首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Genetic Control of Germination Ability under Cold Stress in Rice   总被引:2,自引:0,他引:2  
An F9 recombinant inbred lines (RIL) population, derived from a cross between IR28 (Oryza sativa L. spp. indica) and Daguandao (O. sativa L. spp. japonica), was used to construct a molecular linkage map and to identify germination ability including the traits of imbibition rate, germination rate, germination index, root length, shoot length and seed vigor at 14°C for 23 d. A composite interval mapping approach was applied to conduct genetic analysis for germination ability. The frequency distributions of the germination ability traits under the cold stress in the RIL population showed continuous segregation, suggesting they were quantitative traits controlled by several genes. A total of seven QTLs were identified on chromosomes 4, 6 and 9, including two for imbibition rate (qIR-6, qIR-9), one for germination rate (qGR-4), two for germination index (qGI-4-1, qGI-4-2) and two for root length (qRL-4-1, qRL-4-2). There were no detected QTLs controlling shoot length and seed vigor. The phenotypic variance explained by a single QTL ranged from 9.1% to 37.0%, and two major QTLs, qIR-6 and qGI-4-2, accounted for over 30% of the phenotypic variance. The expressions of QTLs were developmentally regulated and growth stage-specific. Most of the QTLs observed here were located in the regions similar to the QTLs for rice cold tolerance reported previously, indicating that these QTLs were reliable. However, qRL-4-2 is not reported before.  相似文献   

2.
Drought is a major constraint for rice production and yield stability in rainfed ecosystems, especially when it occurs during the reproductive stage. Combined genetic and physiological analysis of reproductive-growth traits and their effects on yield and yield components under drought stress is important for dissecting the biological bases of drought resistance and for rice yield improvement in water-limited environments. A subset of a doubled haploid (DH) line population of CT9993-5-10-1-M/IR62266-42-6-2 was evaluated for variation in plant water status, phenology, reproductive-growth traits, yield and yield components under reproductive-stage drought stress and irrigated (non-stress) conditions in the field. Since this DH line population was previously used in extensive quantitative trait loci (QTLs) mapping of various drought resistance component traits, we aimed at identifying QTLs for specific reproductive-growth and yield traits and also to validate the consensus QTLs identified earlier in these DH lines using meta-analysis. DH lines showed significant variation for plant water status, reproductive-growth traits, yield and yield components under drought stress. Total dry matter, number of panicles per plant, harvest index, panicle harvest index, panicle fertility, pollen fertility, spikelet fertility and hundred grain weight had significant positive correlations with grain yield under drought stress. A total of 46 QTLs were identified for the various traits under stress and non-stress conditions with phenotypic effect ranging from 9.5 to 35.6% in this study. QTLs for panicle exsertion, peduncle length and pollen fertility, identified for the first time in this study, could be useful in marker-assisted breeding (MAB) for drought resistance in rice. A total of 97 QTLs linked to plant growth, phenology, reproductive-growth traits, yield and its components under non-stress and drought stress, identified in this study as well as from earlier published information, were subjected to meta-analysis. Meta-analysis identified 23 MQTLs linked to plant phenology and production traits under stress conditions. Among them, four MQTLs viz., 1.3 for plant height, 3.1 for days to flowering, 8.1 for days to flowering or delay in flowering and 9.1 for days to flowering are true QTLs. Consensus QTLs for reproductive-growth traits and grain yield under drought stress have been identified on chromosomes 1 and 9 using meta-QTL analysis in these DH lines. These MQTLs associated with reproductive-growth, grain yield and its component traits under drought stress could be useful targets for drought resistance improvement in rice through MAB and/or map-based positional analysis of candidate genes.  相似文献   

