首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 339 毫秒
1.
为提高智能灌溉系统大面积推广和系统节点能量利用效率,采用MPPT算法结合太阳能、超级电容、聚合物锂电池设计出基于STM32智能灌溉WSN节点自供电系统。利用Matlab软件,搭建光伏电池模型分析光伏特性,完成系统供电设计与模块选型,并设计能量管理电路,结合Qt平台开发监控软件。结合软件对系统进行测试分析,软件平台读取光伏电池及锂电池电压、电流实时数据,同时计算MPPT效率。经实验验证,系统整体运行良好, WSN节点采用太阳能光伏电池供能结合聚合物合锂电池、超级电容储能工作寿命较长,MPPT效率在86%附近小幅度波动,WSN节点自供电系统设计有效解决了传统节点单个电源引起能量不足缺陷,为智能灌溉系统普及与推广提供试验支撑。为WSN节点自供电提供新思路与设计方案,有效提升智能灌溉系统可靠性与实用性,在一定程度上提高农业灌溉效率和智能化水平。  相似文献   

2.
基于WSN的水产养殖环境监测系统   总被引:1,自引:0,他引:1  
将无线传感器网络(WSN)技术引入到环境监测系统的开发中,可有效解决水产养殖工作环境复杂、监测地点分散和布线成本高等问题。所介绍的监测系统以一套无线传感器网络节点来形成获取环境参数的自组织网络,利用一种基于GPRS的远程数据传输系统实现无线传感器网络与远程监控端的通信,并通过监测软件对数据进行接收、观测和存储。实验室和水产养殖基地的测试表明,系统运行稳定,数据真实可信,可对水产养殖环境进行有效监测。  相似文献   

3.
基于ZigBee无线传感器网络的土壤墒情监测系统   总被引:2,自引:0,他引:2  
针对当前对智能节水灌溉的需求,为精准农业提供科学依据,设计了基于ZigBee无线传感器网络(Wireless Sensor Network,WSN)的土壤墒情监测系统。本设计研发了集环境自动监测传感器、无线智能控制终端和数据采集传输终端于一体的低功耗智能传感器节点,重点阐述了其软硬件设计,控制器采用低功耗单片机Msp430F149。本设计采用ZigBee无线传感器网络,能实现信息采集节点的自动部署,数据自组织传输,可应用于温室、农田等区域,有助于更好的节能节水,有效地提高农作物单位面积产量。初步测试结果验证了该系统的合理性与实用性。  相似文献   

4.
针对农林环境中复杂的实际情况,设计一种基于物联网的农林环境长期监测系统。系统采用基于CC2530芯片的Zigbee无线传感器网络节点、电源控制硬件电路和基于ARM11的现场服务器,利用太阳能电池供能,通过对IEEE802.15.4和IEEE802.11协议进行转换,将数据通过无线网桥远程传输给管理服务器。该系统能够监测农林环境中的温度、湿度、光照强度、pH值等,可长期对农林环境因素进行采集、监测和分析。  相似文献   

5.
基于WSN和嵌入式系统的收割机智能监测优化设计   总被引:1,自引:0,他引:1  
为了降低收割机作业的故障率,提高收割机的实时智能化监测水平,提出了基于WSN和嵌入式系统的收割机智能监测优化方法,并据此设计了基于无线传感网络的嵌入式监控系统硬件架构和功能软件。根据收割机无线传感网络的特点,结合自适应加权平均算法,提出了一种多传感器采集数据的误差融合算法,有效地提高了收割机滚筒信息的监测精度,降低了WSN数据传输时延和离散性带来的误差。以收割机作业为基本条件,对嵌入式系统和WSN进行了可行性测试,测试结果表明:在发生滚筒阻塞时,收割机的滚筒和搅龙的转速突变的趋势是相同的,与现场查看阻塞情况时收割机的作业情况相符合,从而验证了WSN和嵌入式系统在收割机智能监测系统中应用的可行性。  相似文献   

6.
针对传统的有线监测系统线缆密布、安装维护困难等问题,设计开发了一种基于物联网技术的温室土壤环境监测系统,该系统主要由无线传感器网络和监测系统两部分构成。主要介绍了基于cc2430的无线传感器节点的硬件设计,以及基于labview的上位机软件设计,并进行了系统测试。实验分析结果表明,该系统能实现对作物生长的土壤温、湿度进行自动实时监测,并结合作物生长的信息进行适量的灌溉,具有广阔的应用前景。  相似文献   

7.
在桃园应用了基于无线传感器网络的微灌控制系统,通过选取合适功率的太阳能充电板给传感器及路由节点中的锂电池充电,延长节点寿命,实现节点连续稳定工作、采集数据以及传递指令控制水泵和电磁阀的工作状态。节点在不充电情况下,以每天唤醒48次,每次工作20 s的节奏,可以连续工作约70 d,连接太阳能电池板后,可保证充电电量大于耗电电量,有效延长了节点寿命。桃园的园区应用测试表明,转发数据包最多的传感器及路由节点耗电量最大,不充电时单日电压降幅为0.35%,连接太阳能充电板后,电池电压在额定电压附近维持小幅波动。随机改变灌区内被测土壤的湿度,系统可以按照设定的土壤湿度上、下限,自主控制水泵和电磁阀的工作状态,实现按需灌溉。  相似文献   

