首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
根据冻融期气象资料和土壤蒸发量实测资料,利用灰色关联分析与BP神经网络相结合的方法,对冻融期大田土壤蒸发量进行了模拟预报。采用灰色关联度方法分析了影响冻融土壤蒸发的9个因子的关联度,确定了降水量、日平均气温、水面蒸发量、地表土壤温度和地表土壤含水率5个主要因子,并将其作为冻融土壤蒸发量预报模型的输入层进行模拟预测。结果表明:模型预测值与实测值的平均相对误差为9.9078%,决定系数为0.93,所建模型合理可行,可较好地用于冻融土壤蒸发预报。  相似文献   

2.
应用土壤-植被-大气系统水热传输模型CoupModel,在野外定位观测试验的基础上对陕北黄土丘陵沟壑区阴、阳坡荒草地SVAT系统水分传输进行了模拟.结果表明,土壤含水率和土壤温度模拟值与实测值有较高的一致性;阳坡荒草地的土壤蒸发量较阴坡高,阳坡荒草地植被蒸腾量低于阴坡荒草地,说明阴、阳坡荒草地在大气-土壤界面和植被-土壤界面水分交换差异明显;干旱年大气降水主要消耗于土壤蒸发和植被蒸腾,蒸散量超过了同期降水量,输入草地系统的降水满足不了水分的支出,土壤水库处于负补偿状态.丰水年,试验地约有20%降水储存于土壤中,系统的水分收入大于支出.黄土丘陵沟壑区阳坡和阴坡是水热条件不同的立地类型,阳坡用于土壤蒸发的水分较多,土壤储水量低,因此阳坡植被配置应当考虑盖度较高、可以降低土壤蒸发的植被类型.  相似文献   

3.
冬小麦棵间土壤蒸发数值模拟研究   总被引:2,自引:0,他引:2  
为了探讨作物生长条件下棵间土壤蒸发规律,利用微型蒸渗仪的实测值和土壤潜在蒸发速率对土壤蒸发过程进行了模拟分析,并对Ritchie模型进行了验证。结果表明,返青期土壤蒸发第2阶段的蒸发速率受气象条件的影响较拔节期和灌浆期大。第2阶段土壤累积蒸发量与时间的平方根成正比,其斜率值α不仅仅与土壤的水力特性有关,可能还与气象条件、土壤含水率、作物地表覆盖程度等有关。返青期、拔节期、灌浆期α值分别取为2.5026、2.0477、3.425。Ritchie土壤蒸发模型的模拟值与实测值的均方根误差为0.21 mm/d,平均绝对误差为0.16mm/d,模拟精度较高。  相似文献   

4.
农膜残留对砂壤土和砂土水分入渗和蒸发的影响   总被引:6,自引:0,他引:6  
通过室内试验设置5个不同残膜量(0、50、100、200、400 kg/hm~2)处理,研究不同残膜量对砂壤土和砂土水分入渗湿润锋、入渗速率、累积入渗量、土壤累积蒸发量和蒸发速率的影响,并评价了主要土壤入渗、蒸发模型在农膜残留土壤的适用性。结果表明:随着土壤中残膜量增多,砂壤土和砂土入渗速率变慢,土壤湿润锋运移相同距离所需时间均显著增加,其中运移30 cm时,砂壤土残膜量400 kg/hm~2处理(SL5)比无残膜处理(SL1)运移时间增加了27.56%;相同入渗时间内累积入渗量随残膜量增加均显著减小(P0.05),入渗结束后SL5处理比SL1处理累积入渗量减小了52.01 m L(23.12%);残膜量增加导致蒸发速率、累积蒸发量都显著减小(P0.05),蒸发结束后SL5处理比SL1处理累积蒸发量减小了30.63%,且不同残膜量对砂壤土的影响大于砂土。对4个土壤水分入渗及蒸发模型进行拟合,结果显示Kostiakov和Philip入渗模型均能较好模拟残膜条件下土壤水分入渗,其中Philip入渗模型拟合精度高于Kostiakov入渗模型,且对砂土中农膜残留下的土壤水分入渗模拟效果更好;Black蒸发模型随着残膜量增加拟合精度下降,而Rose蒸发模型受残膜量的影响较小,更适合于农膜残留土壤累积蒸发量估算。  相似文献   