3.
Genetically improved crops with higher water productivity help maintaining and increasing agricultural production in drought-prone areas. Their development involves, as in the case of maize, selection for high grain yield and improved secondary traits. With the objective of better understanding the role and regulation of the morphology of drought adaptation, a recombinant inbred line (RIL) population of tropical maize (Zea mays L.) was evaluated in six field experiments under intermediate (IS) and severe (SS) drought stress at flowering and under well-watered (WW) conditions in Mexico. The analyses per water regime revealed 32 quantitative trait loci (QTLs) for the five measurements of relative content of leaf chlorophyll (CL), 25 for the five visual ratings of plant senescence (SEN), and 11 for the three measurements of electric root capacitance (RCT). Impressive clusters of QTLs were observed on chromosomes 2 (bins 2.03-05), 4 (bin 4.09), and 10 (bins 10.04-05), suggesting that a small number of genes control chlorophyll metabolism and plant senescence. The high CL and low SEN of the drought resistant parent are aspects of its high water productivity resulting from improved constitutive traits. Co-locations of QTLs for CL, SEN and RCT with QTLs for plant height (PHT), the anthesis-silking interval (ASI), and grain yield (GY) were observed in bins 1.06-07, 8.06, and 4.09 but not for the large QTL clusters on chromosomes 2 and 10, suggesting independent genetic control of reproductive traits. Still, the phenotypic data showed that high CL and low SEN were favorable for grain yield production under drought, while delayed SEN was associated with higher grain yield under WW conditions. CL and SEN are suitable to complement selection for drought tolerance in order to sustain future breeding progress.  相似文献   

4.
Drought stress is one of the major constraints affecting rice production and yield stability in the rainfed regions. To understand the physiological basis of drought resistance related component traits, we used a backcross inbred population of rice under three kinds of moisture regimes viz., non-stress, moderate (24.48%) and severe stress (73.97%) conditions which reflect the differential responses of the genotypes to varying stress intensities. The plot yield, 1000-grain weight, panicle exsertion and canopy air temperature difference exhibited high heritability under the control conditions, whereas spikelet sterility and single plant yield exhibited high heritability under the moderate stress conditions. Traits such as days to 50% flowering, plant height and osmotic potential showed high heritability under the severe stress conditions. Plot yield under stress was significantly and positively correlated with harvest index and 1000-grain weight, but negatively associated with leaf rolling score and days to 50% flowering. The drought susceptibility index and drought response index were negatively correlated between each other both under the moderate and severe stress conditions. The derived traits viz., difference in panicle length between the control and the severe stress was associated with osmotic adjustment measured under field conditions. Difference in plant height and panicle length was negatively associated with plot yield under stress.  相似文献   

5.
By using a set of recombinant inbred line(RIL)population involving in 195 lines derived from a cross of Zhenshan 97B (lowland variety)and IRAT109(upland variety),the correlation analysis between coleoptile length(CL)and drought resistance index (DRI)and their QTL identification were conducted.There existed a significantly positive relationship between CL and DRI with the correlation coefficient of 0.2206**under water stress conditions.Under normal and water stress conditions,a total of eleven and four QTLs for CL and DRI,respectively,were detected on chromosomes 1,2,4,5,6,7,9,11 and 12 by using a linkage map including 213 SSR markers,which explained 4.84%to 22.65%of phenotypic variance.Chromosomes 1 and 9 possessing the QTLs for DRI harbored simultaneously QTLs for CL,and qCL9 shared the same chromosome location with qDRI9(RM160-RM215).Comparing the QTLs related to drought resistance in other studies,QTLs for CL and DRI were located in the same or adjacent marker interval as those related to root traits,such as number,dry weight,depth,and length of root.Moreover,sixteen and three pairs of epistatic loci for CL and DRI were found,which accounted for 56.17%and 11.93%of the total variation in CL and DRI,respectively.  相似文献   

6.
水稻胚芽鞘长度与抗旱性的关系及QTL定位   总被引:8,自引:0,他引:8  
对由水稻品种珍汕97B和旱稻品种IRAT109构建的重组自交系195个株系的胚芽鞘长度及抗旱系数的研究表明,水分胁迫下水稻重组自交系群体的胚芽鞘长度与抗旱系数的相关系数为0.2206**。应用由213个SSR标记构建的遗传连锁图对控制胚芽鞘长度和抗旱系数的QTL进行了定位。检测到胚芽鞘长度和抗旱系数的主效QTL各为13个和5个,单个QTL对表型的贡献率为2.28%~22.65%;在第9染色体上两者的QTL出现在相同的分子标记区间(RM160-RM215)。检测到胚芽鞘长度和抗旱系数的互作位点分别为17对和3对,影响胚芽鞘长度的互作位点联合贡献率为5835%;影响抗旱系数的互作位点联合贡献率为11.93%。控制胚芽鞘长度和抗旱系数的QTL分别与其他研究中控制根系性状(深根干质量、根深、根长、根数等)的QTL位于相同的标记区间。  相似文献   

