首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
The time-course of starch digestion in twin-screw extruded milled sorghum grain was investigated using an in-vitro procedure based on glucometry. The sorghum grains were hammer-milled, and extruded at three levels each of moisture and screw speed. Irrespective of the extrusion conditions, extruded and non-extruded milled sorghum grain exhibited monophasic digestograms, and the modified first-order kinetic and Peleg models adequately described the digestograms. Extrusion increased the rate of digestion by about ten times compared with non-extrudates. Starch gelatinisation varied in the extrudates, and microscopy revealed a mixture of raw, gelatinised and destructured starch and protein components in the extrudates. Starch digestion parameters significantly (p < 0.05) correlated with extruder response and various functional properties of the extrudates. Extrusion conditions for maximum starch gelatinisation in milled sorghum grain for fastest digestion as an efficient animal feed were interpolated, as well as the conditions for directly-expanded extrudates with potential for human food, where minimum starch digestion is desired.  相似文献   

2.
The average particle size of ground grains is known to influence properties related to processing (e.g. water absorption and solubility) and nutritional value (e.g. starch digestion rate) of human foods and animal feeds. The purpose of this study was to identify the contributions made by individual size fractions of hammer-milled barley and sorghum grains to average bulk compositional, hydration, rheological, and enzyme susceptibility properties. Barley and sorghum grains were each hammer-milled through a 4 mm screen and subsequently fractionated on a set of eight sieves ranging from 0.125 mm to 2.8 mm. Individual fractions were characterised for (1) starch, aNDF, and water content, (2) water absorption index (WAI) and water solubility index (WSI), (3) viscosity profile during cooking and cooling in excess water, and (4) in vitro starch digestibility. Weighted average values based on fraction yields and property values for WAI, WSI, and starch digestibility were not significantly different from values obtained for non-fractionated ground grains of both barley and sorghum. Glucose yields from starch digestion varied about ten-fold between the smallest and largest particle fractions, and WAI and WSI had value ranges of 1.9–2.8 g/g (sorghum), 2.1–4.0 g/g (barley) and 1.3–4.5% (sorghum), 0.7–10.3% (barley), respectively. Viscosity profiles for milled sorghum grain fractions were dominated by starch swelling which became increasingly restricted as particle sizes increased. Viscosity profiles for milled barley grain fractions did not exhibit typical starch-based behaviour and were most likely dominated by soluble fibres. Taken together, the results show that there is considerable potential for designing combinations of hydration, rheological and digestibility properties of ground grains through informed selection of appropriate grains and particle size distributions.  相似文献   

3.
The identification of “stay-green” in sorghum and its positive correlation with yield increases has encouraged attempts to incorporate “stay-green”-like traits into the genomes of other commercially important cereal crops. However, knowledge on the effects of “stay-green” expression on grain quality under extreme physiological stress is limited. This study examines impacts of “stay-green”-like expression on starch biosynthesis in barley (Hordeum vulgare L.) grain under mild, severe, and acute water stress conditions induced at anthesis. The proportions of long amylopectin branches and amylose branches in the grain of Flagship (a cultivar without “stay-green”-like characteristics) were higher at low water stress, suggesting that water stress affects starch biosynthesis in grain, probably due to early termination of grain fill. The changes in long branches can affect starch properties, such as the rates of enzymatic degradation, and hence its nutritional value. By contrast, grain from the “stay-green”-like cultivar (ND24260) did not show variation in starch molecular structure under the different water stress levels. The results indicate that the cultivar with “stay-green”-like traits has a greater potential to maintain starch biosynthesis and quality in grain during drought conditions, making the “stay-green”-like traits potentially useful in ensuring food security.  相似文献   

