首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Final kernel weight (KW) is closely related to maximum kernel volume (KV) and maximum kernel water content (KWC). It is not clear, however, how changes in the reproductive sink capacity, assimilate availability during grain filling and physical restriction to kernel expansion affect the relationship between KW and KWC or between KW and KV. Three experiments were conducted at Balcarce, Argentina and Ames, USA. Defoliation, thinning, plant density, restricted pollination and volume restriction treatments were imposed to manipulate KV, sink and source capacity. KW varied from 111 to 436 mg across all hybrid–treatments combinations and was related to the source/sink ratio during grain filling (r2 = 0.85). Treatment variation in KW was related primarily to changes in kernel growth rate, except for the complete defoliated treatment, which also shortened the duration of grain filling. KW was correlated with maximum KWC (r2 = 0.77, p < 0.001) and with maximum KV (r2 = 0.91, p < 0.001). The developmental patterns for KW, KWC and KV during grain filling were not affected by the source/sink manipulations, except for severe defoliation. In the latter case, maximum KWC was not a good estimate of final KW. KV, however, was sensitive to reductions in carbohydrate supply during grain filling and was closely correlated to KW. Physical restriction to kernel expansion reduced kernel weight 13% relative to its control (p < 0.01). But restricting kernel expansion did not alter the general relationships between KW and KWC or between KW and KV, because kernel density was not affected.  相似文献   

2.
《Field Crops Research》1998,56(3):257-264
Maize kernel weight (KW) results from kernel growth during two stages of grain filling, the lag phase (formative period) and the effective grain-filling phase. Environmental conditions may affect kernel biomass accumulation in each phase. This work analyzed: (1) changes in duration and rate of kernel growth on a thermal time (°C day) basis; and (2) KW response to postsilking biomass production kernel−1 (source:sink ratio). Sowing date, plant population, and nitrogen fertilization experiments were conducted in France and Argentina to induce changes in assimilate availability per kernel. Hybrids of different KW were tested. Hybrids differed in the duration of the lag phase, which determined kernel growth rate during the effective grain-filling period for hybrids with similar grain-filling duration (ca. 745°C day). Environments with low air temperature (<19°C) and less incident solar radiation led to a smaller final KW due to reductions in photoassimilate production and its partition to the grains. A value of 240 to 270 mg kernel−1 during grain filling was determined as a threshold to have mobilization or storage of reserves. Small-kernel hybrids (KW<300 mg), with large kernel number (3500 to 5500 kernels m−2), depended more on reserve mobilization than large-kernel hybrids (KW>300 mg) with reduced kernel number (2800 to 4000 kernels m−2). For the former, grain yield increments should not be based on increased kernel number but on increased biomass production.  相似文献   

3.
《Field Crops Research》2006,95(2-3):316-326
Maize (Zea mays L.) kernel weight (KW) response to changes in assimilate availability per kernel during grain filling suggests that plants establish an early kernel sink potential that place them to grow close to a saturating assimilate availability condition during late grain-filling, meaning source limitations are common only early in kernel development. As maize reproductive efficiency in kernel set is not constant across different plant growth rates (PGR) around flowering, we used PGR per kernel during this period as an indicator of source availability per kernel. We tested whether PGR per kernel during flowering or during the effective grain-filling period were correlated to genotypic and environmental differences in final KW. Plant growth rate during both periods, KW, kernel growth rate during the effective grain-filling period, total duration of grain filling and kernel number per plant were measured in 12 commercial genotypes differing in KW sown at two sites under full irrigation. As expected from the curvilinear response relating kernel number per plant and PGR around flowering, increased PGRs resulted in higher PGR per kernel around this period (r2 = 0.86; p < 0.001). Differences in final KW due to genotypes or environments were significantly explained by the PGR per kernel around flowering (r2 = 0.40; p < 0.001), and not by the PGR per kernel during the effective grain-filling period. Genotypes differed in kernel growth rate (p < 0.001) and grain-filling duration (p < 0.001). The former was well explained by PGR per kernel around flowering (r2 = 0.66; p < 0.001), but showed no relationship with the PGR per kernel during the effective grain-filling period. Grain-filling duration was partially explained (r2 = 0.27; p < 0.01) by the ratio between PGR per kernel during the effective grain-filling period and kernel growth rate, but differences in duration were negligible compared to those observed in the ratio (∼41% versus ∼130%, respectively). Together, these results support the importance of source availability per kernel during early grain filling on the determination of maize potential sink capacity and final KW. Early resource availability per kernel was accurately estimated as PGR per kernel around the period of kernel number determination, which helped explain genotypic and environmental differences in maize final KW as well as in kernel growth rate.  相似文献   