7.
Drought tolerance is an important rainfed rice breeding objective, but because the heritability (H) of yield under drought stress is thought to be low, secondary physiological traits are considered better targets for selection than yield under stress per se. This assumption has rarely been tested, and there are no reports on H for yield under drought stress from experiments repeated over seasons in rainfed lowland rice. To assess the potential for improving yield under drought stress via direct selection, and to identify associated quantitative trait loci (QTL), doubled haploid lines with a narrow range of flowering dates, derived from the population CT9993-5-10-1-M/IR62266-42-6-2, were screened under full irrigation and severe drought stress induced by draining the paddy before flowering in 2000–2002 at Raipur, India. Drought stress reduced mean yield by 80%. H was similar in stress and non-stress trials, as was the relative magnitude of the genotype and genotype × year variances. The genetic correlation between yield in stress and non-stress conditions was 0.8, indicating that about 64% of the genetic variation for yield under stress was accounted for by differences in yield potential also expressed in irrigated environments. These results indicate that direct selection for yield under drought stress can produce yield gains under stress without reducing yield potential. There was no secondary trait for which selection resulted in greater predicted response in yield under stress than direct selection for stress yield per se. A QTL was detected on chromosome 1 near sd1 that explained 32% of the genetic variation for yield under stress, but only 4% under non-stress. Its effect was consistent across years. This QTL accounted for much of the variation in drought yield not accounted for by variation in yield potential.  相似文献   

8.
FUNAABOR-2 is a popular Ofada rice variety grown in a large area under rainfed upland condition across western states of Nigeria. We used the combination of phenotypic and marker-assisted selection(MAS) to improve grain yield of FUNAABOR-2 under drought stress(DS) at the reproductive stage via introgression of two drought quantitative trait loci(QTLs), qDTY12.1 and qDTY2.3. Foreground selection was carried out using peak markers RM511 and RM250, associated with qDTY12.1 and qDTY2.3, respectively, followed by recombinant selection with RM28099 and RM1261 distally flanking qDTY12.1. Furthermore, BC1 F2-derived introgressed lines and their parents were evaluated under DS and non-stress(NS) conditions during the 2015–2016 dry season. Overall reduction of grain yield under DS compared to NS was recorded. Introgressed lines with qDTY12.1 and qDTY2.3 combinations showed higher yield potential compared to lines with single or no QTL under DS, indicating significant positive interactions between the two QTLs under the FUNAABOR-2 genetic background. Pyramiding of qDTY12.1 and qDTY2.3 in the FUNAABOR-2 genetic background led to higher grain yield production under DS and NS.  相似文献   

9.
水稻生理特性与抗旱性的相关分析及QTL定位   总被引:1,自引:0,他引:1  
利用籼稻品种IR64和粳稻品种Azucena杂交产生的包含110个加倍单倍体株系的群体,在干旱胁迫和正常水分条件下,连续在2004年和2005年于抽穗期分别测定了叶片水势、相对含水量、叶绿素含量(SPAD值)、游离脯氨酸含量、气孔导度和蒸腾速率,并于成熟期取样,计算抗旱系数。与正常水分状况下相比,干旱胁迫条件下叶片的游离脯氨酸含量的增加达极显著水平,干旱胁迫条件下叶片的相对含水量、水势、叶绿素含量和气孔导度的降低均达显著或极显著水平。相关分析表明,在干旱胁迫条件下,叶片相对含水量、叶片水势与抗旱系数呈显著或极显著正相关。 利用175个RFLP标记构建的遗传连锁图谱分析了与抗旱性相关的叶片生理指标,共检测到与抗旱性相关的6个生理指标的7个加性QTL,31对上位性QTL,其中有2个主效QTL、9对上位性QTL存在环境互作效应。在两种水分条件下检测到的QTL结果有较大差异,说明干旱胁迫对控制与抗旱性相关的叶片生理性状基因的表达有显著的影响。在6个抗旱相关生理指标中,检测到的控制叶片气孔导度和水势的QTL较多,有3个加性QTL和8对上位性QTL控制气孔导度,有8对上位性QTL控制水势。  相似文献   