8.
针对传统温室大棚灌溉智能化和自动化水平低的问题,采用无线传感器网络WSN技术设计了智能温室大棚自动定点喷灌系统。系统主要由监控中心上位机、多个温湿度监测和电磁阀控制节点、密封储水罐压力监测节点、充压机和水泵控制节点组成。通过温湿度传感器获取土壤表层的温度和湿度数据,并经过ZigBee网络将该节点ID和数据打包实时发送至监控中心上位机,一旦监测到的湿度低于设置的阈值时,会控制对应该区域的电磁阀开启进行喷灌,同时控制充压机保持储水罐内的压力为恒定值。试验表明,该系统能准确获取土壤表面的温湿度数据,实现了整个温室大棚的定点喷灌和密闭储水罐的自动补水功能。  相似文献   

9.
针对农田环境监测面积大、点多、时间长的特点,提出基于物联网架构的农田环境监测系统,系统由传感层、传输层和应用层构成。设计开发了以飞思卡尔MC9S12XS128为微处理器的无线传感器网络节点的硬件电路和太阳能供电系统,编制了协调器与路由器的底层软件,测试了远端服务器与WSN网络单点和多点之间的通信性能。现场试验结果表明:基于物联网的农田环境监测系统,运行稳定、可靠,为科学预测和科学种植提供了依据。   相似文献   

10.
基于无线传感器网络和LabVIEW的粮仓监控系统设计   总被引:2,自引:0,他引:2  
鉴于粮食储备安全的重要性,提出了一种基于无线传感器网络和LabVIEW的粮仓监控系统设计方案。该系统采用无线传感器网络(wireless sensor network,WSN)对粮仓环境进行监测,遵循Zigbee协议将传感器采集的数据以无线方式传输给网关节点;网关节点通过串口将数据传给监控中心;监控中心采用LabVIEW完成数据的实时显示、分析、存储,以及对异常情况的报警,系统实现了对粮仓的智能监控。  相似文献   

11.
针对传统农业环境监测手段落后、工作量大、管理难度高等状况,利用无线传感器网络实时性强、高度灵活和可扩展性好的优势,设计了一种基于无线传感器网络的农田环境监测系统.阐述了该系统的组成,包括节点结构、系统协义及组网过程,并且利用该系统进行了实际测试.结果表明:该系统不仅能有效的监测到农田中温湿度的变化情况,而且还实现了监测区内信息的动态远程监测及存储,具有较高的准确性.  相似文献   

12.
针对当前精准农业无线传感器网络(WSN)定位节点抗干扰能力差、功耗大以及精度低等缺点,设计了一种基于数字频率合成器的精准农业WSN定位节点。该节点采用数字频率合成器来替代传统WSN定位节点中的模拟式频率合成器。经测试发现,所设计WSN定位节点不仅能够将功耗降低约200mW、相位噪声减少约43dB/Hz,而且定位误差减小至1.59cm。所研究的WSN定位节点特别适用于农田甚至大田条件下对抗干扰能力、功耗以及定位精度要求较高的精准农业领域。  相似文献   

13.
针对适用于WSN土壤湿度采集节点的EC-5传感器对电源电压敏感的问题,从传感器工作原理入手分析电源电压引起检测误差的来源,且发现当传感器各项参数确定后,这种误差随着被测土壤湿度增大而增大。采用CC2430芯片作为WSN信息传输节点,建立具有多节点的上下位机WSN土壤湿度采集系统,以节点电压u和被测土壤实际湿度θ为对象,运用神经网络对采集节点中非线性土壤湿度传感器系统进行逆向建模,在上位机上实现由电源电压引起EC-5传感器检测误差的补偿,实验结果表明,该方法能有效地减少节点电池电压变化对WSN土壤湿度采集精度的影响。  相似文献   

14.
基于无线传感器网络的稻田信息实时监测系统   总被引:1,自引:0,他引:1  
针对农田环境信息采集过程中监测周期长、环境干扰大等特点,设计了一种基于混合天线无线传感器网络稻田环境信息实时监测系统,采用分簇路由协议进行组网,为不同类型的节点配置不同类型的天线,并使用转台控制汇聚节点定向天线的方向,以扩大网络的覆盖范围和提高系统的稳定性。基于该系统进行长时间稻田组网试验,对网络丢包率和稻田环境参数采集准确性进行测试,试验结果表明,系统运行稳定、测量准确,网络数据平均丢包率为0.44%,稻田空气温度、空气相对湿度和土壤含水率的平均相对误差分别为0.26%、0.64%和0.33%。  相似文献   