5.
秸秆覆盖条件下滨海土壤蒸发阻力模型研究   总被引:3,自引:0,他引:3  
为明确秸秆覆盖对土壤蒸发阻力的影响、实现秸秆覆盖条件下的土壤蒸发模拟,以滨海土壤为对象,通过室内模拟试验,确立并构建了不同秸秆覆盖量(0、0.3、0.6、0.9、1.2kg/m2,分别表示为CK、S1、S2、S3、S4)下的土壤水分蒸发动力学模型和秸秆覆盖模式下的蒸发阻力模型,并根据实测蒸发数据进行了模拟评价。结果表明,表层土壤含水率随时间呈指数型减小趋势,且同一时刻,秸秆覆盖量较大的处理表层土壤含水率较大;土壤蒸发强度随含水率的增加呈指数型增加,土壤累计蒸发量随含水率的降低呈线性增加趋势,拟合直线的决定系数R2均大于0.9,且秸秆覆盖量越大,平均土壤蒸发强度和土壤累计蒸发量均越小;不同秸秆覆盖量下覆盖阻力差异较大,而同一秸秆覆盖量间覆盖阻力差异较小,覆盖阻力随秸秆覆盖量的增加而线性增加,两者呈显著正相关(R2=0.9114,p<0.05)。根据秸秆覆盖阻力模型模拟的计算土壤蒸发量与实际土壤蒸发量的RMSE为4.18×10-4mm/min、MAE为3.85×10-5mm/min、NS为0.90,拟合直线斜率k为0.926。说明所建立的秸秆覆盖阻力模型能够准确估算秸秆覆盖模式下的土壤蒸发量。  相似文献   

6.
为了探明黄河三角洲盐渍土蒸发对土壤盐分变化的响应特征,采用矿化度分别为5,10,30,50,70,90 g/L的咸水灌溉黄河三角洲0~40 cm土壤,获得不同盐分梯度的盐渍土处理,依次标记为处理T1—T6,并测定各处理的土壤含水率和电导率、蒸发强度和累积蒸发量等指标.结果表明,蒸发过程中表层土壤含水率和电导率均随土壤含盐量增加呈逐渐增加趋势;蒸发结束时,处理T1—T6的土壤表层平均含水率比试验初期降低了80.0%~95.8%,表层含水率的降低幅度随着含盐量增加而逐渐降低;土壤表层电导率分别增加135%~330%,且蒸发前期表层电导率增加幅度明显高于蒸发后期.土壤含盐量对土壤剖面含水率及电导率分布影响差异具有统计学意义,蒸发结束时,处理T1—T6表层0~2 cm比3~6 cm土壤含水率低了8.3%~30.5%,土壤电导率则高了82%~196%,且随着土壤含盐量增加,盐分对土壤剖面盐分分布的影响逐渐增强,表层与深层土壤含盐量差异逐渐增大.蒸发过程中,土壤平均蒸发强度和累积蒸发量随土壤含盐量增加呈降低趋势,处理T1—T6的平均蒸发强度为3.5×10-4,3.5×10-4,3.4×10-4,3.2×10-4,3.0×10-4和2.7×10-4 mm/d,土壤累积蒸发量分别为26.13,26.20,25.50,24.26,22.50和20.58 mm,且蒸发前期各处理的土壤平均蒸发强度及累积蒸发量均高于蒸发后期,土壤含盐量对土壤蒸发的抑制作用主要在蒸发前期.研究表明土壤含盐量可影响土壤剖面含水率与电导率分布以及土壤蒸发强度和累积蒸发量.  相似文献   

