首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
为辅助抗倒伏育种,了解甘蓝型油菜茎秆强度的遗传调控,利用植物数量性状主基因+多基因混合遗传分离分析方法,对M417 × Brongoro(MB)组合和浙油18 × Brongoro(ZB)组合六个世代(P1、P2、F1、B1:2、B2:2和F2:3)的茎秆强度性状进行遗传分析。结果显示:甘蓝型油菜茎秆强度性状的最佳遗传模型为MX2-ADI-ADI,即2对加性-显性-上位性主基因+加性-显性-上位性多基因模型,表明该性状受2对主基因和微效多基因共同控制,以主基因遗传为主,MB组合和ZB组合的平均主基因遗传率分别为19.46%和69.93%。2对主基因的加性效应和显性效应在MB组合中作用方向相反,而在ZB组合中作用方向相同,同时还存在多种上位性效应。两个组合中环境变异占表型变异的54.68%和13.23%,说明环境对茎秆强度性状具有较大影响。  相似文献   

2.
玉米低钾耐性性状的主基因+多基因遗传分析   总被引:2,自引:0,他引:2  
应用植物数量性状主基因+多基因混合遗传模型多世代联合分析方法,以玉米缺钾症状叶片数为指标,对1个耐低钾玉米自交系T和2个低钾敏感玉米自交系S1和S2配制成的2个组合的P1、P2、F1、B1、B2和F2世代进行遗传分析,研究明确玉米耐低钾性状的遗传机制。结果表明,玉米低钾耐性遗传在2个组合中都由1对加性+加性-显性多基因控制;主基因遗传率(F2)平均为60.43%,多基因遗传率(F2)平均为15.35%;T×S1组合的遗传变异占表型变异值为80.20%,T×S2组合的遗传变异占表型变异值为71.35%,表明耐低钾性状以主基因遗传为主。育种应用上可以在低世代进行这一目标性状的选择。  相似文献   

3.
冬瓜种子千粒重主基因+多基因混合遗传分析   总被引:1,自引:0,他引:1  
利用主基因+多基因混合遗传模型对冬瓜组合B214(小籽粒)×B227(大籽粒)的6世代群体(P1、P2、F1、B1、B2及F2)种子千粒重进行遗传分析.结果表明,冬瓜组合B214×B227种子千粒重性状为1对加性主基因+加性-显性多基因遗传,主要受主基因和多基因的加性效应控制,不存在杂种优势.主基因+多基因在B1、B2及F2群体的遗传率分别为68.82%、75.70%和76.29%.因此,可通过选择较高千粒重的材料为亲本,利用加性效应对冬瓜种子千粒重性状进行品种改良.  相似文献   

4.
《花生学报》2021,50(1)
为提高花生品质性状育种效率,掌握花生脂肪和蛋白质含量的遗传规律非常必要。本研究采用数量性状"主基因+多基因"混合遗传模型方法,以杂交组合"潍花8×12L49"的5个家系世代群体作为材料,对花生脂肪和蛋白质含量进行多世代联合分析。蛋白质性状的遗传模型为MX1-AD-ADI模型(一对加性—显性主基因+加性—显性—上位性多基因),主基因加性效应为d=-0.143,表现为负向加性效应,多基因加性效应值为[d]=-1.2126,多基因显性效应为[h]=0.6563,显性效应大于加性效应,F_2和F_(2:3)主基因的遗传率分别为27.0234%和30.2766%;多基因遗传率分别为37.7856%和38.1190%,多基因遗传率比主基因遗传率高。脂肪的遗传模型为PG-AD(加性—显性多基因),多基因加性效应为[d]=1.1248,F_2和F_(2:3)多基因的遗传率分别为32.0843%和32.6325%。蛋白质含量和脂肪含量主要受多基因遗传控制,在育种的中晚期世代进行选择,效果较好。  相似文献   