4.
Accelerated aging at 50 °C significantly affected the physical and chemical properties of sorghum and maize. Aging caused associations between starch granules, protein matrix, and cell walls. During aging, floury areas of the endosperm became more corneous; as the endosperm hardened, strong associations between starch and protein developed, causing the endosperm to fracture through endosperm cells instead of along cell walls, which is common for non-aged maize. Aging significantly decreased the pasting viscosity of starch, molecular solubility at 85 °C and the molecular weight of solubilized starch. Solubility of albumins and globulins decreased while solubility of proteins extracted by a reducing agent and/or in alkaline pH increased during aging. Decreased solubility and functionality of starch and protein in aged grain appear to be due to protein oxidation.  相似文献   

5.
【目的】旨在为阐明灌浆成熟期氮素营养对水稻淀粉品质影响机理以及建立优质高产水稻栽培技术提供理论依据。【方法】选用4个籽粒直链淀粉含量差异显著的粳稻品种,通过盆栽试验研究氮素营养对稻米淀粉组分和蛋白质含量及稻米蛋白质水解对淀粉黏滞特性的影响,并分析氮素营养对灌浆过程中籽粒蔗糖合酶(SuSy)、蔗糖磷酸合酶(SPS)、蔗糖酸性转化酶(AI)活性及OsGBSSⅠOsISAⅠOsSBEⅠOsSBEⅡ基因转录表达量的影响。【结果】结果表明,籽粒支链淀粉含量对氮素营养很敏感,灌浆成熟期氮素营养能改变籽粒淀粉组分含量;施氮条件下,高直链淀粉含量品种蒸煮食味品质下降更加明显,去除稻米蛋白质可明显提高稻米黏滞特性,蛋白质对淀粉黏滞特性的影响很大;增加灌浆成熟期氮素营养能显著或极显著提高籽粒SuSy和AI活性,显著抑制籽粒SPS活性;灌浆成熟期氮素营养能改变灌浆不同时期籽粒OsGBSSⅠOsISAⅠOsSBEⅡ基因转录表达量,以致灌浆过程中这些基因的转录表达量变化动态发生改变,但OsSBEⅠ基因转录表达量不因氮素营养而发生改变;受氮素营养的影响,灌浆起始期籽粒OsGBSSⅠ基因表达量明显上调,而灌浆中后期明显下调;氮素营养明显抑制灌浆成熟期籽粒OsISAⅠ基因和灌浆中后期的OsSBEⅠ基因转录表达,显著提高灌浆前期和中期的籽粒OsSBEⅠ基因转录表达量;氮素营养能抑制灌浆起始期籽粒OsSBEⅡ基因的转录表达,而提高灌浆中后期的基因转录表达。【结论】灌浆成熟期氮素营养除了通过蛋白质含量对淀粉品质产生影响外,还通过调控淀粉合成相关的酶活性和基因表达量等生理环节对淀粉含量和精细结构起作用,最终改变稻米黏滞特性和食味品质。  相似文献   

6.
Although a principal source of energy and protein for millions of the world's poorest people, the nutritional value of sorghum (Sorghum bicolor L. Moench) is diminished because of low digestibility of grain protein and starch. To address this problem, we analyzed the properties of two sorghum lines that have a common pedigree but differ in digestibility. Consistent with results based on a ruminal fluid assay, the protein and starch of one line (KS48) was more thoroughly digested than that of the other (KS51) using in vitro assays based on pepsin and α-amylase. The indigestibility of KS51 relative to KS48 was shown to be due to (i) a greater abundance of disulfide-bonded proteins; (ii) presence in KS51 of non-waxy starch and the accompanying granule-bound starch synthase; and (iii) the differing nature of the protein matrix and its interaction with starch. The current findings suggest that each of these factors should be considered in efforts to enhance the nutritional value of sorghum grain.  相似文献   

7.
Rice grain chalkiness is an important characteristic, but the difference between chalky and translucent parts in grains is still unclear. Here, we investigated the differences of flour made from the chalky or translucent part of rice grains in three indica and three japonica rice varieties. The chalky flour had significantly lower amylose and protein contents and looser starch granule morphology, and starches in the chalky flour had higher relative crystallinity, higher short chain content but lower long chain content than those in the translucent flour. The water states, determined with nuclear magnetic resonance, differed between the chalky and translucent flour after soaking, cooking and retrograding, and the chalky flour had more bound and free water but less constructural water than the translucent flour. Mostly, the chalky flour had lower viscosity and shorter gel consistency, but higher onset temperature and gelatinization enthalpy than the translucent flour. The results indicated that starch granule morphology would be more indicative than other attributions on pasting and gelatinization properties of chalky and translucent parts of rice grains.  相似文献   