7.
CERES-Wheat模型中两种蒸发蒸腾量估算方法比较研究   总被引:2,自引:0,他引:2  
基于CSM-CERES-Wheat模型中Priestley-Taylor(PT)和FAO56 Penman-Monteith(PM)2种蒸发蒸腾量估算方法分别模拟了冬小麦2011—2012年和2012—2013年2个生长季的累积蒸发蒸腾量、日蒸发蒸腾量、土壤含水率、地上干物质以及籽粒产量,并对2种方法的模拟结果进行了评价和比较。对2种方法模拟的蒸发蒸腾量值与试验区域内大型称量式蒸渗仪的实测结果进行了比较,结果表明,基于PT和PM方法的CERES-Wheat模型均可以准确地模拟干旱-半干旱地区冬小麦的蒸发蒸腾量,累积蒸发蒸腾量和日蒸发蒸腾量的误差分别小于5.4%和3.4%。同时,模型还可以模拟土壤水分动态情况,在0~20 cm土层,CERES-Wheat模型的模拟值与实测值的标准化均方根误差(RRMSEn)为39.38%,模拟结果较差,但20 cm土层以下,2种方法的模拟值与实测值的RRMSEn均小于23.1%,且对40~60 cm土层的模拟结果最好。CERES-Wheat模型基于PT和PM方法对冬小麦在2011—2012年和2012—2013年生长季地上生物量的模拟值与实测值的RRMSEn分别为13.57%和22.76%,产量的RRMSEn分别为11.80%和15.42%,模拟结果均较好。另外,CSM-CERES-Wheat模型基于PT方法模拟的蒸发蒸腾量小于基于PM方法的模拟值,而PT方法对土壤含水率的模拟结果高于PM方法的模拟结果,且PT方法对地上生物量以及产量的模拟结果高于PM方法,用2种方法模拟的成熟期地上生物量及产量的RRMSEn值均在25%以内。总之,CSM-CERES-Wheat模型采用2种方法对蒸发蒸腾量、土壤含水率及干物质和产量的模拟结果均较好,表明该模型在我国干旱-半干旱地区的应用性较好,可为该地区不同水分条件下冬小麦的生长情况提供理论支持。  相似文献   

8.
在季节性冻融期,影响土壤蒸发的因素颇为复杂,准确估算冻融土壤蒸发量对土壤水资源的高效利用具有重要意义。根据2017-2018年冻融期大田试验数据,选取太阳辐射(x_1),日平均气温(x_2),地表土壤温度(x_3),地表土壤含水率(x_4),风速(x_5),气压(x_6),相对湿度(x_7),降水量(x_8),水面蒸发量(x_9)等9个影响冻融土壤蒸发的因素,采用主成分分析法和粒子群算法优化的支持向量机建立了冻融土壤蒸发量的预报模型。结果表明:所建立的基于主成分分析和粒子群算法优化支持向量机的冻融土壤蒸发预报模型,预测值和实测值的决定系数达0.951 3,平均相对误差为9.870 4%,可较好地用于冻融土壤蒸发量的预报。  相似文献   

9.
<正> 土壤含水率是影响潜水蒸发的一个很重要的因素。但是,目前国内主要侧重于探讨蒸发力和埋深对潜水蒸发的影响,对土壤含水率与潜水蒸发的关系缺乏研究。本文根据实测资料,应用回归分析方法,探讨了潜水蒸发强度随土壤含水率的变化规律。并分析了不同深度的土壤含水率对潜水蒸发的影响。对潜水蒸发与土壤含水率的关系得到了初步认识。  相似文献   