4.
《Field Crops Research》2006,95(2-3):223-233
Development of maize (Zea mays L.) kernels follows a predictable pattern involving rapid increase in dry weight and large changes in water content (WC). We showed previously that final kernel weight (KW) was closely correlated with maximum WC achieved during rapid grain filling. The objectives of the current work were (i) to test if percent moisture content (MC, measured on a fresh weight basis) could be used to normalize genetic and environmental variations in kernel development shown to affect final KW and (ii) to determine whether final KW could be predicted from kernel WC prior to rapid grain filling. The data examined included results from five hybrids varying more than 2-fold in final KW grown in the field, and from previously published results. When KW and WC were expressed relative to their maximum values obtained during kernel development, a single model described the relationship between dry weight accumulation and MC for the larger seeded hybrids (199–352 mg kernel−1) and published results (222–359 mg kernel−1). Two smaller seeded yellow-flint popcorn hybrids, however, accumulated less dry matter per unit moisture than expected. Nonetheless, all genotypes exhibited a common developmental relationship between kernel WC (expressed as a percent of the maximum value) and MC under well-watered conditions. A new model was developed to couple this developmental relationship to final KW. This model accurately predicted final KW from kernel WC values measured prior to rapid grain filling (∼80% MC; root mean square error, RMSE, of 28.9 mg kernel−1) for all hybrids examined and all published results for which KW and kernel WC data were available. The model also provided a simple means to determine whether final KW was limited by photosynthate supply during kernel development.  相似文献   

5.
《Plant Production Science》2013,16(2):203-210
Abstract

The objective of this study was to clarify the effect of assimilate supply and high temperature on the occurrence of chalky kernels, i.e. milky white, white back, basal white and white belly kernels. Rice cultivars Koshihikari and Takanari, contrasting in number of spikelets in a panicle were used. After heading, sink-source manipulation was imposed on plants, through changing supply of assimilates to spikelets by shading or panicle clipping. Plants with each sink-source manipulation were subjected to temperature treatments, i.e., high temperature and ambient temperature, using a temperature-gradient chamber. Percentage of various types of chalky kernels was examined with the treatment for each cultivar. High temperature treatment increased milky white and white back kernels while no significant effect of temperature was observed on the percentage of white belly and basal white kernels. Effects of sink-source manipulation on the occurrence of chalky kernels varied with the type of chalky kernels. Although sink-source manipulation had no effect on white back and basal white kernels, it had a significant effect on the percentage of milky white and white belly kernels, which indicates the association of assimilate supply with the occurrence of these types of chalky kernels. A close hyperbolic relation was observed between the rate of assimilate supply and the percentage of milky white kernels, suggesting that milky white kernels are caused by assimilate deficit during the initial half period of grain filling. The higher percentage of milky white kernels at a given rate of assimilate supply at a high temperature implied that the high temperature during the grain-filling period increases the assimilate demand to avoid the occurrence of milky white kernels. This is presumably because the high temperature during the grain-filling period accelerates grain growth especially in inferior spikelets.  相似文献   

6.
Nitrogen (N) fertilisation boosts the grain yield of wheat through its influence on yield components, phenology and leaf traits. Both crop growth and senescence are dependent on N supply, as are the number of kernels set per unit area and per ear, and the mean kernel size. A two-season trial of four semi-dwarf durum wheat cultivars, grown at two levels of N, was used to illustrate the effects of N on canopy temperature, leaf resistance and flag leaf senescence pattern under irrigated conditions in a Mediterranean climate, and to explore the consequences of these effects on the crop phenology, its yield and its yield components. The well-fertilised crop developed a larger leaf area index at anthesis and a lower leaf resistance, thus generating a lower canopy temperature and delayed anthesis. Its grain fill duration was shorter, in spite of its lower canopy temperature, presumably because the increased N availability resulted in the development of a stronger sink (more kernels per unit area and per ear), which was associated with earlier senescence, thereby shortening the duration of grain fill, and led to reduced kernel weight.  相似文献   

7.
玉米子粒含水量与穗部性状的相关分析   总被引:4,自引:2,他引:4  
以17个玉米杂交组合为材料,对10个穗部性状和子粒含水量进行相关性分析。结果表明:穗粗、行粒数对子粒含水量呈显著正相关;穗行数、轴粗、出籽率、粒面积、粒深对子粒含水量呈显著的负相关;其它穗部性状对子粒含水量相关性不显著。通过改良穗部性状,可以选育子粒含水量低的杂交种。  相似文献   