8.
种植密度对3个玉米杂交种产量及品质的影响   总被引:30,自引:7,他引:30  
2002年在吉林省梨树,以中单9409、郑单18和哲单14为试材,在30000、60000、90000和120000株/hm2种植密度下,研究了种植密度对3个玉米品种产量及子粒品质的影响。结果表明,3个品种产量的种植密度效应基本相同,产量随种植密度增加先升后降。随种植密度增加,高淀粉玉米郑单18的蛋白质含量和油分含量逐渐下降,淀粉含量上升,而蛋白质、油分、淀粉含量之和穴POSC雪呈现升-降-升的变化趋势。普通玉米哲单14蛋白质含量和POSC随种植密度增加而上升,淀粉含量下降,而油分含量呈现降-升-升趋势。优质蛋白玉米中单9409随种植密度增加POSC和油分含量呈下降趋势,而蛋白质含量和淀粉含量变化较为复杂。以上表明,玉米子粒养分含量在不同种植密度时品种间具有很大的差异。  相似文献   

9.
以玉米杂交种隆平206与秦龙14为试材,分别在开花期和子粒灌浆期进行高温处理,研究不同生育期高温对玉米穗部性状、子粒品质与淀粉糊化特性的影响。结果表明,开花期与子粒灌浆期高温处理均显著降低秦龙14的子粒行数、行粒数,其中,开花期秦龙14高温处理败育;对隆平206无显著影响,说明隆平206子粒形成过程中耐高温较强。与对照相比,高温显著增加两个品种玉米子粒蛋白质含量,降低子粒脂肪与淀粉含量;品种间比较,高温对秦龙14品质的影响较隆平206大。隆平206不同生育期高温处理比较,灌浆期高温对子粒脂肪含量影响较大,蛋白质含量次之,淀粉含量相对较小,两个高温处理子粒淀粉峰值黏度、低谷黏度、最终黏度与糊化温度显著高于对照;灌浆期高温处理糊化参数的升幅较开花期高温处理大。玉米生育后期高温对玉米子粒品质及糊化特性有显著影响,灌浆期高温较开花期高温对玉米子粒品质的影响较大。开花期高温对玉米子粒育性影响较大,灌浆期高温主要影响玉米子粒品质。  相似文献   

10.
离体穗培养条件下,研究了培养基中不同谷氨酰胺供应水平对冬小麦品种扬麦9号强势和弱势籽粒粒重以及淀粉和蛋白质及其组分积累的影响。结果显示,弱势籽粒的蔗糖和氨基酸含量均较强势籽粒高,而其积累量均较强势籽粒低,可见弱势籽粒中同化物贮存量较强势籽粒少,其合成淀粉和蛋白质的能力较强势籽粒低。在一定范围内提高谷氨酰胺供应水平可显著促进弱势籽粒淀粉和蛋白质的积累,提高弱势籽粒粒重,可见一定范围内改善氮素营养有利于弱势籽粒物质积累;但相同谷氨酰胺浓度下强势籽粒淀粉、蛋白质和氨基酸积累量均高于弱势籽粒,强势籽粒四种蛋白组分的积累量均较弱势籽粒高。4和6 g/L谷氨酰胺处理下,强势和弱势籽粒淀粉、蛋白质及氨基酸含量的差异小于其他较高或较低谷氨酰胺浓度。强势籽粒清蛋白和球蛋白含量略低于弱势籽粒,而醇溶蛋白和麦谷蛋白在2-6 g/L时高于弱势籽粒,但差异较小。  相似文献   