10.
冬小麦不同深度灌水条件下土壤水分运动数值模拟   总被引:2,自引:0,他引:2  
冬小麦深度灌水可以促进根系深扎,提高水分利用率。为了定量计算深度灌水条件下土壤水分动态,根据冬小麦不同深度灌水试验,用土壤水分运动方程的源项模拟不同深度灌水,建立了冬小麦不同深度灌水条件下土壤水分运动模型,采用有限差分法求解。利用不同深度灌水冬小麦试验数据对模型进行验证,结果表明模型计算的土壤含水率与实测土壤含水率的动态变化趋势一致,二者显著相关,相关系数在0.90以上,模型平均绝对误差最大值为0.023 cm3/cm3,平均相对误差最大值为8.22%,均方根误差最大值为0.03 cm3/cm3。所建模型具有较高的模拟精度,可用于模拟不同深度灌水条件下冬小麦土壤水分分布与动态变化。  相似文献   

11.
Water uptake by plant roots is an important process in the hydrological cycle, not only for plant growth but also for the role it plays in shaping microbial community and bringing in physical and biochemical changes to soils. The ability of roots to extract water is determined by combined soil and plant characteristics, and how to model it has been of interest for many years. Most macroscopic models for water uptake operate at soil profile scale under the assumption that the uptake rate depends on root density and soil moisture. Whilst proved appropriate, these models need spatio-temporal root density distributions, which is tedious to measure in situ and prone to uncertainty because of the complexity of root architecture hidden in the opaque soils. As a result, developing alternative methods that do not explicitly need the root density to estimate the root water uptake is practically useful but has not yet been addressed. This paper presents and tests such an approach. The method is based on a neural network model, estimating the water uptake using different types of data that are easy to measure in the field. Sunflower grown in a sandy loam subjected to water stress and salinity was taken as a demonstrating example. The inputs to the neural network model included soil moisture, electrical conductivity of the soil solution, height and diameter of plant shoot, potential evapotranspiration, atmospheric humidity and air temperature. The outputs were the root water uptake rate at different depths in the soil profile. To train and test the model, the root water uptake rate was directly measured based on mass balance and Darcy's law assessed from the measured soil moisture content and soil water matric potential in profiles from the soil surface to a depth of 100 cm. The ‘measured’ root water uptake agreed well with that predicted by the neural network model. The successful performance of the model provides an alternative and more practical way to estimate the root water uptake at field scale.  相似文献   

12.
季节性冻融期不同潜水位埋深下土壤蒸发规律模拟研究   总被引:1,自引:0,他引:1  
为了揭示季节性冻融期不同潜水位埋深和土壤质地对土壤蒸发的影响,通过连续2个冻融期的蒸渗计土壤剖面含水率和土壤温度的监测,利用水热耦合运移模型模拟研究了4种不同潜水位埋深(0.5、1.0、1.5、2.0 m)下砂壤土和壤砂土的土壤蒸发规律。结果表明:不稳定冻结阶段和消融解冻阶段地表土壤均出现昼融夜冻的特征,土壤液态水分较多,砂壤土和壤砂土蒸发量分别占整个冻融期的91.7%和81.8%以上。稳定冻结阶段的土壤蒸发量随着潜水位埋深的增加而增大,但小于0.31 mm。潜水位埋深为0.5 m时冻融期土壤蒸发量最大,砂壤土和壤砂土分别为47.28 mm和25.60 mm,随着潜水位埋深的增加,冻融期土壤蒸发量呈指数型减少,土壤颗粒直径相对较大的壤砂土土壤蒸发量随潜水位埋深的增加而衰减的幅度较为明显。该研究可为地下水浅埋区土壤盐渍化的防治和地下水资源量的科学评价提供依据。  相似文献   