5.
花生百仁质量和含油量的遗传分析   总被引:1,自引:0,他引:1  
本研究以大花生品种花育36号为母本,高油品系高油613为父本,构建重组自交系(recombinant inbred line,RIL)群体。采用数量性状主基因+多基因混合遗传模型联合分离分析方法,对百仁质量和含油量进行遗传分析。结果表明,花生百仁质量符合I_9模型,即4对主基因加性效应+多基因加性上位性模型,其中3对主基因加性效应相等,主基因遗传率为59.01%,多基因遗传率为40.28%。花生含油量符合E_1_9模型,即2对主基因+加性多基因模型,主基因存在抑制作用,主基因遗传率为64.60%,多基因遗传率为27.18%。同时鉴定出6个高油大花生家系,百仁质量大于115g且含油量高于59%。本研究为深入开展花生百仁质量和含油量分子机制研究,培育高油花生新品种奠定了重要基础。  相似文献   

6.
甘蓝型油菜花瓣缺失性状的主基因+多基因遗传分析   总被引:3,自引:0,他引:3  
以无花瓣材料APL01和常规四花瓣品种NB6和M083杂交并自交及回交所获得的6个基本世代(P1、P2、F1、B1、B2和F2)为材料,利用主基因+多基因混合遗传模型对无花瓣性状进行遗传分析,结果表明,甘蓝型油菜无花瓣性状的遗传适合E-0模型,即2对加性-显性-上位性主基因+加性-显性-上位性多基因遗传模型。2对主基因的加性效应相等,但不同组合、不同年份的估计值有差异,加性效应值为-11.13 ~ -20.08;2对主基因的显性效应值在不同组合间存在差异,(APL01/NB6)杂交组合估计的2对主基因的显性效应值不同,其中1对基因的效应值较大,而(APL01/M083)估计的2对主基因的显性效应值无差异;上位性效应不同组合间表现也有差异,(APL01/NB6)组合以加加上位和加显上位为主,(APL01/M083)组合以显显上位为主。主基因的遗传率较大,为76.29%-94.13%,不同群体的估计值有差异,以B1世代的估计值较大,B2的估计值较小;多基因的遗传率较小,不同组合、不同年份间表现一致。  相似文献   

7.
玉米低磷耐性性状的主基因+多基因遗传分析   总被引:1,自引:1,他引:0  
以玉米缺磷症状叶为指标,应用植物数量性状主基因+多基因混合遗传模型多世代联合分析方法,对1个耐低磷玉米自交系T和2个低磷敏感玉米自交系S1、S2及其组配的杂交、回交群体的6个世代材料进行遗传分析,研究玉米耐低磷性状的遗传机制。结果表明,玉米低磷耐性遗传在2个组合中都是由1对加性+加性-显性多基因控制;主基因遗传率(F2)平均为60.85%和60.29%,多基因遗传率(F2)平均为22.02%和23.47%;T×S1组合的遗传变异占表型变异值为83.79%,T×S2 组合的遗传变异占表型变异值为82.34%,表明耐低磷性状以主基因遗传为主。  相似文献   

8.
高油酸花生种质油酸亚油酸含量的主基因+多基因遗传   总被引:2,自引:1,他引:1  
应用植物数量性状主基因+多基因混合遗传模型对杂交组合8-153×粤油13的P1、F1、P2、F2世代和F2∶3家系的油酸、亚油酸含量进行多世代联合分析,结果表明:在该组合中,花生油酸含量遗传由2对加性-显性主基因+多基因控制;F2、F2∶3群体主基因遗传率分别为77.28%和55.00%,多基因遗传率分别为13.34%和32.13%;两对主基因的加性效应值分别为8.8172和4.0397,显性效应值分别为-10.2475和-9.0420。亚油酸含量遗传由2对加性-显性-上位性主基因控制;F2、F2∶3群体主基因遗传率分别为88.30%和79.84%;两对主基因的加性效应值(da、db)分别为-7.3949和-6.9568,显性效应值(ha、hb)分别为1.3879和1.5438;da与db、da与hb、db与ha以及ha与hb间的互作效应分别为-4.5216、-1.7688、-1.9808和-1.1172。ol基因的多效性以及油酸、亚油酸含量和O/L比值的遗传均受两对主基因控制的结果暗示相同的两对主基因可能同时控制油酸与亚油酸含量,它们对油酸、亚油酸含量的作用效应相反。  相似文献   

