首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用液压能代替传统的电能驱动机器人的功率密度高、控制算法简单,输出转矩较大,负载能力强。以液压四足机器人为参考对象,利用SolidWorks建立四足机器人的三维模型,并利用MATLAB,ADAMS搭建联合仿真平台,采用联合仿真的方法研究其在对角(Trot)步态行走过程中步态参数对液压四足机器人关节驱动力的影响,通过参数优化使得关节驱动力对液压系统的影响最小,从而能够实现四足机器人的稳定行走,同时,也为四足机器人液压系统设计提供了理论分析依据。  相似文献   

2.
基于改进PSO算法的电机控制系统PID参数优化   总被引:1,自引:0,他引:1  
粒子群算法(PSO,Particle Swarm Optimization)作为一种新型的随机优化方法,其算法结构简单,鲁棒性强,在组合优化和自适应控制等领域的非线性优化中有着广泛的应用前景.为此,提出一种改进的PSO优化算法,并将该算法应用于电机控制系统的PID参数优化设计.仿真结果表明,利用改进PSO算法优化的PID参数能有效改善控制系统的性能指标.  相似文献   

3.
温室系统是一个典型的多变量、非线性动态系统,环境变量之间相互影响,常规PID控制方法难以取得理想的控制效果。为了获取良好的控制效果,本文根据温室系统环境变量耦合特性,提出了自适应粒子群算法(PSO)与单神经元PID相结合的解耦控制方法,利用自适应PSO算法对单神经元PID网络参数进行优化,从而提升系统解耦效果,并在温室系统多变量输入输出模型中仿真验证。结果表明,改进后的控制方法使得各变量输出调节时间可平均缩短22 s,光照强度超调量降低45%,且鲁棒性更好,对温室系统解耦效果理想。  相似文献   

4.
基于BLDCM的智能播种控制系统设计   总被引:1,自引:0,他引:1  
针对地轮驱动的玉米排种工作方式存在地轮打滑而造成漏播率增加的问题,设计了基于无刷直流电机驱动(Brushless Direct Current Motor,BLDCM)的智能播种控制系统。该系统以STM32单片机作为PID控制器的核心处理器,利用无刷直流电机作为排种器驱动源,并通过增量式编码器实时采集排种器的转速,同时利用霍尔传感器获取播种作业速度。为实现PID控制的最优化,在Simulink环境下建立无刷直流电机的仿真模型,并结合PSO(Particle Swarm Optimization,粒子群优化)算法对PID参数进行优化设计。仿真结果表明:经PSO整定后,PID控制器的阶跃响应效果良好,超调量为4%,调节时间为0.12s。田间试验结果表明:在低速、中速、高速和变速作业条件下,本电机驱动系统较传统地轮驱动系统在漏播指数方面分别降低了0.9%、1.1%、1.4%和1.3%,在播种合格指数方面分别提高了1.8%、3.8%、2.8%和1.7%。  相似文献   

5.
基于粒子群算法的车辆悬架PID控制器研究   总被引:1,自引:0,他引:1  
PID控制器是应用最为广泛的控制器,可用于车辆半主动空气悬架的控制,但是,传统的PID控制器参数整定方法需要丰富的工程经验和大量试验。因此,本文提出运用粒子群算法对PID控制器参数进行整定从而提高PID控制器设计效率。首先,建立1/2车辆半主动空气悬架系统数学模型,并在Simulink环境下搭建带有PID控制器的仿真模型。然后,进行粒子群算法优化PID控制器的仿真试验。仿真结果显示,与被动悬架系统相比,在B、C两种路面条件下,基于粒子群算法的PID控制器使车身质心垂向加速度均方根值分别下降25.5%和33.13%,提高车辆的乘坐舒适性。本文对用于半主动空气悬架系统的PID控制器的进一步发展具有一定积极意义。  相似文献   