10.
The development of near-isogenic-lines (NILs) is a very important tool for both genetic and physiological dissection of drought resistance in rice. Two pairs of NILs differing for grain yield under drought stress were isolated and characterized for yield, yield related traits, and several physiological traits in a range of contrasting environments. In replicated field trials both NIL pairs differed significantly for grain yield under drought stress but showed similar yield potential, phenology, and yield component traits under non-stress conditions. A polymorphism analysis study with 491 SSRs revealed that both NIL pairs are at least 96% genetically similar. These NILs show that small genetic differences can cause large difference in grain yield under drought stress in rice. In both pairs the drought-tolerant NILs showed a significantly higher assimilation rate at later stages both under stress and non-stress conditions. They also had a higher transpiration rate under non-stress condition. The most tolerant NIL (IR77298-14-1-2-B-10) had significantly higher transpiration rate and stomatal conductance in severe stress conditions. In one pair the tolerant NIL had constitutively deeper roots than the susceptible NIL. In the second pair, which had higher mean root length than the first pair, the tolerant NIL had more roots, greater root thickness, and greater root dry weight than the susceptible NIL. Deeper root length may allow tolerant NILs to extract more water at deeper soil layers. It is concluded that enhanced rooting depth is an important strategy for dehydration avoidance and rice adaptation to drought stress, but root architecture might not be the only mechanism causing the significant yield increase we observed in lowland drought stress environments. To further dissect the drought avoidance mechanisms in rice, analysis of root hydraulic properties may be necessary.  相似文献   

11.
Drought is the most important constraint reducing rice yield in rainfed areas. Earlier efforts to improve rice yield under drought mainly focused on improving secondary traits because the broad-sense heritability (H) of grain yield under drought stress was assumed to be low, however gains in yield by selecting for secondary traits have not been clearly demonstrated in rice. In present study, the effectiveness of direct selection for grain yield was assessed under lowland reproductive stage stress at Raipur in eastern India and under upland reproductive stage drought stress at IRRI. The selection under severe stress (in both upland and lowland trials) resulted in greater gains under similar stress levels (yield reduction of 65% or greater under stress) in evaluation experiments than did selection under non-stress conditions, with no yield reduction under non-stress conditions. We observed similar H of grain yield under stress and non-stress conditions, indicating direct selection for yield under drought will be effective under both lowland and upland drought stresses. None of the secondary traits (panicle exsertion, harvest index, leaf rolling, leaf drying) included in our study showed a higher estimate for H than grain yield under stress. Secondary traits as well as indirect selection for grain yield under non-stress situation were predicted to be less effective in improving yield under drought in both lowland and upland ecosystem than direct selection for grain yield under the respective stress situations. The low, but positive values observed for genetic correlation (rG) between yield under stress and non-stress indicated that it is possible to combine drought tolerance with high-yield potential but low values also indicated that selection for grain yield needs to be carried under stress environments. The study also indicated that under lowland drought stress, the use of highly drought-tolerant donors, as parents in crosses to high yielding but susceptible varieties resulted in a much higher frequency of genotypes combining high-yield potential with tolerance than did crosses among elite lines with high-yield potential but poor tolerance. Breeding strategies that use drought-tolerant donors and that combine screening for yield under managed drought stress with screening for yield potential are likely to result in the development of improved cultivars for drought-prone rainfed rice producing areas.  相似文献   

