首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
基于元分析的大豆胞囊线虫抗性QTL的整合   总被引:1,自引:0,他引:1  
以2004年发布的大豆公共遗传图谱soymap2为参考图谱,共搜集整理了自1994年以来已报道的与抗大豆胞囊线虫相关的151个QTLs,通过BioMercator2.1和公共标记将相关QTLs映射整合到大豆公共遗传连锁图谱soymap2上,并利用元分析技术发掘"真实"QTL。本文共发掘出与抗大豆胞囊线虫1、2、3、4、5和14号生理小种相关的16个"真实"QTL,其中有四个位点的图距小于1.5cM,一个位点的图距小于5cM,分布于A2、E和G连锁群,其中G连锁群上5.11cM处的定位区间包含已报道的Rhg1位点;发现在G连锁群上有一个定位区间控制1,4号生理小种,在B1连锁群上有一个定位区间控制2,5号生理小种,可见这些位点具有兼抗性。  相似文献   

2.
以T32和齐319为亲本构建118份F2∶3家系的双亲分离群体为材料,通过对不同家系的穗部性状进行评价,结合高密度SNP标记的基因型鉴定结果,利用IciMapping4.2软件中的复合区间作图法对5个穗部相关性状(穗长、穗粗、穗行数、行粒数和秃尖长)进行QTL定位。结果表明,共检测到16个QTL,其中,控制穗长、穗粗、穗行数、行粒数和秃尖长的QTL分别为3、2、4、2和5个,单个QTL可解释2.92%~13.53%的表型变异。结合公共数据库,利用生物信息学分析筛选出4个控制穗部相关性状的候选基因Zm00001d031906、Zm00001d027721、Zm00001d002762和Zm00001d002768。  相似文献   

3.
基于高密度遗传连锁图谱定位玉米子粒容重及相关性状QTL   总被引:1,自引:1,他引:0  
利用玉米优良自交系农系531和X178杂交构建的200份RIL群体,基于GBS技术获得SNP标记构建高密度的重组bin遗传连锁图谱,定位控制玉米子粒容重相关QTL。结果表明,构建的物理图谱和遗传图谱的总长度分别为2 017.03 Mb和2 568.99 cM,相邻两个bin标记之间的平均物理距离和平均遗传距离分别为0.27 Mb和0.35 cM。运用所构建的遗传连锁图谱对RIL群体获得的所有目标性状进行连锁作图,两年共定位到4个与子粒容重相关的QTL位点,分别位于chr1、chr7和chr8上;穗部性状穗长、穗粗、穗行数、行粒数和出籽率两年分别共定位到了6、5、5、1、2个QTL位点,位点分布于chr1、chr2、chr3、chr4、chr5、chr7和chr8上。  相似文献   

4.
玉米磷素相关根系性状Meta-QTL及候选基因发掘   总被引:1,自引:0,他引:1  
以玉米高密度遗传连锁图谱IBM2 2008 Neighbors为参考图谱,收集来自不同实验中的175个玉米磷素相关根系数量性状位点(QTL)信息,利用Biomercator 2.1软件,构建玉米磷相关根系QTL整合图谱。采用元分析技术,在10条染色体上发掘出26个与磷相关根系性状"一致性"QTL(MQTL),图距范围在0.8~14.3 c M之间,除第2、5、8号染色体外,其余染色体上均检测到2~4个MQTL。根据MQTL区间两端标记在玉米物理图谱Ref Gen_v2上的位置,将MQTL进行物理图谱定位,单个MQTL所在物理图谱上的图距范围在0.1~9.1 Mb。在MQTL 1、2、4、8、11、12、15、18、20、22中检测到15个与磷素吸收利用以及根系性状的候选基因。  相似文献   

5.
为了解小麦穗长性状的遗传特性,并将其应用于分子标记辅助育种,以大穗材料高麦1号/密小穗的292个植株的F2群体为材料,利用SSR标记对穗长进行了QTL定位分析。结果表明,选用500对SSR引物对高麦1号和密小穗两个亲本进行多态性检测,共获得180对在双亲间有多态性的引物,多态性引物检出率为36.0%。利用这180对引物进一步进行F2群体筛选,有96对引物在群体中表现出多态性,占多态性标记的53.3%。利用QTL_IciMapping软件构建出小麦染色体组的8个连锁群图谱,并将96对SSR引物定位到遗传连锁图谱上。图谱全长1 383.29cM,标记间的平均遗传距离15.37cM。平均每个连锁群有11.25个标记,含有标记最多的是4A和6B染色体,各有17个标记,其次是3A和7B染色体,含有9~14个标记,1B和5D染色体含有的标记最少,只有5~7个。共检测出7个与穗长相关的QTL位点,包括6个加性QTL和1个加性+显性QTL。7个QTL的加性效应值均为正值,单个QTL的贡献率为2.04%~15.26%。其中3A染色体上的QTL位点距离其最近标记只有0.58cM,为连锁最紧密的一个位点,并且其加性效应值最大,可解释表型变异的15.26%。因此,3A染色体上存在控制穗长的主效基因。  相似文献   