6.
基于改进PSO的无人自转旋翼机二自由度PID飞行控制   总被引:1,自引:0,他引:1       下载免费PDF全文
苏中滨  张磊磊  马铮  高睿 《农业机械学报》2022,53(1):151-158,185
针对传统无人自转旋翼机自动控制采用一自由度PID和优化算法相结合,因自转旋翼机的响应滞后特性,一自由度PID不能同时满足快速响应和抑制干扰的问题,提出基于粒子群算法和模拟退火算法的二自由度PID控制器,同时设计前馈控制器的降噪方法,实现对无人自转旋翼机的有效控制。通过搭建Matlab仿真模型验证其可行性,其仿真结果表明本研究中算法相对于传统一自由度PID控制响应速度较快,前馈控制器能有效地抑制外部干扰,鲁棒性强,且系统响应速度快,响应时间提升约11%,响应精度更高,收敛误差小,约是传统PID的1/6,控制系统更稳定。同时在2种不同飞行环境下实际飞行实验验证了基于PSO-SA的二自由度PID控制器可行性,可为无人自转旋翼机在农业航空领域中的应用提供理论基础。  相似文献   

7.
对称结构Stewart机构位置正解的改进粒子群算法   总被引:6,自引:0,他引:6  
根据杆长约束条件,建立了求6-DOF对称结构Stewart并联机器人机构位置正解的无约束优化模型.针对标准粒子群算法容易陷入局部极值、进化后期收敛速度慢等缺点,提出了一种基于差异度评价指标的改进粒子群算法--自适应变异粒子群算法.为克服随机算法不易求出并联机构全部位置正解的缺点,采用分层搜索自适应变异粒子群算法求并联机构位置正解中的优化问题.数值实例表明,对于对称结构Stewart并联机器人机构位置正解问题,改进粒子群算法能求出全部装配构型,且收敛速度较快、精度较高.  相似文献   

8.
针对非对称缸液压伺服系统的不确定性,非线性和常规PID控制器的缺点,设计了改进的滑模控制器,有效减小了液压位置伺服系统中由于元件参数变化等引起的超调和振荡。利用AMESim/Simulink进行联合仿真,模拟实际工作中电液伺服位置控制系统常常遇到的负载变化、受外力扰动等情况,验证在此环境下控制器对电液伺服位置控制系统的控制效果,以及所设计的滑模控制器的鲁棒性、可靠性。  相似文献   

9.
以数控机床进给轴为研究对象,使用MATLAB建立PID控制仿真模型,将标准的粒子群算法与小生境思想结合,同时将分布式计算机集群的思想应用到伺服系统的PID控制器仿真模型当中,改善了常规的PID控制参数自整定不佳,有效减少了系统的响应时间。与标准的POS进行对比,具有更快的收敛性,可以有效避免陷入局部最优,得到更高精度的解,在工程领域DNPSO具有很大的应用价值。  相似文献   

10.
针对传统PID控制机械臂在运动中存在跟踪精度低、响应速度慢、动态性能差等问题,提出采用自适应模糊PID控制。通过用Sim Mechanics搭建二自由度机械臂模型,分别运用传统的PID控制和自适应模糊PID控制方案进行仿真并比较上述两种方案控制效果。仿真结果表明,所设计的自适应模糊PID控制器相比传统的PID控制器对控制机械臂运动有更好的控制效果。  相似文献   

11.
针对系统的跟踪精度和PID控制器参数整定问题,创建了液压伺服系统的数学模型,通过遗传算法对PID参数进行整定,最后基于MATLAB/Simulink仿真软件,通过遗传算法和经验试凑法整定PID控制器参数,并对仿真结果进行对比分析。仿真结果显示,遗传算法整定PID控制参数具有明显的优越性,能有效地提高液压伺服系统的位置跟踪精度。  相似文献   

