力学、土壤粘弹塑性力学等理论建立了收获机工作状态下挖掘阻力数学模型,获得了土壤特性参数、挖掘铲结构参数以及机器工作参数与工作阻力之间的函数关系。基于所推导的数学模型,仿真分析了挖掘铲入土角、滑切角、挖掘深度、铲面面积以及机器前进速度对工作阻力的影响。仿真结果表明,入土角和前进速度的增大会导致工作阻力非线性增大,挖掘深度和铲面面积的增大会导致工作阻力线性增加。结合阻力仿真曲线,并考虑实际工作要求和工作效率,适宜的入土角为20°~30°,滑切角设置为40°~50°,前进速度在1~2 m/s。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号