12.
To understand the responses of flag leaf shape in rice to elevated CO2 environment and their genetic characteristics,quantitative trait loci(QTLs)for flag leaf shape in rice were mapped onto the molecular marker linkage map of chromosome segment substitution lines(CSSLs)derived from a cross between a japonica variety Asominori and an indica variety IR24 under free air carbon dioxide enrichment(FACE,200μmol/mol above current levels)and current CO2 concentration(Ambient,about 370μmol/mol).Three flag-leaf traits,flag-leaf length(LL),width(LW)and the ratio of LL to LW (RLW),were estimated for each CSSL and their parental varieties.The differences in LL,LW and RLW between parents and in LL and LW within IR24 between FACE and Ambient were significant at 1%level.The continuous distributions and transgressive segregations of LL,LW and RLW were also observed in CSSL population,showing that the three traits were quantitatively inherited under both FACE and Ambient.A total of 16 QTLs for the three traits were detected on chromosomes 1,2,3,4,6,8 and 11 with LOD(Log10-likelihood ratio)scores ranging from 3.0 to 6.7.Among them,four QTLs (qLL-6*,qLL-8*,qLW-4*,and qRLW-6*)were commonly detected under both FACE and Ambient.Therefore,based on the different responses to elevated CO2 in comparison with current CO2 level,it can be suggested that the expressions of several QTLs associated with flag-leaf shape in rice could be induced by the high CO2 level.  相似文献   

13.
The effects of drought and heat stress on quality parameters of wheat (Triticum aestivum) cultivars were studied under field conditions in a 2-year trial (2009–2010) in northwest Mexico. Under no stress conditions, rapid small-scale parameters [protein (GP; FP) content, SDS sedimentation (SDSS), mixograph peak time (MPT), swelling index of glutenin (SIG), and lactic acid retention capacity (LARC)] showed significant relationship with gluten strength (alveograph energy, W) and bread loaf volume (LV). SIG and LARC were better than SDSS and MPT for predicting W, while SDSS was better than W and SIG for predicting bread LV. Most quality traits were primarily controlled by genotype (G), although environment (E) and G × E also had significant effects. Heat and drought stress showed contrasting effects on LARC, MPT, alveograph parameters [tenacity (P), extensibility (L), P/L ratio, W] and LV. Increase in P and decrease in L resulted in higher tenacity (larger P/L), which may explain the smaller loaf volume under drought stress. In contrast, decrease in P and increase in L, may explain the improved bread volume observed under heat stress. It is advisable to select for wheat quality under both favorable and abiotic stress conditions to identify genotypes with quality stability across environments.  相似文献   

14.
《Field Crops Research》2002,73(2-3):181-200
A series of experiments were conducted in drought-prone northeast Thailand to examine the magnitude of yield responses of diverse genotypes to drought stress environments and to identify traits that may confer drought resistance to rainfed lowland rice. One hundred and twenty eight genotypes were grown under non-stress and four different types of drought stress conditions.Under severe drought conditions, the maintenance of PWP of genotypes played a significant role in determining final grain yield. Because of their smaller plant size (lower total dry matter at anthesis) genotypes that extracted less soil water during the early stages of the drought period, tended to maintain higher PWP and had a higher fertile panicle percentage, filled grain percentage and final grain yield than other genotypes. PWP was correlated with delay in flowering (r=−0.387) indicating that the latter could be used as a measure of water potential under stress. Genotypes with well-developed root systems extracted water too rapidly and experienced severe water stress at flowering. RPR which showed smaller coefficient of variation was more useful than root mass density in identifying genotypes with large root system.Under less severe and prolonged drought conditions, genotypes that could achieve higher plant dry matter at anthesis were desirable. They had less delay in flowering, higher grain yield and higher drought response index, indicating the importance of ability to grow during the prolonged stress period.Other shoot characters (osmotic potential, leaf temperature, leaf rolling, leaf death) had little effect on grain yield under different drought conditions. This was associated with a lack of genetic variation and difficulty in estimating trait values precisely.Under mild stress conditions (yield loss less than 50%), there was no significant relationship between the measured drought characters and grain yield. Under these mild drought conditions, yield is determined more by yield potential and phenotype than by drought resistant mechanisms per se.  相似文献   