9.
选择茎秆粗度差异大的3个亲本(CB1、CB4和CB7),配制CB1×CB4和CB7×CB4组合,并分为中、晚稻种植,采用P1、F1、P2、B1、B2和F2 6个基本世代主基因+多基因混合遗传分析方法对该性状进行遗传分析。结果表明:茎秆粗度属于D-2模型(1对加性主基因+加-显性多基因模型),各组合B1、B2和F2世代的主基因遗传率在27.60%~63.69%之间,总基因型遗传率在39.43%~82.01%之间。CB1×CB4和CB7×CB4各世代群体作中稻种植的主基因遗传率比作晚稻种植稍低,总基因型遗传率同样相对较低,说明供试材料作为中稻种植,可能受环境因素的影响比作为晚稻种植更明显。  相似文献   

10.
大豆粒形的主基因+多基因混合遗传   总被引:3,自引:0,他引:3  
大豆粒形直接与产量相关,对其粒长、粒宽的遗传规律分析可以为其数量性状基因座定位、分子标记辅助选择育种和基因克隆奠定基础.调查大豆杂交组合溧水中子黄豆(P1)×南农493-1(P2)正反交的P1、P2、F1和F2:3四个世代的粒长和粒宽的表型资料,运用四个世代联合的主基因+多基因混合遗传分析方法,对这两个性状分别进行了遗传分析.结果表明:正反交杂种F1粒长和粒宽有显著差异,存在母性效应;粒长性状受一对加性-显性主基因和加性-显性.上位性多基因共同控制;粒宽受多基因空制.  相似文献   

11.
烤烟易烤性遗传分析   总被引:2,自引:0,他引:2  
应用植物数量性状主基因+多基因混合遗传模型多世代联合分析方法,对烤烟杂交组合中烟100×翠碧1号的P1,P2,F1,B1,B2和F26个世代群体烟叶易烤性性状进行了联合分析。结果表明:烤烟烟叶易烤性性状的遗传符合2对加性-显性-上位性主基因+加性-显性多基因混合遗传模型(E 1),同时两对主基因间存在互作效应,且显性效应值相近,表现出负向不完全显性。主基因遗传率以B1最高,达78.17%,B2与F2相差不大,分别为63.68%和65.61%,表现出较高的主基因遗传效应;多基因遗传率以B2最高,为7.51%,其次是F2(6.84%),B1最低(0.88%)。主基因+多基因效应决定了各分离世代易烤性性状变异的71.19%~79.06%。  相似文献   

12.
以玉米自交系M9916×D472组成的六世代群体为材料,利用六世代数量性状主基因+多基因混合遗传模型多世代联合分析方法,研究玉米茎腐病抗性的遗传机制。结果表明,分离世代的次数频率分布在F2群体中呈近似于抛物线状的正态分布,在B1和B2群体中呈偏正态分布。通过AIC值适合性检验,该性状符合1对加-显主基因+加-显-上位性多基因遗传D模型,主基因加性效应值为5.29,显性效应值为6.79,两者效应值均相对较高,加性与显性效应比率为78%;多基因加性效应值为2.98,明显低于显性效应值6.88,说明显性效应起主导作用。多基因加性互作效应明显,加、显互作上存在一定抑制作用,显性互作效应不明显,加性互作效应在上位性方面起主导作用。回交群体中主基因的遗传率介于39.9%~41.3%,多基因遗传率介于33.8%~36.7%,主基因遗传率相对较高;自交群体中多基因遗传率为53.8%,大于主基因遗传率32.8%,说明在进代过程中主基因遗传率不断下降。在抗茎腐病的育种中,应注重早代抗病材料的选择,对现有重要的感病材料可利用回交方法进行有效改良。  相似文献   