11.
The identification of “stay-green” in sorghum and its positive correlation with yield increases has encouraged attempts to incorporate “stay-green”-like traits into the genomes of other commercially important cereal crops. However, knowledge on the effects of “stay-green” expression on grain quality under extreme physiological stress is limited. This study examines impacts of “stay-green”-like expression on starch biosynthesis in barley (Hordeum vulgare L.) grain under mild, severe, and acute water stress conditions induced at anthesis. The proportions of long amylopectin branches and amylose branches in the grain of Flagship (a cultivar without “stay-green”-like characteristics) were higher at low water stress, suggesting that water stress affects starch biosynthesis in grain, probably due to early termination of grain fill. The changes in long branches can affect starch properties, such as the rates of enzymatic degradation, and hence its nutritional value. By contrast, grain from the “stay-green”-like cultivar (ND24260) did not show variation in starch molecular structure under the different water stress levels. The results indicate that the cultivar with “stay-green”-like traits has a greater potential to maintain starch biosynthesis and quality in grain during drought conditions, making the “stay-green”-like traits potentially useful in ensuring food security.  相似文献   

12.
The effects of variety and growth location on grain composition and starch structures were investigated using three rice (Oryza sativa L.) cultivars (Phka Romduol, Sen Pidao and IR66) with different amylose contents. All the three cultivars were planted in three different agro-climatic zones (Phnom Penh, Coastal and Plateau) of Cambodia. The protein content of polished grains increased when rice was planted at a location with higher average temperature, but their lipid content decreased. The amylose content and degree of branching were not greatly affected by the minor temperature differences among the growing locations. Starch fine structures characterized by the chain-length distribution were significantly different among the cultivars, but not significantly among different locations. The results suggested that protein and lipid biosyntheses were more sensitive to the environmental temperature than that of starch in rice grains.  相似文献   

13.
小麦籽粒淀粉合成酶基因表达与酶活性特征的研究   总被引:1,自引:0,他引:1  
为研究小麦籽粒淀粉合成酶基因表达与酶活性的特征,以普通小麦品种秦麦11(粒重36.942 mg/粒,淀粉含量61.02%)和中优9507(粒重50.636 mg/粒,淀粉含量68.36%)为材料,采用实时荧光定量RT-PCR方法,对灌浆期籽粒淀粉合成酶相关基因的表达进行了研究,并对其表达量与相应酶活性的相关性做了分析.结果表明,腺苷二磷酸葡萄糖焦磷酸化酶基因(AGPase)、束缚态淀粉合成酶基因(GBSSI)、可溶性淀粉合成酶基因(SSS)、淀粉分支酶基因(SBE)表达均呈单峰曲线变化,在花后3 d 内检测不到其表达,花后4~6 d 这些基因开始表达.AGPase和SSS在花后12 d左右表达量达到高峰,GBSSI和SBE在花后15 d左右的表达量最大.自花后18 d开始,各基因的表达量均显著下降.中优9507在表达高峰期(即花后第12、15、18 d)的酶基因相对表达量均显著高于秦麦11,且差异均达显著水平.整个灌浆期间中优9507的四种淀粉合成酶活性高于秦麦11,尤其在灌浆中期差异更显著.相关分析表明,AGPase、SSS、SBE基因在花后15 d的相对表达量与相应酶活性间呈极显著正相关,而GBSS基因的相对表达量与GBSS酶活性间相关不显著,暗示AGPase、SSS、SBE基因在籽粒淀粉合成过程中属于转录水平调控,而GBSSI基因属于转录后调控.  相似文献   