13.
不同积雪覆盖条件下冻融土壤水分运动规律研究   总被引:5,自引:0,他引:5  
积雪覆盖作为中国北方高寒黑土区土壤冻融期最普遍的上边界条件,直接影响土壤水分分布、迁移过程及土壤温度、冻结深度、冻结速率等。通过野外试验,对哈尔滨地区的季节性冻融黑土在裸地、自然积雪、压实积雪、加厚积雪4种不同覆盖条件下的土壤水分迁移规律进行动态观测。从时间、空间角度分析土壤含水率变化,结果表明:积雪厚度和密度都可以很大程度上影响积雪对土壤的保护作用,在仅考虑积雪自身沉降造成密度增大的情况下,积雪厚度越大保护效果越好,土壤含水率对气温变化的响应及土壤解冻时间依次延后,延后程度随土壤深度增加而增大;当人为改变积雪密度时,相较于单纯增加积雪厚度,密度大的积雪可以更好地保护土壤,使气温对土壤的直接影响更小。当遇到冬季降雪量较小的情况时,可以考虑采用人为压实积雪的方法,加强对土壤的保护作用。  相似文献   

14.
集雨限量补灌条件下带田玉米土壤水分时空动态研究   总被引:1,自引:1,他引:1  
对旱地小麦/玉米带田集雨限量补灌条件下玉米带0~90cm土层土壤水分时空动态及其生长发育进行了分析,认为玉米全生育期不同土层土壤含水量变化较为一致,基本上呈以小喇叭口期为峰值的"单峰"曲线。并建立了0~30、30~60、60~90及0~90cm土层土壤含水量随时间变化的数学模型,以此来预测试验条件下套作玉米带土壤水分随时间变化的动态。  相似文献   

15.
目前田间持水量的测定大多使用传统的人工测量方式,存在耗时长、不能实时测量等问题,为此提出一种基于土壤多参数监测系统测定田间持水量的方法。该方法以饱和土壤含水量自然蒸发为试验基础,分析不同深度的土壤水分曲线在不同阶段的变化情况,探究土壤表层相对温度差对土壤水分日丢失量的影响。结果表明:10 cm深度的土壤水分曲线Y 1在不同观测阶段递减,第15天曲线斜率变小的趋势最明显,20 cm深度的土壤水分曲线Y 2在不同观测阶段递减,在第12天曲线斜率变小的趋势较明显。由土壤体积含水量与观测天数的拟合函数检验指标知,回归模型的决定系数R 2均在0.99以上,表明不同深度的土壤体积含水量与观测天数存在一元二次函数关系。不同深度的土壤水分日丢失量在时间序列上呈现一元三次函数关系变化,而土壤表层相对温度差近似为一个常数,表明土壤水分日丢失量受土壤表层相对温度差的影响较小。使用二次回归模型计算的田间持水量误差为[0.05,0.39],具有更高精度。该方法为土壤监测设备在测定田间持水量中的应用研究提供参考。  相似文献   

16.
土壤水分动态的研究是定量理解植被对水分胁迫响应、土壤养分循环的水文控制、植物水分竞争等生态系统动态的关键,是目前国内外的研究热点。利用2004年-2007年每天的土壤水分监测数据,结合laio土壤水分动态随机模型,研究了四川盆地丘陵区(重庆铜梁虎峰)土壤水分的动态特征及其laio模型在亚热带气候条件推求土壤随机动态特征的适用性。结果表明:监测年内各层土壤水分无论在枯水年还是平水年均差异显著,其中连续平水年土壤水分的含量和变异系数均高于枯水年,枯水年后的平水年低于枯水年;土壤水分的季节变化可分为稳定期、消耗期、波动期;土壤水分的垂直变化来看,土壤水分含量并非完全随着土壤深度的增加而增加。用laio概率随机模型导出的土壤水分概率密度图表明:各层土壤水分的峰度出现在=0.5左右,变化幅度较宽。用laio模型导出的土壤水分峰度和变幅与观测的概率密度函数结果基本一致,相对误差在5%,laio模型可用于分析亚热带气候下土壤水分动态随机特征。  相似文献   

