首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new water-saving ‘Ground Cover Rice Production System’ (GCRPS) was evaluated in 2001 and 2002 near Beijing, North China. Using GCRPS, lowland rice was cultivated without a standing water layer during the entire growth period and plots were irrigated when soil water tension was below 15 kPa (approximately 90% water holding capacity). In order to prevent soil evaporation, the soil surface was covered with 14 μm thick plastic film (GCRPSPlastic) or mulched with straw (GCRPSStraw). In a third GCRPS treatment the soil was left uncovered (GCRPSBare). These treatments were compared with lowland rice cultivated under traditional paddy conditions (Paddy control). In an additional treatment with bare soil, one aerobic rice variety was cultivated. Compared to Paddy control, only 32–54% of irrigation water was applied in GCRPS treatments. Plants in GCRPS were smaller, developed fewer panicles and had a smaller leaf area index compared to Paddy control. Yield was significantly less in GCRPSBare and GCRPSStraw compared to Paddy control in both years, while yield in GCRPSPlastic was only 8% less than the Paddy control yield in 2002. Water-use efficiency (WUE, gram grain yield per litre water input) in GCRPSPlastic was higher (0.35) than in Paddy control (0.23). Grain yield was highly significantly correlated with maximum leaf area index and leaf area index duration. Among yield components, the number of productive tillers had the greatest positive effect on yield, while the number of grains per panicle, thousand-grain weight and harvest index remained almost unaffected. Under uncovered condition, the aerobic rice variety had a significantly higher harvest index (HI), yield, and WUE compared to the lowland rice variety (GCRPSBare). The experiment demonstrates that GCRPS has potential to save substantial amounts of water at relatively minor yield penalties, if stress factors such as low soil temperature, water deficit, and nutrient deficiencies during the vegetative growth stage are avoided by suitable management practices.  相似文献   

2.
This study aimed to investigate the possible causes for inconsistent performances of upland New Rice for Africa (NERICA) varieties in uplands and lowlands, while identifying important determinants in grain yield under deficient soil moisture. We compared the growth and yield of NERICA 1 and NERICA 5 to those of Yumenohatamochi, a Japanese upland variety, and Hinohikari, a Japanese lowland variety, subjected to different water management regimes (continually flooded, supplementary irrigation, and non-irrigation). Under conditions of deficient soil moisture, panicle number per square meter, spikelet number per panicle, and 1000-grain weight of NERICAs decreased, whereas the panicle number of the Japanese varieties experienced little change. In contrast, the grain filling ratio was unaffected by water management, irrespective of variety. The primary source of yield reduction under low soil water conditions was a decrease in spikelet number per panicle, and water stress intensity was the primary factor for the degree of this reduction. Variation in the abortion of secondary rachis-branches caused differences between NERICAs in their spikelet number response to soil moisture deficiency. The inconsistency in NERICA performance across uplands vs. lowlands can be partially attributed to variation in yield response to low soil water conditions. Moreover, water stress intensity and the presence of a water gradient along the vertical soil profile may combine to affect the fluctuation in NERICA performance under upland conditions.  相似文献   

3.
《Plant Production Science》2013,16(3):203-210
Summary

Generally F1 hybrids from crosses between japonica and indica rice show variable degrees of sterility. Previous studies revealed that among the indica rice, the Aus type has sexual affinity with japonica cultivars giving higher fertility in F1 hybrids. Therefore, we made an effort to obtain higher grain yield by producing F1 hybrids between japonica and Aus-type indica. A field experiment was conducted to investigate the heterosis in these F1 hybrids for dry matter accumulation, spikelet fertility, yield and yield attributes, to find cross combinations with higher grain yield, and examined the relationships of grain yield with some agronomic characters. F1 hybrids flowered earlier than their parent cultivars. Heterosis for dry matter accumulation was positive at the panicle initiation stage, at heading and at maturity. The average heterosis for number of panicles, grain and straw yield per plant, number of spikelets per panicle and 1000-grain weight was positive. A few F1 hybrids showed positive heterosis for number of filled grains per panicle, spikelet fertility and harvest index; but the average heterosis for these traits was negative. Among the yield components, a higher number of panicles per plant and higher number of spikelet per panicle contributed to higher grain yield in F1 hybrids. A significant and positive relationship existed between spikelet fertility and grain yield per plant. The higher grain yield was attributed to higher dry matter production rather than higher harvest index in F1 hybrids, although low spikelet fertility limited yield potential in some F1 hybrids.  相似文献   

4.
以水稻品种准两优527和Ⅱ优162为材料,研究了开花期水分胁迫对其生长和稻米品质的影响。结果表明,水分胁迫下,千粒重和结实率显著下降,导致单株产量降低,同时株高降低、叶面积减小、叶绿素含量降低;水分胁迫后,稻米的整精米率降低,垩白度和垩白粒率上升,蛋白质含量增加,直链淀粉含量下降,其中,整精米率受到的影响最大。因此,水稻开花期田间保持适宜的水分极其重要。  相似文献   