13.
甘蓝型油菜主要脂肪酸的主基因+多基因遗传分析   总被引:2,自引:0,他引:2  
以低芥酸油菜品系APL01与高芥酸品种M083杂交所获得的6个基本世代(P1、P2、F1、B1、B2和F2)为材料,利用主基因+多基因混合遗传模型对油菜主要脂肪酸进行遗传分析,结果表明:棕榈酸和廿碳烯酸均由2对加性-显性-上位性主基因+加性-显性多基因控制,棕榈酸的主基因以显性效应为主,加性效应较小,廿碳烯酸的主基因加性效应与显性效应并重。硬脂酸、油酸、亚油酸和亚麻酸均由2对加性-显性-上位性主基因+加性-显性-上位性多基因控制,硬脂酸的主基因以加性效应为主,显性效应较小,主基因的遗传率为75.00%~92.45%,多基因的遗传率较小;控制油酸的2对主基因的加性效应值分别为14.38和9.92,显性效应值分别为-2.24和-0.44,上位性效应以加加上位为主,主基因的遗传率较大,为81.93%~92.68%,多基因的遗传率较小;控制亚油酸及亚麻酸的主基因加性效应均大于显性效应,上位性效应中以加加上位和显显上位为主。芥酸由2对加性-显性主基因控制,加性效应为-12.27和-8.83,显性效应值较小,分别为0.35和1.69,无上位性效应,也无多基因存在,主基因的遗传率较大,为92.54%~96.72%。  相似文献   

14.
采用主基因+多基因遗传模型,对巢式群体的5个组合的F2家系的荚果性状进行了遗传模式解析,以期了解巢式杂交群体的荚果性状遗传变异特点。结果表明,巢式杂交群体具有丰富的荚果性状的变异类型,荚果长、宽和百果重在5个组合中的最小值至最大值变异幅度分别为(14.30~22.09)mm~(38.36~45.12)mm、(7.06~10.47)mm~(17.13~22.74)mm和(62.41~94.38)g~(266.75~364.00)g。荚果长与荚果宽、荚果表面积、荚果表面周长、百果重的相关性均极显著,与荚果长宽比的相关性较小;荚果宽与荚果表面积、荚果表面周长、百果重存在正相关,与荚果长宽比存在负相关。不同杂交组合的不同果型性状的遗传模式均有差异,最佳遗传模型为两对主基因加性-显性模型和两对主基因加性-显性-上位性模型;主基因遗传力22.79%~91.62%,不同群体中的基因效应值各不相同,表明多等位基因或非等位基因的不同遗传效应以及遗传背景差异对荚果性状的影响。本研究为利用NAM群体开展荚果性状QTL定位及分子标记开发、为专用型花生新品种选育提供了材料基础和理论依据。  相似文献   

15.
苦瓜叶片叶绿素含量的遗传分析   总被引:1,自引:0,他引:1  
为探究苦瓜叶片叶绿素含量遗传特点,加快高产优质新品种选育进程,以苦瓜高代自交系$\otimes$04-17-6和$\otimes$25-6配组产生的6个世代P1、P2、F1、B1、B2和F2为材料,利用主基因+多基因混合遗传模型和ABC尺度测验2种方法,对苦瓜叶片叶绿素含量进行遗传分析。主基因+多基因混合遗传模型分析结果表明,叶绿素含量遗传受1对加性-显性主基因+加性-显性-上位性多基因控制,且高叶绿素含量对低叶绿素含量为不完全显性。3个分离世代B1、B2、F2的主基因遗传率分别为2.86%、75.35%、79.79%,多基因遗传率分别为87.81%、0%、0%,环境变异为9.33%~24.65%,主基因的加性效应da和显性效应ha分别为17.739和17.682,显性度ha/da 小于1。ABC尺度测验结果表明,叶绿素含量的遗传符合加性-显性模型。2种方法分析结果表明,苦瓜叶片叶绿素含量由1对主基因控制,同时受微效多基因及环境影响,适合进行早代选择。B2、F2世代应重点进行主基因选择,多基因在B1选择效率高,提高品系叶绿素含量应注重对加性效应和显性效应的利用。该研究结果为苦瓜产量及品质育种提供了理论基础。  相似文献   