15.
水稻幼苗耐缺氧能力的QTL分析   总被引:5,自引:0,他引:5  
利用粳稻品种秀水79与粳稻恢复系C堡及其衍生的247个重组自交系(RIL)和粳稻Nipponbare与籼稻Kasalath及Nipponbare/Kasalath//Nipponbare衍生的98个回交重组自交系(BIL)为材料,在缺氧胁迫和正常萌发条件下调查了萌发7d的幼苗芽鞘长度。以缺氧反应指数为衡量指标,对幼苗耐缺氧能力进行了QTL分析。RIL群体在第2染色体上检测到1个与SSR标记RM525紧密连锁的QTLqSAT-2-R,解释表型变异的8.7%;在第7染色体上检测到1个与RM418紧密连锁的QTLqSAT-7-R,解释表型变异的9.8%;增效等位基因均来自C堡。BIL群体检测到6个QTL,分布在第2、3、5、8、9和12染色体上,分别解释表型变异的16.2%、11.4%、7.3%、5.8%、9.5%和14.0%;其中qSAT-2-B、qSAT-3-B和qSAT-9-B增效等位基因来自Nipponbare。与qSAT-2-B紧密连锁的RFLP标记为C747,C747对应SSR标记RM1367;qSAT-2-R与qSAT-2-B相距7.2cM。  相似文献   

16.
内生真菌印度梨形孢诱导提高玉米苗期抗旱性研究初探   总被引:2,自引:0,他引:2  
采用盆栽试验,初步研究内生真菌印度梨形孢诱导提高玉米抗旱性的效应。结果显示,在自然干旱胁迫下,根长、根鲜重、根干重、叶片数、叶面积、叶绿素含量等指标接种印度梨形孢的玉米幼苗比未接种的明显增加,差异达到显著、极显著水平;根干重、叶绿素含量等性状,接种印度梨形孢干旱胁迫处理的幼苗显著地高于未接种干旱处理,表明印度梨形孢真菌具有促进玉米幼苗生长的作用,能有效增强玉米幼苗的抗旱性。  相似文献   

17.
In rainfed lowland rice ecosystem, rice plants are often exposed to alternating recurrences of waterlogging and drought due to erratic rainfall. Such soil moisture fluctuation (SMF) which is completely different from simple or progressive drought could be stressful for plant growth, thereby causing reduction in yield. Root plasticity is one of the key traits that play important roles for plant adaptation under such conditions. This study aimed to evaluate root plasticity expression and its functional roles in dry matter production and yield under SMF using Nipponbare, KDML 105 and three backcross inbred lines (BILs) and to identify QTL(s) associated with root traits in response to SMF at two growth stages using Nipponbare/KDML105 F2 plants. A BIL, G3-3 showed higher shoot dry matter production and yield than Nipponbare due to its greater ability to maintain stomatal conductance concomitant with greater root system development caused by promoted production of nodal and lateral roots under SMF. QTLs were identified for total nodal root length, total lateral root length, total root length, number of nodal roots, and branching index under SMF at vegetative and reproductive stages. The QTLs detected at vegetative and reproductive stages were different. We discuss here that relationship between root system of G3-3 and the detected QTLs. Therefore, G3-3 and the identified QTLs could be useful genetic materials in breeding program for improving the adaptation of rice plants in target rainfed lowland areas.  相似文献   

18.
Cadmium(Cd)is a non-essential toxic metal that is harmful to plants.To investigate the genetic mechanism of Cd tolerance in rice,quantitative trait loci(QTLs)associated with Cd tolerance at the seedling stage were analyzed using a recombinant inbred line(RIL)population derived from a cross between PA64s and 93-11.A total of 36 QTLs associated with shoot length,root length,shoot dry weight,root dry weight and total dry weight were detected in Hangzhou and Lingshui of China.Among them,15 QTLs were identified under the control condition and 15 QTLs were identified under the Cd stress condition,and 6 QTLs for Cd tolerant coefficient were detected on chromosomes 1,3,7 and 9.The qCDSL1.1 and qCDSL1.2 were identified in Hangzhou and Lingshui,respectively,and had overlapping intervals on chromosome 1.To further confirm the effects of qCDSL1.1 and qCDSL1.2,we developed a chromosome segment substitution line(CSSL),CSSLqCDSL1,in 93-11 background harboring qCDSL1.1/qCDSL1.2 from PA64s.Compared to 93-11,CSSLqCDSL1 had increased shoot length under the Cd stress condition.These results pave the way for further isolation of those genes controlling Cd tolerance in rice and marker-assistant selection of rice elite varieties with Cd tolerance.  相似文献   