8.
First‐year crops of diploid perennial ryegrass (cvs. Meridian, Bronsyn and Grasslands Impact) were sown on 1 April and 14 May 2008. Applications of trinexapac ethyl (TE) plant growth regulator at 0, 200 and 400 g a.i. ha?1 were used to shorten stems to examine the impact of seed growth. Seed filling followed a consistent sigmoidal growth pattern with a lag phase of 127°C days, and linear duration of 390°C days. Time to 95% of final seed weight was 517°C days. Seed yield increases from TE were from higher numbers of first‐grade seeds m?2, achieved by a higher rate of seed filling during the linear phase of 0·115 mg per °C day per spike. For all cultivars, the maximum stem dry weight occurred at 310–400°C days post‐anthesis, which suggest the stem was a strong sink. As seeds developed, their demand for assimilate increased and they drew more from the stem. At harvest, stem weights from TE treatments were 25% heavier than at anthesis, while untreated ‘Bronsyn’ and ‘Grasslands Impact’ stems were similar to those at anthesis. Thus, stems treated with TE contributed assimilates to increase seed yield but were still a net sink with assimilates in the stem at harvest. Trinexapac ethyl rate induced an inverse relationship between seed yield and stem height. This showed that competition for assimilate between stems and growing seeds limited the seed yield. Management or genetic factors that reduce stem height are likely to increase seed yields of perennial ryegrass.  相似文献   

9.
水稻颖花与籽粒发育模拟的初步研究   总被引:16,自引:3,他引:13  
在文献资料与田间试验研究的基础上,建立了基于过程的水稻颖花原基分化与退化数、结实粒数以及灌浆动态预测的机理模型。模型量化了穗部器官发育与生理发育时间(PDT)及环境因子的动态关系,确定了穗部籽粒发育的不均衡性与开花时间和同化物供应状况的关系,进一步模拟了不同类型品种强势粒与弱势粒不同粒位的灌浆动态。模型验证结果表明,此模型对颖花动态和籽粒灌浆过程有较好的预测性。  相似文献   

10.
Determination of grain number in sorghum   总被引:1,自引:0,他引:1  
Grain number is an important component of grain yield in sorghum. Research in wheat and maize has indicated a dependency of grain number on the crop or panicle growth rate around anthesis (CGRa and PGRa respectively), but little quantitative information is available for sorghum. The aim of this paper was firstly to quantify the effect of CGRa and PGRa on grain number and secondly, to identify other parameters that could be used as substitutes for PGRa. Analyses included data from a number of experiments, covering a range in nitrogen and drought treatments and including both tall (single dwarf) and short (triple dwarf) hybrids. CGRa and SGRa (stem growth rate) were calculated from the derivative of a curvilinear function fitted to experimental data, and PGRa was obtained by subtraction of SGRa from CGRa. Results indicated a linear relationship between grain number and CGRa, but the slope differed for tall and short hybrids. This was due to a difference in the proportion of dry matter allocated to the reproductive organs around anthesis (Pr), as PGRa was closely related to grain number, irrespective of crop height. Since panicle dry mass at maturity (excluding grain) was closely correlated with reproductive biomass shortly after anthesis, this indicator represents an integration of panicle growth during the critical period for yield determination in sorghum (i.e. flag leaf until start of grain filling). Panicle biomass at maturity (excluding grain) was thus also linearly related to grain number, and the relationship was independent of crop height and of the timing, severity, or type of stress. Our results indicate that panicle mass at maturity could provide an alternative to PGRa for the estimation of grain number.  相似文献   

11.
Kernel water relations play a key role in controlling the duration of grain filling. This duration is controlled by the relationship between kernel water and biomass development, as it determines the timing kernels reach a critical percent moisture content (MC, measured on a fresh weight basis) at which biomass accumulation stops. The time in which this critical percent MC is attained can be affected by the timing kernel net water uptake stops (i.e. maximum water content is reached), or by the relationship between water loss and biomass deposition after maximum water content is attained. Which of the two mechanisms could be behind genotypic differences in maize (Zea mays L.) grain-filling duration was unknown. We also studied the relationship between kernel water and volume development, as it was unknown in this species. Thirteen commercial hybrids were evaluated under different growing environments, and weight, water content and volume of their kernels were measured throughout grain filling.  相似文献   