12.
基于改进粒子群优化模糊控制的农业车辆导航系统   总被引:9,自引:0,他引:9  
以采用机器视觉导航的农业车辆为研究对象,提出了一种基于改进粒子群优化自适应模糊控制的农机导航控制方法。建立了车辆2自由度转向模型和视觉预瞄模型,对车辆横向控制进行状态描述。对粒子群算法进行了改进,提高了粒子群算法的收敛速度,降低了算法计算时间。构建了自适应模糊控制器,在模糊控制器中引入加权因子,以横向偏差和航向偏差时间误差绝对值积分(ITAE)之和作为系统目标函数,通过粒子群算法计算得到最优加权因子,进而调整控制规则实现导航车辆的自适应控制。仿真和导航试验结果表明,提出的控制方法可以迅速消除横向误差,具有超调量小、响应速度快等特点,既保留了模糊控制算法的优点,又提高了系统控制品质。在相同参数条件下,与常规模糊控制相比,改进模糊控制算法导航精度显著提高。当车速为0.8/s时,直线路径跟踪最大横向偏差不超过4.2 cm,曲线路径跟踪最大横向偏差不超过5.9 cm,能够较好地满足农业车辆导航作业要求。  相似文献   

13.
粒子群优化算法即Particle Swarm Optimization(PSO)是由Kennedy和Eberhart于1995年提出的一种基于群智能(Swarm Intelligence)方法的演化计算(evolutionary computation)技术.通过同时动态调整惯性权重和加速度权重以平衡运算性能,提出改进的PSO算法,利用改进PSO优化算法优化的PID控制规律使得调节系统具有更好的动态调节特性和鲁棒性.  相似文献   

14.
为实现果蔬采摘机器人作业时自主行走,研究采用磁导引技术和PID算法等实现对预定路径的跟踪。以磁导引传感器作为导航传感器,在果蔬采摘机器人平台上搭建转向控制机构,依据磁导引传感器工作特性,提出PID算法作为导引算法。根据导引传感器得到机器人当前位置相对于导引磁条的距离偏差,作为PID控制器的输入,将机器人前轮期望转角和车体期望速度作为输出,在Mat Lab中对算法进行圆曲线跟踪仿真。仿真结果表明:机器人可快速跟踪到预定路线,跟踪误差在±30 mm以内,直线段稳定状态误差在±5 mm以内。  相似文献   

15.
针对平地机进行刮平作业时无法实现稳定恒速控制的问题,提出了基于模糊理论的参数自适应PID算法的行走智能控制系统,并完成了将该算法应用在平地机的控制系统中协调解决作业时油门大小、档位和恒速控制问题。同时,为验证参数自适应PID算法对整机运行参数实时监控的有效性和可靠性,系统采用单片机作为控制器,通过Mat Lab软件的Simulink仿真,分别对平地机作业恒速控制设定干扰信号、参数自适应过程性能以及不加PID、加PID、自适应模糊PID3种控制方式进行了恒速控制效果对比分析。测试显示:该系统响应时间短、速度较快,具有良好的工作稳定性和可靠性,能够满足设计要求。  相似文献   

16.
【目的】解决基本果蝇优化算法(FOA)由于算法局限性而出现比例积分微分(PID)参数整定收敛速度慢且容易过早陷入局部最优的问题。【方法】为了在迭代前期具有更高的全局搜索效率,利用粒子群算法(PSO)寻找多个全局较优种群,迭代后期使用具有较强的局部寻优能力的FOA算法提高收敛精度,实现对全局搜索和局部搜索过程的优化。【结果】两个二阶时滞系统的阶跃响应测试结果表明,基于HFOA的PID控制器参数整定的上升时间、调节时间和超调量等指标更优,能够实现更好的系统响应性能。【结论】优化后算法具有控制精度高、响应速度快、鲁棒性好等优点,为PID参数优化提供了参考。  相似文献   