6.
为了解小麦穗长性状的遗传特性,并将其应用于分子标记辅助育种,以大穗材料高麦1号/密小穗的292个植株的F2群体为材料,利用SSR标记对穗长进行了QTL定位分析.结果表明,选用500对SSR引物对高麦1号和密小穗两个亲本进行多态性检测,共获得180对在双亲问有多态性的引物,多态性引物检出率为36.0%.利用这180对引物进一步进行F2群体筛选,有96对引物在群体中表现出多态性,占多态性标记的53.3%.利用QTL_IciMapping软件构建出小麦染色体组的8个连锁群图谱,并将96对SSR引物定位到遗传连锁图谱上.图谱全长1 383.29 cM,标记间的平均遗传距离15.37 cM.平均每个连锁群有11.25个标记,含有标记最多的是4A和6B染色体,各有17个标记,其次是3A和7B染色体,含有9~14个标记,1B和5D染色体含有的标记最少,只有5~7个.共检测出7个与穗长相关的QTL位点,包括6个加性QTL和1个加性+显性QTL.7个QTL的加性效应值均为正值,单个QTL的贡献率为2.04%~15.26%.其中3A染色体上的QTL位点距离其最近标记只有0.58 cM,为连锁最紧密的一个位点,并且其加性效应值最大,可解释表型变异的15.26%.因此,3A染色体上存在控制穗长的主效基因.  相似文献   

7.
两种供氮水平下玉米穗部性状的QTL定位   总被引:4,自引:0,他引:4  
以优良杂交种豫玉22两亲本Z3和87-1为基础构建一套F8家系的重组自交系群体为研究材料,在正常供氮和低氮两种氮水平下进行田间试验,利用复合区间作图法对玉米穗长、穗行数、行粒数、百粒重和单穗粒数进行QTL定位分析。两种氮水平下共定位到24个玉米穗部性状的QTL位点,其中正常供氮条件下定位到13个QTL,低氮水平下定位到11个QTL,集中分布在第1(8个QTL)、第5(6个QTL)和第8(5个QTL)染色体上。两种氮水平下共位或紧密连锁的QTL位点较少,表明玉米穗部性状在低氮水平下的遗传机制发生很大改变。研究发现,第1染色体umc1122/bnlg1556位点是一个控制低氮水平下玉米单穗粒数的主效QTL,单个QTL可解释19.7%的表型变异,该位点还同时影响低氮水平下玉米穗长、穗行数和百粒重的表型。与前人定位结果比较发现,该位点所在的染色体区域是一个产量及氮效率相关性状的QTL富集区,对此位点附近进行相关分子标记辅助选择,可能会在玉米氮高效分子育种上有所突破。  相似文献   

8.
图谱整合是弥补单个作图群体因分子标记多态性的局限性而难以构建高密度图谱的有效方法.利用具明显农艺性状差异的大豆品种间杂交组合(科丰1号×南农1138-2、南农87-23×NG94-156、苏88-M21×新沂小黑豆和皖82-178×通山薄皮黄豆甲)所衍生的重组自交系群体分别构建了含有560,223,195,133个分子标记的遗传连锁图谱.以各图谱共有SSR标记作为锚定标记,使用JoinMap3.0进行图谱整合,得到一张包含20个连锁群,795个分子标记,总遗传距离2 772.9 cM,平均间距3.49 cM的整合图谱.各连锁群的标记个数在24~69之间,遗传距离在77.1~224.7 cM之间.与Song等的公共图谱比较,标记在连锁群上的分布和位置高度吻合,并增加了5个公共图谱上没有的SSR标记,另有6个SSR标记定位在不同的连锁群上.通过整合图谱可将关联分析所获基因/QTL定位到连锁群区间;便于不同群体定位结果间的比较;并找寻与之连锁更紧密的邻近标记.鉴于本图谱所用作图群体的亲本与国内育种常用材料的遗传来源相近,将更便于国内育种性状的QTL定位研究.  相似文献   