12.
《Field Crops Research》1996,48(1):47-55
Phenological development, shoot dry matter production, grain yield and yield components of rice were examined in relation to drought occurring at various stages of growth. Rice was sown three or four times at three-week intervals in the field in each of two years, and performance in three stress trials was compared with that in corresponding irrigation trials, with the aim of quantifying the response of the crop to water stress of 23–34 days' duration developing at different growth stages. When drought occurred during vegetative stages, it had only a small effect on subsequent development and grain yield. The reduction in yield of up to 30% was due to reduced panicle number per unit area in one trial, and reduced number of spikelets per panicle in another. The effect of water stress on yield was most severe when drought occurred during panicle development. Anthesis was delayed, the number of spikelets per panicle was reduced to 60% of the irrigated control and the percentage of filled grains decreased in one crop to zero. This decrease in grain yield to less than 20% of the control was associated with low dry matter production during the drought period as well as during the recovery period following the drought. When drought occurred during grain filling, the percentage of filled grains decreased to 40% and individual grain mass decreased by 20%. The effect of stress was also related to its severity during grain filling. Stress at this stage hastened maturity. The results suggest that variation in yield components due to water availability is related to the variation in dry matter production at particular growth stages. Results of a supplementary shading experiment show that the relationship between spikelet number per panicle or single grain mass and crop growth rate was the same, whether growth rate was varied by availability of soil water or solar radiation. Filled-grain percentage, however, was more sensitive to drought stress than shading when comparison was made at a similar crop growth rate.  相似文献   

13.
为给小麦籽粒生长发育的化学调控提供依据,以蛋白质含量相近、粒重和淀粉含量差异大的小麦品种川麦32和川麦107为材料,研究了籽粒发育过程中淀粉、激素含量的变化及其相互关系.结果表明,大粒品种川麦32授粉后ZR含量高,灌浆中期IAA峰值高,而小粒品种川麦107籽粒发育期间淀粉含量高,GA含量也一直高于大粒品种川麦32,因而说明ZR和IAA含量与籽粒的大小及粒重关系密切,而GA含量与淀粉含量关系更密切.  相似文献   

14.
灌浆期不同阶段高温胁迫对春小麦籽粒生长的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
灌浆期短暂高温胁迫严重影响小麦产量。为了明确灌浆期不同阶段短暂高温胁迫对春小麦籽粒生长的影响,以强筋春小麦品种龙麦26和龙麦30为试材,在人工气候室(25℃/15℃)精确控温和人工温室形成绝对高温胁迫的条件下,分析了灌浆期不同阶段5d短暂高温胁迫对粒重的影响。结果表明,在灌浆期不同阶段短暂高温胁迫处理中,两个小麦品种均表现为:前期高温胁迫对粒重影响最大,达极显著水平(P0.01);随着高温胁迫处理时期的后移,粒重降低幅度逐渐减小;后期(花后25d)高温胁迫对粒重影响不显著。灌浆期缩短是导致粒重降低的主要原因。  相似文献   

15.
16.
玉米不同部位子粒灌浆特性与粒重的关系研究   总被引:1,自引:0,他引:1  
孟佳佳  董树亭  张吉旺  刘鹏  赵斌 《玉米科学》2013,21(4):42-47,54
以郑单958(ZD958)和登海661(DH661)为试验材料,研究在4.5万、7.5万、10.5万株/hm2种植密度下玉米上部及中下部子粒灌浆特性和粒重的关系。结果表明,穗粒数和千粒重是决定子粒最终产量的重要因素,两者均随着密度的增加而显著降低。同一密度下,穗位层光照自开花当天(0 d)先降低后升高,总体呈"高-低-高"的变化趋势,底层光照则持续升高。上部子粒的起始生长势、灌浆速率、胚乳细胞数及淀粉含量均低于中下部子粒。相关及通径分析表明,影响粒重的主要因素是灌浆速率、胚乳细胞数目和淀粉含量,其相关系数分别为0.959 66**、0.981 91**和0.877 76*。光照(包括穗位层和底层)主要通过灌浆速率和淀粉含量来间接影响粒重。  相似文献   

17.
ABSTRACT

Abscisic acid (ABA) is a key factor regulating starch biosynthesis genes and is involved in assimilate partitioning to individual spikelets. The objective of this study was to clarify the effects of high temperature and shading during grain filling on grain ABA content and the grain filling pattern of spikelets located at different positions in a panicle. We grew the rice cultivar ‘Koshihikari’ in pots in 2009 under two temperature regimes and two light conditions during grain filling. We periodically measured grain dry weight and grain ABA content (pmol per grain) and concentration (pmol per grain dry weight). Shading increased a grain weight difference between superior and inferior spikelets while high temperature decreased the difference regardless of light condition. High temperature decreased ABA content and concentration in grains. There was a close correlation between mean grain ABA content and mean grain-filling rate averaged over the first half of grain filling.  相似文献   