17.
拖拉机自动导航摩擦轮式转向驱动系统设计与试验   总被引:2,自引:0,他引:2       下载免费PDF全文
针对农机导航系统中使用传统拖拉机前轮转向驱动子系统机构复杂、装卸不便等问题,设计了一种摩擦轮式转向驱动系统。摩擦轮式转向驱动系统主要由驱动装置和相匹配的自适应模糊转向控制器组成。驱动装置采用平行四连杆机构以实现工作模式的快速切换,使用夹持固定方式实现便捷装卸。搭建了试验台架以获取摩擦轮驱动装置的滑移特性数据。同时设计适用于该驱动装置的自适应模糊转向控制器,基于液压系统离散传递函数和滑移特性数据建立了驱动系统递推仿真模型,采用该仿真模型构建遗传算法参数优化器对控制器参数进行在线优化。进行了仿真模型验证试验、遗传算法参数优化器性能对比试验和驱动系统性能试验,结果表明:仿真模型与实际系统基本一致;经过遗传算法参数优化后控制器阶跃响应上升时间减少15%,稳态误差达到3%标准所需调节时间减少29%,消除了振荡现象;所设计驱动系统的20°阶跃响应平均绝对稳态误差为0.197°,平均上升时间为2.0 s,稳态误差达到3%标准的平均调节时间为2.4 s,拖拉机前轮控制效果良好。应用试验表明驱动系统能基本满足拖拉机配套2BFQ-6型油菜精量联合直播机机组自动导航作业要求。  相似文献   

18.
以三插溪电站为研究对象,建立了该电站以控制水位和弃水最小为目标的优化调度数学模型;设计了一种以自适应方式更新粒子飞行速度的弹性粒子群优化算法求解该优化调度数学模型,包括粒子编码设计、适应度函数设计以及弹性修正值设计,并编制了基于MATLAB语言的优化程序。仿真结果表明:自适应弹性粒子群算法是有效的,比基本粒子群优化算法和自适应粒子群优化算法具有更强的全局寻优能力;和常用的以发电量最大为目标的优化调度模型相比,数学模型可以实现水位控制,更充分地利用水能资源,是简单可行的小水电优化调度数学模型。  相似文献   

19.
为研究并优化电动车辆线控液压转向系统的控制策略,文章基于AMESim软件进行仿真分析并开展台架验证试验。提出电动车辆线控液压转向控制系统整体设计方案,分别就工作原理、整体结构、液压系统设计、路感加载系统进行分析。基于AMESim建立电动车辆线控液压转向控制系统仿真数学模型,就路感数学模型、液压系统数学模型、执行机构动力学数学模型、传动比数学模型进行阐述,设计P参数自适应调整的PID控制器,并在此基础上进行系统响应性、抗干扰性能分析,研究系统时域状态下的可靠性、稳定性。仿真结果表明,系统阶跃及正弦响应偏差在3°以下,抗干扰能力较强。基于试验台架设计了响应性及稳定性验证试验,结果表明,自适应PID控制器实际响应性较好,快速转向下系统跟随响应偏差在4°以下。  相似文献   

20.
无人驾驶铰接式车辆强化学习路径跟踪控制算法   总被引:2,自引:0,他引:2       下载免费PDF全文
针对无人驾驶铰接式运输车辆无人驾驶智能控制问题,提出了一种强化学习自适应PID路径跟踪控制算法。首先推导了铰接车的运动学模型,根据该模型建立实际行驶路径与参考路径偏差的模型,以PID控制算法为基础,设计了基于强化学习的自适应PID路径跟踪控制器,该控制器以横向位置偏差、航向角偏差、曲率偏差为输入,以转角控制量为输出,通过强化学习算法对PID参数进行在线自适应整定。最后在实车道路试验中验证了控制器的路径跟踪质量并与传统PID控制结果进行了对比。结果表明,相比于传统PID控制器,强化学习自适应PID控制器能够有效减小超调和震荡,实现精确跟踪参考路径,可以较好地实现系统动态性能和稳态误差性能的优化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号