9.
为了发掘更多控制小麦旗叶大小及穗部相关性状的QTL,以兰考906和小偃81创制的133个F6~F7重组自交系为试验材料,在6个环境下利用SSR标记对旗叶大小及穗部相关性状进行QTL定位。结果表明,有202对SSR标记被用于构建遗传连锁图谱,图谱覆盖小麦21条染色体,全长1 678.93cM,标记间平均距离8.30cM。采用完备区间作图法共检测到30个QTL,分布在1B、2A、3D、4A、4B、4D、5D、6A、6B、6D和7D染色体上。其中,旗叶宽QTL有7个,穗长QTL有9个,小穗数QTL有5个,穗粒数QTL有5个,小穗着生密度QTL有4个,不同环境下单个QTL可解释的表型变异率为4.94%~23.14%,有14个QTL的表型贡献率大于10%,有8个QTL可在2个或2个以上环境中被检测到。其中,Qflw-4A在3个环境中被检测到,贡献率为10.13%~20.77%,是控制旗叶宽的稳定主效QTL;Qsl-4D.2在4个环境中被检测到,贡献率为12.58%~23.14%,是控制穗长的稳定主效QTL;Qker-5D在2个环境中被检测到,贡献率为11.44%~14.32%,是控制穗粒数的稳定主效QTL。这3个稳定主效QTL可作为改良叶宽和增加穗粒数的功能QTL作进一步研究。  相似文献   

10.
玉米穗上节间距的QTL定位   总被引:2,自引:0,他引:2  
玉米穗上节间长度是影响冠层结构的主要因素,分析其遗传特点对于改善玉米植株群体结构、提高光合效率具有重要意义。以豫82×沈137的229个F2单株为作图群体,构建了具有212个位点的SSR标记连锁图谱,图谱总长度为1 943.8 cM,平均间距8.76 cM,通过229个F2∶3家系穗上节间距的鉴定和QTL定位分析,共检测出与节间距有关的14个QTL,分布在第1、2、3、4、7、9染色体上,未检测到控制穗上5个节间距的共同QTL。穗上第3节间距的qThiIL3、第4节间距的qForIL3和第5节间距的qFifIL3标记区间相同,贡献率在8.89%~16.36%,可能为控制节间距的一个主效QTL。  相似文献   

11.
小麦穗粒数是由多基因控制的复杂数量性状。为发掘控制小麦穗粒数(KNS)的真实主效数量性状位点(quantitative trait loci, QTL),本研究利用生物信息学手段,借助小麦高密度分子标记遗传图谱,对来自不同遗传作图群体的控制小麦穗粒数的163个QTL位点进行图谱整合、映射和元分析。结果表明,目标性状QTL在小麦21条染色体上不均匀分布,在2B染色体上最多,在7D染色体上最少;建立控制小麦KNS的QTL一致性图谱,最终获得35个一致性QTL(meta quantitative trait loci, MQTL)位点及其紧密连锁的候选分子标记,置信区间最小可达到0.55 cM。  相似文献   

12.
两种光、氮条件下玉米苗期根冠性状QTL定位   总被引:2,自引:0,他引:2  
以根、冠性状差异显著的亲本478和Wu312为基础材料,构建了含218个株系的F8重组自交系群体,利用该群体构建了包含184个SSR标记的遗传连锁图谱,图谱总长度为2 084.1 cM,平均图距为11.3 cM。在低光、高氮下和高光、低氮下对玉米苗期地上部干重、根干重、根冠比、最大根长进行了QTL定位分析,两种条件下共定位到21个与苗期根冠性状相关的QTL位点,低光、高氮条件下定位到11个QTL位点,高光、低氮条件下定位到10个QTL位点,分别位于第1、2、3、4、5、6、7、9染色体上。第6染色体上定位到7个位点,其中一个为控制低光、高氮下根干重的主效位点,贡献率为25.3%。在第1染色体上umc1335-bnlg1556区段同时检测到高光、低氮条件下地上部干重和根冠比的QTL位点,这些位点与地上部干物质的形成密切相关。  相似文献   