14.
为给小麦优质安全生产提供理论依据,以中筋型冬小麦品种豫麦70为供试材料.于2004~2005年度在盆栽试验条件下,设置Cu、Cd两种重金属元素各三个浓度水平,即Cu1(100mg/kg)、Cu2(200mg/kg)、Cu3(300mg/kg)和Cd1(10mg/kg)、Cd2(50mg/kg)、Cd3(100mg/kg),共6个处理,以不施重金属元素处理为对照,研究了Cu、Cd胁迫对冬小麦籽粒淀粉含量及其糊化特性的影响。结果表明,籽粒淀粉含量随Cu、Cd浓度的增加而降低,与对照相比,Cu处理最大降幅为9.58个百分点,Cd处理最大降幅为11.45个百分点。Cu处理对籽粒淀粉糊化特性的影响随浓度的增大而增加,其中,对峰值粘度、低谷粘度、最后粘度和反弹值的影响较大,对稀懈值的影响较小;Cd处理对淀粉糊化特性的影响表现为随浓度的增大.各性状值先增加后降低的变化特点,且以Cd。处理的影响最大。Cu、Cd胁迫下,籽粒产量和籽粒蛋白质产量随Cu、Cd浓度的增加而急剧下降;籽粒蛋白质含量也随浓度的增高而降低,但处理间差异均未达显著水平。这些结果表明,在本试验条件下,过量施用重金属Cu、Cd对小麦植株产生了明显的胁迫危害,致使小麦籽粒淀粉含量下降,并造成严重减产。  相似文献   

15.
Mature wheat endosperm contains A-, B-, C-type starch granules, and each class has unique physiochemical properties which determine the quality of starch. The dynamics of the starch granule size distribution, activities of starch synthases and expression of starch synthase encoding genes were studied in superior and inferior grains during grain filling. Compared with inferior grains, superior grains showed higher grain weight, contents of starch, amylose and amylopectin. The formation of A-, B-, C-type starch granules initiated at 4, 8, 20 DAF, respectively, and was well consistent with the temporally change patterns of starch synthase activities and relative gene expression levels. For instance, activities of soluble and granule-bound starch synthases (designated SSS and GBSS) peaked at 20 and 24 DAF. Genes encoding isoforms of starch synthases expressed at different grain filling periods. In addition, SS I was generally expressed over the grain filling stage; the SS II and SS III were expressed over the early and mid grain filling stage, and the GBSS I was expressed during the mid to late grain filling stage. In addition, the time-course changes in activities of starch synthases and expression of starch synthase encoding genes explained well the dynamics of the starch granule size distribution.  相似文献   

16.
种植密度对不同地点玉米杂交种中单9409子粒品质的影响   总被引:6,自引:4,他引:6  
在吉林梨树、山西寿阳和山东禹城,研究了种植密度对中单9409子粒品质的影响.同一种植密度不同地点子粒营养成分差异显著.在3万株/hm2下(接近单株水平),子粒蛋白质含量为梨树点>寿阳点>禹城点,子粒淀粉含量为寿阳点>禹城点>梨树点,子粒油分含量为梨树点>禹城点>寿阳点.子粒蛋白质、淀粉和油分三者总含量(POSC)为寿阳点>梨树点>禹城点.在3万~12万株/hm2范围内,梨树、寿阳和禹城3点随种植密度增加,子粒蛋白质含量分别出现降-升-降、升-平-平和降-升的趋势,淀粉含量分别出现升-降-升、升-降-升和升-升的趋势,油分含量分别出现降-降-降、降-降-升和降-降的变化趋势.梨树点容重随密度增加稍有增加趋势,寿阳点容重从3万~6万株/hm2,稍有增加,之后随密度增加而下降,而在禹城点密度对子粒容重基本没有影响.这表明种植密度对玉米子粒品质的影响可因地理生态环境的改变而不同,考察玉米子粒品质的种植密度效应时应注意分析其它生态因素的影响。  相似文献   

17.
种植密度与施氮水平对高淀粉玉米郑单18淀粉含量的影响   总被引:8,自引:6,他引:8  
关义新  马兴林  凌碧莹 《玉米科学》2004,12(Z2):101-103
在四种种植密度和四种氮肥水平下研究了种植密度和氮肥对高淀粉玉米品种郑单18子粒淀粉含量的影响.随种植密度增加,玉米(郑单18)子粒淀粉含量增加;随施氮量增加,玉米子粒淀粉含量的变化不显著;不同种植密度条件下,玉米子粒淀粉含量与单株产量、千粒重均呈显著负相关,与子粒蛋白质含量、脂肪含量亦均呈显著负相关.  相似文献   