19.
7个小麦品种的抗旱性比较   总被引:3,自引:0,他引:3  
为了解四川省种植的部分小麦品种的抗旱性,比较了20%聚乙二醇(PEG-6000)胁迫后7个小麦品种(川麦42、绵阳15、绵阳11、川农19、矮抗58、周麦21、Sy95-71)萌发期和苗期抗旱指标的变化,并利用模糊数学隶属函数法计算各指标的隶属值,通过比较萌发期、苗期各指标隶属值的平均值大小来确定小麦品种抗旱性的强弱。结果表明,萌发期相对发芽率、根长、芽长与干旱胁迫呈负相关;在7个品种中,川麦42的相对发芽率和相对芽长最大(分别为87.63%和16.67%),Sy95-71的最小(分别为38.52%和4.38%);绵阳11的相对根长最大(35.13%),Sy95-71的最小(18.85%);利用隶属函数对这三个指标综合分析,7个小麦品种萌发期的抗旱性表现为川麦42>川农19>矮抗58>绵阳11>周麦21>绵阳15>Sy95-71。在苗期,相对含水量与胁迫程度呈负相关,在20% PEG-6000胁迫3 d后,Sy95-71的叶片相对含水量降幅最大(37.1%),川麦42降幅最小(25.3%);丙二醛含量、超氧阴离子含量、过氧化氢含量、超氧化物歧化酶活性、过氧化氢酶活性、过氧化物酶活性与胁迫程度呈正相关,PEG-6000胁迫3 d后各指标均发生显著变化;利用隶属函数对这7个指标综合分析,7个小麦品种苗期的抗旱性表现为川麦42>矮抗58>川农19>周麦21>绵阳11>绵阳15>Sy95-71。在两个时期,根据旱害隶属函数值和综合排序值,川麦42抗旱性最强,Sy95-71抗旱性最弱。  相似文献   

20.
《Field Crops Research》2002,76(1):25-43
Root morphological characteristics are known to be important in the drought resistance of some rice (Oryza sativa L.) varieties. The identification of quantitative trait loci (QTLs) associated with root morphology and other drought resistance-related traits should help breeders produce more drought resistant varieties. Stability in the expression of root growth QTL across rooting environments is critical for their use in breeding programs. A greenhouse experiment in which a mapping population of 140 recombinant inbred lines and the parental varieties Bala and Azucena were grown in glass-sided soil chambers and evaluated for root growth and water uptake was conducted. In each of 2 years, two treatments were used; an early water-deficit (WD0) in which seeds were sown into wet soil but received no more water, and a late water-deficit (WD49) in which the plants were watered for 49 days and then received no water for a week. The major differences between treatments and years in dry matter partitioning and root growth traits are reported elsewhere. Here, the identification of QTLs for root growth traits by composite interval mapping is described. At LOD>3.2, there were six QTLs for the weight of roots below 90 cm and maximum root length, 11 for root to shoot ratio, 12 for the number of roots past 100 cm, and 14 for root thickness. A total of 24 regions were identified as containing QTLs (these regions often contained several QTLs identified for different root traits). Some were revealed only in individual experiments and/or for individual traits, while others were common to different traits or experiments. Seven QTLs, on chromosomes 1, 2, 4, 7, 9 (two QTLs) and 11, where considered particularly noteworthy. The complex results are discussed in the context of previously reported QTLs for root growth in other populations, the interaction between QTL with the environment and the value of QTLs for breeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号