13.
大豆胞囊线虫病(soybean cyst nematode,SCN)是大豆生产上的重要病害,野生大豆是拓宽大豆抗病育种遗传基础的重要种质资源。为开发野生大豆资源,利用SLAF-seq技术,以杂交组合“绥农14×ZYD03685”的亲本、 126个F2单株及其衍生的F2:3家系为试验材料,进行了SLAF标签的开发、遗传图谱的绘制和QTL分析。共获得7783个SLAF标签用于遗传图谱绘制,遗传图谱总长度为2664.2 cM,20个连锁群的平均长度为133.21 cM。两个SCN 抗性QTL(qSCN-1 和qSCN-2)分别位于Chromosome(Chr)18 4.25~4.31 Mb和Chr18 13.50~13.81 Mb,分别解释了 22.96%和10.96%的抗性(胞囊指数)变异,QTL区段内分别包含了6个和14个基因。qSCN-2 区段未见有前人关于 SCN抗性QTL的报道,为新的QTL。本研究为SCN抗性机制解析和利用ZYD03685进行SCN抗病分子育种提供了  相似文献   

14.
低氮逆境下玉米产量及相关性状QTL整合与一致性分析   总被引:2,自引:0,他引:2  
通过收集国内外玉米在低氮逆境条件下产量及相关性状的QTL定位信息,采用元分析方法,借助玉米IBM2遗传图谱进行了QTL整合及一致性QTL分析。结果表明:基于国内外多个定位群体定位的85个QTL呈簇状分布在10条染色体上,一些QTL簇集是由控制同一个性状的QTL聚集而成,多个QTL簇由控制产量相关的不同性状的QTL组成;确定了11个低氮逆境条件下一致性的产量性状QTL,其中1个子粒产量一致性QTL位于第5染色体上,6个百粒重一致性QTL位于第1、第5染色体上,4个穗粒数一致性QTL位于第8染色体上。  相似文献   

15.
玉米主要营养品质性状的QTL定位   总被引:1,自引:0,他引:1  
以LX00-6×E28的278个F2:3家系为作图群体,通过SSR标记利用MAPMAKER/EXP3.0和Mapdraw 2.0构建遗传连锁图谱.该连锁图覆盖玉米基因组1 508.1 cM,包含124个标记,相邻两标记的平均距离为12.2 cM.利用QTLMaper2.5软件,结合主要品质性状的检测结果,运用复合区间作图法,以LOD=2.0对玉米主要品质性状进行全基因组QTLs扫描,检测到两个与淀粉含量相关的QTL位点,分别位于第1、8条染色体上,表现为部分显性效应和加性效应,并在第1条染色体上检测到1个与油分含量相关的位点,表现为加性效应.  相似文献   

16.
小麦纹枯病是世界性的小麦重要病害之一,培育和使用抗病品种是减轻纹枯病危害最经济和有效的手段。为了挖掘更多的小麦纹枯病抗性QTL用于小麦标记辅助育种,本研究构建了CI12633和扬麦158重组自交系群体,采用二代测序方法开发SNP分子标记,并对群体中的94个家系进行基因型分析,构建遗传连锁图;采用牙签接种和病麦粒接种的方法鉴定重组自交系群体纹枯病抗性,进而对小麦纹枯病抗性QTL进行定位。结果显示,构建的遗传连锁图包含3 355个分子标记,遗传距离为2 510.66 cM,共有31个连锁群,均能分配到相应的染色体;在5A(2)、6A、1B、2B、3B、4B、5B、6B(2)、7B、1D、2D(2)、4D和7D染色体共发现16个与小麦纹枯病抗性相关的QTL,单个QTL可解释9.0%~26.8%的表型变异;除了7B染色体的QTL来源于感病品种扬麦158,其余QTL均来自抗病品种CI12633;3B、7D和5A(Chr5A_564101963)染色体的QTL与已有报道一致,其余均为新发现的QTL。发现的QTL和紧密连锁分子标记为今后小麦抗纹枯病分子标记辅助育种以及抗纹枯病基因的克隆提供帮助。  相似文献   

17.
Over the past two decades, genetic dissection of complex phenotypes of economic and biological interest has revealed the chromosomal locations of many quantitative trait loci (QTLs) in rice and their contributions to phenotypic variation. Mapping resolution has varied considerably among QTL studies owing to differences in population size and number of DNA markers used. Additionally, the same QTLs have often been reported with different locus designations. This situation has made it difficult to determine allelic relationships among QTLs and to compare their positions. To facilitate reliable comparisons of rice QTLs, we extracted QTL information from published research papers and constructed a database of 1,051 representative QTLs, which we classified into 21 trait categories. This database (QTL Annotation Rice Online database; Q-TARO, http://qtaro.abr.affrc.go.jp/) consists of two web interfaces. One interface is a table containing information on the mapping of each QTL and its genetic parameters. The other interface is a genome viewer for viewing genomic locations of the QTLs. Q-TARO clearly displays the co-localization of QTLs and distribution of QTL clusters on the rice genome.  相似文献   