18.
以南方杂交晚粳秀优5号和常规晚粳秀水110为材料,应用Richards方程对两个品种的籽粒灌浆过程进行拟合,研究了两个水稻品种的灌浆特性,并测定分析了两类品种的后期叶片光合特性。 秀优5号的起始灌浆势、最大灌浆速率和平均灌浆速率均略低于秀水110,但活跃灌浆时间明显长于秀水110,说明杂交晚粳灌浆更为平缓、灌浆期长,有利于获得较高粒重,也有利于缓解其穗型较大引起的籽粒间物质的激烈竞争。齐穗后10 d,秀优5号的光合和叶绿素荧光参数与秀水110无显著差异,但齐穗后25 d,秀优5号除初始荧光值的增加幅度未达显著水平外,其他参数均显著高于秀水110。研究结果表明,南方杂交粳稻在灌浆后期仍保持较高的物质生产能力,是它具有较长籽粒灌浆持续期,大穗与较高粒重相协调,最终实现高产的重要生理基础。  相似文献   

19.
High temperature during grain filling period has been reported to decrease the grain filling duration, leading to the lower grain weight and yield of rice. Two experiments in the phytotron and field were carried out to test the hypothesis that the leaf senescence of rice plants may determine the grain filling duration under high temperature. In the phytotron experiment in 2008, rice plants of a japonica cultivar “Ilpumbyeo” were subjected to three minimum/maximum (mean) temperature regimes of 11/19 (15), 17/25 (21), and 23/31 °C (27 °C). In the field experiment, rice seedlings of the same rice cultivar were transplanted on May 6th and June 19th in 2009 and the mean temperatures during the grain filling period were 24.4 and 21.9 °C, respectively. Both experiments revealed consistently that high temperature increased the rates of grain filling and leaf senescence while it reduced the durations of them. However, grain filling was terminated earlier than complete leaf senescence, the time gap being greater at higher temperature. In addition, the fraction of dry matter partitioning to the leaf sheath + culm resumed to increase following the termination of grain filling under high temperature, indicating that leaves were still maintaining photosynthetic capacity and supplying assimilates into the other plant tissues except grain even after the termination of grain filling. These findings suggest that an early termination of grain filling in temperate rice under high temperature was not resulted from the lack of assimilate owing to the early leaf senescence but from the loss of sink activity owing to the earlier senescence of panicle.  相似文献   

20.
为了探究连阴雨天气弱光逆境导致小麦减产的机理,于2017-2018年度对长江中下游流域适宜推广的48个小麦品种开展了灌浆期全程遮光试验(遮去自然光强的45%),初步筛选出两个弱光敏感品种(扶麦1228和生选6号)和两个弱光钝感品种(襄麦55和扬麦158),2018-2019年以此4个品种和江汉平原主推品种郑麦9023为供试材料,研究了开花期至成熟期遮光对小麦干物质积累与分配、植株氮素转运及籽粒产量的影响。结果表明:(1)花后遮光后小麦籽粒产量显著降低,两年度5个品种平均减产49.1%~61.1%,千粒重平均下降34.4%~42.5%,遮光对穗数和穗粒数的影响两年度均未达0.05显著水平。(2)花后遮光抑制了小麦干物质的积累,显著减少各营养器官干物质积累量,使成熟期干物质积累总量较CK平均下降23.4%,降低籽粒灌浆速率。花后遮光增大了营养器官花前同化物的转运量及其对籽粒产量的贡献率,而减少了花后光合同化物量及其贡献率,降低收获指数。(3)花后遮光后营养器官中氮素向籽粒的再分配受抑,较多的氮素滞留在营养器官中,茎鞘氮素积累量平均增加了88.0%,穗轴与颖壳次之,叶片增加了32.8%。遮光导致各营养器官花前贮存氮素向籽粒的转运量和转运效率均显著下降,使籽粒氮素积累对花后吸收氮素的依赖加大。总之,花后遮光会导致小麦显著减产,其主要原因是粒重大幅度下降;遮光加大了籽粒干物质积累对花前碳水化合物再分配的依赖,以及籽粒氮素积累对花后氮素吸收的依赖。襄麦55和扬麦158遮光条件下籽粒产量下降幅度较小,是稻麦周年高产适宜推广品种。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号