15.
设计了一种无线传感器网络中央监测系统。以承载ZigBee技术的CC2430芯片为无线节点的检测与信息处理核心,结合温度、湿度传感器模块,构成无线传感器网络终端检测节点,对现场环境实时检测,并通过路由节点将数据上传;路由节点模块设计,采用无线或RS—485标准的方式与中心节点进行信息通讯,现场循环检测数据能实时传送给中央监控计算机,实现深入现场内部的多点检测和实时监测。在草莓大棚的应用表明,系统可以满足大棚信息采集需求。  相似文献   

16.
针对适用于WSN土壤湿度采集节点的EC-5传感器对电源电压敏感的问题,从传感器工作原理入手,分析电源电压引起检测误差的来源,且发现当传感器各项参数确定后,这种误差是随被测土壤湿度增大而增大的。采用CC 2 4 3 0芯片作为WSN信息传输节点,建立具有多节点的上下位机WSN土壤湿度采集系统,以节点电压和被测土壤实际湿度为对象,运用最小二乘支持向量机对采集节点中非线性土壤湿度传感器系统进行逆向建模,在上位机上实现由电源电压引起EC-5传感器检测误差的补偿。实验和仿真结果表明,该方法能有效地减少节点电池电压变化对WSN土壤湿度采集精度的影响。  相似文献   

17.
基于WSN的水产品冷链物流实时监测系统   总被引:9,自引:0,他引:9  
为降低水产品物流损耗、提高水产品冷链物流信息化程度,以ZigBee协议为基础,围绕CC2530型无线传感片上系统,设计了基于无线传感网络(WSN)的水产品冷链物流实时监控系统。系统包括用于采集温度数据的监测节点、用于ZigBee网络组织与数据汇聚的协调器节点和用于实时监测、数据存储和网络控制的远程管理系统。冷链环境系统测试表明监测系统能够应用于水产品冷链物流仓储和运输的全过程,监测节点在变温箱温度-18℃时工作可靠。通信性能测试表明使用-3 dBm射频功率在30 m通信范围内丢包率小于8.4%,节点通信能耗低。  相似文献   

18.
针对植物生长环境信息大滞后及大惯性的特点,基于WSN和低功耗ZigBee CC2430无线通信技术设计一个植物生长环境多环境参数监测系统。无线传感器网络实时采集和处理植物生长环境数据,由信息接收端保存,可进一步显示处理结果,从而完成动态信息监测任务。植物生长环境数据最终传送至系统的上位机监测中心,对环境数据进行统一管理,充分发挥无线传感器网络的路由监测作用。系统克服了有线传感器网络的局限性,组网灵活、节点成本低、网络容量大。同时,实时监测实验表明,该系统操作灵活,有较好的数据传输精度。由于良好的系统稳定性,使得其在植物生长环境信息监测中可以胜任多参数监测任务。  相似文献   

19.
提出了一种基于无线传感器网络(WSN)的观赏鱼养殖水质监测系统。该系统可以实时监测养殖水质环境参数,同时在水溶氧量不高的情况下可以开启增氧机进行增氧,保证观赏鱼养殖水质处于最佳状态。数据采集节点可以采集养殖水域的温度、pH值及水溶氧量等数据,并可通过900MHz协议无线通信方式上传至中继节点、USB网关节点、GPRS网关节点等。USB网关节点接到数据后通过USB接口上传至计算机;GPRS网关节点接收到数据后将数据上传至远程服务器,用户可以通过手机访问远程服务器查看水质数据;中继节点可以保证大范围数据采集链路的完整性和畅通性。在测试阶段,测试结果表明丢包率与发射功率呈反比关系,与传输距离呈正比关系。同时,高发射功率意味着高能量消耗,所以可根据不同的通信距离选择合适的发射功率,增加该网络的稳定性及低功耗特性;本系统各传感器误差均满足观赏鱼养殖水质监测参数误差要求,可对大范围观赏鱼养殖水域提供可靠地水质参数实时监测。  相似文献   

20.
基于无线图像传感器网络的农田远程监测系统   总被引:1,自引:0,他引:1       下载免费PDF全文
为了实时获取农田图像和视频信息,提出了基于无线图像传感器网络的农田远程监测系统。针对当前图像传感器节点存在的不足,基于CMOS图像传感器和S3C6410嵌入式处理器设计了低成本、高分辨率的无线图像传感器节点,并研究了基于驱动层和应用层协作的分辨率实时调整算法,使得节点具备10种不同的分辨率,最高分辨率可达500万像素,而且分辨率可根据用户需求实时调整,以满足用户对不同图像精度的需求。采用Wi Fi技术构建无线图像传感器网络,并通过4G网络远程传输图像和视频到服务器。在服务器端开发了基于Web的可视化农田信息管理软件,实现对采集的数据进行有效存储、管理和应用,并为用户提供网络服务。部署了该系统并进行了长时间的运行测试试验,试验结果表明:系统可稳定地运行,能够根据远程指令采集并传输不同分辨率的图像,采集并传输1幅126 KB左右的图像平均耗时为5.36 s,网络平均丢包率为1.67%,客户端开启视频监控平均时延为3.48 s,视频播放流畅。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号