18.
为发掘与小麦穗部性状相关的QTL,利用普通小麦BS366与白玉149杂交组合培育的73个DH群体为材料,构建了一套包含232个杂交组合的小麦永久F_2群体,基于90K SNP芯片标记构建了高密度遗传图谱,并利用该图谱对2个环境下的穗长、小穗数、穗粒数和千粒重进行QTL定位。结果发现,所构建的图谱总长19 533 cM,含有8 726个SNP标记,平均标记距离为2.24cM。结合群体基因分型结果,8 726个SNP标记合并为3 078个BIN标记,其中A基因组有1 283个(41.7%),B基因组有1 188个(38.6%),D基因组仅有607个(19.7%);共检测到96个QTL,分布在除3B和6B以外的19条染色体上,其中,控制穗长、小穗数、穗粒数和千粒重的QTL分别有20、59、6和11个,单一QTL可解释0.15%~12.34%的表型变异。51个QTL加性效应为正值,表明其加性效应来自于母本BS366;45个QTL加性效应为负值,表明其加性效应来自于父本白玉149。23个QTL的表型变异解释率大于5%,为主效QTL。  相似文献   

19.
Inheritance and QTL Mapping of Salt Tolerance in Rice   总被引:6,自引:0,他引:6  
An F2 population derived from the cross between Jiucaiqing (japonica) and IR36 (indica) was used to analyze the inheritance of salt tolerance in rice by genetic model of major-genes plus polygenes, and to map the corresponding QTLs by SSR molecular markers. Rice plants of P1, P2, F1 and F2 at 5- to 6- leaf stage were treated under 140 mmol/L NaCI for 10 days. Three indices representing the ability of salt tolerance of rice seedlings were measured, including salt tolerance rating (STR), Na^ /K^ ratio in roots and dry matter weight of shoots (DWS). STR, Na^ /K^ and DWS were all controlled by two major genes with modification by polygenes. Heritability of these traits from major genes was 17.8, 53.3 and 52.3%, respectively. The linkage map constructed by 62 SSR molecular markers covered a total length of about 1 142 cM. There were three QTLs detected for STR located on chromosome 1, 5 and 9, two QTLs for DWS on chromosomes 8 and 9, and two QTLs for Na^ /K^ on chromosomes 2 and 6, one on each chromosome respectively. Single QTL accounted for 6.7 to 19.3% of phenotypic variation. Identification method of salt tolerance in rice and breeding of rice varieties with salt tolerance based on molecular markers assisted selection had been discussed.  相似文献   

20.
In order to map the quantitative trait loci for rice stripe resistance, a molecular linkage map was constructed based on the F2 population derived from a cross between Zhaiyeqing 8 and Wuyujing 3. Reactions of the two parents, F1 individual and 129 F2:3 lines to rice stripe were investigated by both artificial inoculation at laboratory and natural infection in the field, and the ratios of disease rating index were scored. The distribution of the ratios of disease rating index in Zhaiyeqing 8/Wuyujing 3 F2:3 population ranged from 0 to 134.08 and from 6.25 to 133.6 under artificial inoculation at laboratory and natural infection in the field, respectively, and showed a marked bias towards resistant parent (Zhaiyeqing 8), indicating that the resistance to rice stripe was controlled by quantitative trait loci (QTL). QTL analysis showed that the QTLs detected by the two inoculation methods were completely different. Only one QTL, qSTV7, was detected under artificial inoculation, at which the Zhaiyeqing 8 allele increased the resistance to rice stripe, while two QTLs, qSTV5 and qSTV1, were detected under natural infection, in which resistant alleles came from Zhaiyeqing 8 and Wuyujing 3, respectively. These results showed that resistant parent Zhaiyeqing 8 carried the alleles associated with the resistance to rice stripe virus and the small brown planthopper, and susceptible parent Wuyujing 3 also carried the resistant allele to rice stripe virus. In comparison with the results previously reported, QTLs detected in the study were new resistant genes to rice stripe disease. This will provide a new resistant resource for avoiding genetic vulnerability for single utilization of the resistant gene Stvb-i.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号