18.
Uncooked and cooked sorghum showed improvement in in vitro protein digestibility as the structural complexity of the sample reduced from whole grain flour through endosperm flour to protein body-enriched samples. This was not the case for maize. Cooking reduced protein digestibility of sorghum but not maize. Treating cooked sorghum and maize whole grain and endosperm flours with alpha -amylase to reduce sample complexity before in vitro pepsin digestion slightly improved protein digestibility. The reduction in sorghum protein digestibility on cooking was not related to the total polyphenol content of samples. Pericarp components, germ, endosperm cell walls, and gelatinised starch were identified as possible factors limiting sorghum protein digestibility. Electrophoresis of uncooked and cooked protein-body-enriched samples of sorghum and maize, and prolamin fractions of sorghum under non-reducing conditions showed oligomeric proteins with molecular weights (Mr) 45, 66 and >66 kDa and monomeric kafirins and zeins. Protein-body-enriched samples of sorghum had more 45–50 kDa oligomers than those of maize. In cooked sorghum, some of these were resistant to reduction. Pepsin-indigestible residues from protein-body-enriched samples consisted mainly of α-zein (uncooked and cooked maize) or α-kafirin (uncooked sorghum), whilst cooked sorghum had in addition, β- and γ-kafirin and reduction-resistant 45–50 kDa oligomers. Cooking appears to lead to formation of disulphide-bonded oligomeric proteins that occurs to a greater extent in sorghum than in maize. This may explain the poorer protein digestibility of cooked sorghum.  相似文献   

19.
Sorghum (Sorghum bicolor (L.) Moench) is a starch-rich grain similar to maize (Zea mays L.), but sorghum has been underutilized for biobased products and bioenergy. This study was designed to investigate the effects of supercritical-fluid-extrusion (SCFX) of sorghum on ethanol production. Morphology, chemical composition, and thermal properties of extruded sorghum were characterized. Analysis of extruded sorghum showed increased measurable starch content, free sugar content, and high levels of gelatinized starch. SCFX cooked and non-extruded sorghum were further liquefied, saccharified, and fermented to ethanol by using Saccharomyces cervisiae. The ethanol yield increased as sorghum concentration increased from 20 to 40% for both extruded and non-extruded sorghum. Ethanol yields from SCFX cooked sorghum were significantly greater than that from non-extruded sorghum (>5%).  相似文献   

20.
以水稻糖质胚乳突变体Sug-11与其野生型对照中花11为材料,通过对两者籽粒中可溶性总糖、蔗糖含量和淀粉含量以及有关淀粉品质理化指标的比较,结合籽粒灌浆过程中糖类物质含量、淀粉合成代谢关键酶活性和相关同工型基因转录表达水平的动态测定,从籽粒淀粉合成代谢角度,对水稻糖质突变体Sug-11的籽粒糖类含量变化和千粒重下降的生理原因进行了分析。结果表明,Sug-11糖质突变体与其野生型在灌浆初期的可溶性糖和蔗糖含量差异并不明显,随着籽粒灌浆进程,两者间的籽粒糖分含量差异在灌浆中后期逐步趋于明显;与野生型相比,Sug-11糖质胚乳突变体的稻米直链淀粉含量和直链淀粉碘蓝值显著下降,而淀粉溶解度和支链淀粉碘蓝值则显著升高,糖质胚乳突变对稻米淀粉的理化特性也产生了明显的影响;在籽粒淀粉合成代谢的几个关键酶中,Sug-11糖质突变体籽粒中的DBE活性及其在灌浆过程中的动态变化与其野生型存在明显差异,揭示了胚乳糖质突变体Sug-11籽粒中淀粉积累减少、糖分含量增加主要是由籽粒灌浆中后期的PUL转录表达水平和DBE活性的大幅下降所引起的,而Sug-11的籽粒灌浆不良和千粒重下降等现象,则与其ADPGase活性在籽粒灌浆前期的显著下降存在一定的联系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号