16.
微胚乳超高油玉米子粒含油率的主基因+多基因遗传分析   总被引:2,自引:1,他引:1  
微胚乳超高油玉米是一种专用型油料玉米,具有很好的应用前景。选择两个微胚乳超高油玉米组合,通过P1、F1、P2、B1、B2和F2 六世代联合分析法,研究分析其子粒含油率的遗传规律。结果表明,2个组合子粒含油率的遗传均符合2对主基因+多基因遗传模型。组合Ⅰ主基因遗传率在B1、B2和F2分别为69.00%、35.03%和68.99%,多基因遗传率分别为14.91%、46.97%和17.70%。组合Ⅱ 主基因遗传率在B1、B2和F2分别为46.80%,42.92%和48.25%,多基因遗传率分别为29.41%、34.76%和35.91%。  相似文献   

17.
以WBA31×K4138构建的DH群体及其亲本为试验材料,采用P1、P2与DH群体3世代主基因+多基因联合分离分析模型,对玉米乳熟期茎秆木质素含量进行遗传分析,探讨玉米茎秆木质素含量的遗传基础。结果表明,玉米茎秆木质素含量遗传符合3对加性-上位性主基因+多基因模型遗传,主基因遗传率为44.91%,多基因遗传率为43.94%,多基因效应比较明显,主基因总加性效应小于主基因间互作效应。因此,在育种时既要注重基因间的加性效应,又要考虑基因间的互作,同时要加强微效多基因的效应累加。  相似文献   

18.
为了解烤烟烤后中部烟叶淀粉含量的遗传规律,选用K326、NC89、翠碧一号和红花大金元等4个品种,按完全双列杂交设计,采用Griffing方法Ⅰ进行配合力分析,并应用植物数量性状"主基因+多基因"混合遗传模型对K326×红花大金元组合P1、P2、F1和F2等4个世代群体进行遗传分析。结果表明:烤烟烤后中部叶淀粉含量的遗传主要受细胞核效应的影响,一般配合力方差和特殊配合力方差达极显著水平,一般配合力方差大于特殊配合力方差,翠碧一号的一般配合力表现为较高的正向效应,K326的一般配合力表现为较高的负向效应;K326×红花大金元组合烤后中部叶淀粉含量的遗传符合2对加性-显性-上位性主基因+加性-显性多基因模型(E-1),主基因遗传率(h_(mg)~2)为49.53%。  相似文献   

19.
小麦农艺性状的主基因+多基因遗传分析   总被引:1,自引:0,他引:1  
为明确小麦重要农艺性状的遗传组成,并筛选适于QTL的性状,以西农817和中国春为亲本,构建F2、F3群体,采用P1、P2、F1、F2、F3五世代联合分析方法,研究了株高、有效分蘖、小穗数、穗粒数、穗长、穗下节间距、小穗着生密度等产量相关性状的遗传模型.结果表明,7个性状不仅受基因的控制,同时也受到不同程度的环境影响.其中,穗长、穗粒数符合多基因遗传模型,无主基因存在;株高、小穗数、小穗着生密度符合一对加显性主基因+加性-显性多基因混合遗传模型;穗下节间距符合一对完全显性主基因+加性-显性多基因模型;有效分蘖符合一对负向完全显性主基因+加性-显性多基因模型.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号