17.
猕猴桃果园不同采样密度下土壤含水率空间变异性研究   总被引:6,自引:0,他引:6  
为揭示小区尺度乃至微尺度土壤含水率的空间变异性,在杨凌地区猕猴桃果园选取40 m×40 m区域,并在此基础上再以8、2 m为间距进行网格划分,基于经典统计学和地统计学理论,对不同采样密度条件下0~60 cm土层土壤含水率的空间分布特征及其空间变异性进行了研究。结果表明,对于40 m×40 m(L)、8 m×8 m(M)和2 m×2 m(S)3种尺度,0~60 cm深度各土层土壤含水率在水平方向上的变异强度表现为弱变异至中等(偏弱)变异,且随尺度减小和土层深度增加而减小,且所有取样点处0~60 cm深度内土壤含水率在垂直方向上的变异强度表现为弱变异至中等(偏弱)变异。在3种尺度中,土壤含水率存在强烈的空间相关性,表征土壤含水率空间分布形态的半方差函数因尺度不同存在较大差异,L尺度可采用球状和指数模型,M尺度可采用线性模型,S尺度可采用高斯、指数、线性模型。L尺度合理取样数较实际少,而M和S尺度合理取样数较实际多,对于3种尺度,基本表现出0~30 cm土层合理取样数较实际多、30~60 cm土层合理取样数较实际少,表明取样点的合理性分布有待进一步优化。由于地形原因导致当地果园内南北侧土壤含水率空间分布存在较大差异。  相似文献   

18.
不同深度秸秆覆盖对滴灌棉田土壤水盐运移的影响   总被引:3,自引:1,他引:2  
为探索滴灌条件下秸秆覆盖对棉田土壤水盐运动的影响,设置表层覆盖、地表下30cm覆盖和无覆盖3种处理,进行对比试验研究,结果表明,秸秆覆盖通过对土壤水分的影响间接影响了土壤盐分的运移和分布。在30cm处覆盖秸秆主要对30cm以上土壤的水分和盐分产生影响,对35cm以下的影响和表层覆盖比较接近。采用秸秆覆盖对土壤水分和盐分水平方向的运移具有一定影响,无覆盖在前期、中期和后期土壤表层盐分均最高。30cm处覆盖秸秆阻碍了35cm以下土壤毛管水的上升,从而阻止了盐分的上升。采用秸秆覆盖后,特别是在30cm深度采用秸秆覆盖,对于调控土壤水、盐变化,抑制土壤盐分上移具有积极作用。  相似文献   

19.
机器轮胎引起的土壤压实及其耕作能量消耗   总被引:5,自引:1,他引:4  
用小四轮拖拉机、铁牛650和JL1065联合收割机在松软的种床上压地一遍,测定不同深度土壤体积密度的变化。结果表明:小拖碾压仅对表层土壤体积密度有一定的影响;大拖拉机和联合收割机对土壤体积密度的影响深度超过了40cm。由于土壤体积密度的增加,导致耕作阻力及作业能量的增加,与未经碾压的种床相比,大拖拉机和联合收割机引起的压实,可使耕作阻力增加25%,相应的能量消耗增加200%。  相似文献   

20.
AquaCrop作物模型在松嫩平原春麦区的校正和验证   总被引:2,自引:0,他引:2  
为了研究AquaCrop作物模型在松嫩平原春麦区的适用性,利用实测的土壤水分、春小麦生长和产量数据,结合气象数据,获得AquaCrop模拟土壤水分和春小麦生长的模型参数,并用往年的作物生长数据对模型进行验证。结果表明,春小麦的产量和生物量的实测值与模拟值的绝对平均误差(MAE)为0.058和0.109、均方根误差(RMSE)为0.06和0.11t/hm2、模拟性能指数(EF)为0.795和0.822、残差聚集系数(CRM)为-0.006 96和0.005 87、一致性系数(IoA)为0.959和0.966;对10cm和20cm土壤体积含水率的实测值与模拟值的MAE为5.23和2.53、RMSE为6.47%和7.95%、EF为-0.277和-0.069、CRM为0.097和0.212、IoA为0.585和0.741。说明AquaCrop模型对春小麦的生物量和产量及生育期土壤体积含水率的模拟结果总体较好,对松嫩平原春麦生产有一定的参考意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号