5.
目的 本研究旨在明确弱光胁迫下不同弱光耐性品种在源库特征及叶片保护酶活性变化方面的差异,揭示其耐弱光胁迫的机制,为双季稻高产稳产新品种的选育及抗逆栽培提供理论指导。方法 以2个对弱光胁迫耐性存在显著差异的晚稻品种为材料,通过设置不同时期的遮光处理,研究弱光胁迫时期对晚稻不同耐性品种的源库特征及叶片保护酶活性的影响。结果 结果表明,不同时期弱光胁迫对晚稻生长有重要影响,分蘖期弱光胁迫下晚稻分蘖数、每穗粒数及总颖花量减少,叶面积下降,产量降低;幼穗分化期弱光胁迫下晚稻分蘖数和每穗粒数减少,总颖花量、叶面积、结实率均下降,产量降低;灌浆期弱光胁迫下水稻叶片净同化率降低,结实率和千粒重下降,产量降低。不同时期弱光胁迫对晚稻产量的影响表现为灌浆期>幼穗分化期>分蘖期。结论 耐弱光胁迫型品种能通过增加叶片的长宽度减少叶面积的下降,叶片含氮量保持相对稳定,叶片中SOD、CAT等保护酶活性保持在较高水平,POD活性保持相对稳定,叶片净同化率下降幅度小,在弱光胁迫下实现“强源”,减产率相对较低。弱光胁迫下具有较强的叶面积补偿能力和适宜氮含量以及较高的保护酶活性是水稻耐弱光胁迫的重要机制。  相似文献   

6.
Drought stress is one of the major constraints affecting rice production and yield stability in the rainfed regions. To understand the physiological basis of drought resistance related component traits, we used a backcross inbred population of rice under three kinds of moisture regimes viz., non-stress, moderate (24.48%) and severe stress (73.97%) conditions which reflect the differential responses of the genotypes to varying stress intensities. The plot yield, 1000-grain weight, panicle exsertion and canopy air temperature difference exhibited high heritability under the control conditions, whereas spikelet sterility and single plant yield exhibited high heritability under the moderate stress conditions. Traits such as days to 50% flowering, plant height and osmotic potential showed high heritability under the severe stress conditions. Plot yield under stress was significantly and positively correlated with harvest index and 1000-grain weight, but negatively associated with leaf rolling score and days to 50% flowering. The drought susceptibility index and drought response index were negatively correlated between each other both under the moderate and severe stress conditions. The derived traits viz., difference in panicle length between the control and the severe stress was associated with osmotic adjustment measured under field conditions. Difference in plant height and panicle length was negatively associated with plot yield under stress.  相似文献   

7.
不同时期干旱胁迫对水稻产量和生长特性的影响   总被引:1,自引:0,他引:1  
为明确水稻生长过程中的水分敏感时期,探索水稻抵御干旱的栽培措施,以常规粳稻楚粳29号和云粳39号为材料,通过盆栽试验准确控制土壤水分(水势),研究不同时期干旱胁迫对水稻产量和生长特性的影响。结果表明,楚粳29号干旱胁迫处理较对照减产10.63%~47.60%,云粳39号干旱胁迫处理较对照减产6.19%~47.27%,减产程度依次为穗分化前期干旱胁迫(T2)﹥有效分蘖期干旱胁迫(T1)﹥穗分化后期干旱胁迫(T3)﹥孕穗期干旱胁迫(T4)。与对照相比,2个品种有效分蘖期干旱胁迫降低了有效穗数,穗分化前期干旱胁迫使每穗粒数明显减少,穗分化后期干旱胁迫使每穗实粒数减少和结实率明显降低,孕穗期干旱胁迫对结实率或千粒重有影响。  相似文献   

8.
《Plant Production Science》2013,16(4):514-525
Abstract

We evaluated the genotypic differences in growth, grain yield, and water productivity of six rice (Oryza sativa L.) cultivars from different agricultural ecotypes under four cultivation conditions: continuously flooded paddy (CF), alternate wetting and drying system (AWD) in paddy field, and aerobic rice systems in which irrigation water was applied when soil moisture tension at 15 cm depth reached ?15 kPa (A15) and ?30 kPa (A30). In three of the sixcultivars, we also measured bleeding rate and predawn leaf water potential (LWP) to determine root activity and plant water status. Soil water potential (SWP) in the root zone averaged ?1.3 kPa at 15 cm in AWD, -5.5 and -6.6 kPa at 15 and 35 cm, respectively, in A15, and ?9.1 and ?7.6 kPa at 15 and 35 cm, respectively, in A30. The improved lowland cultivar, Nipponbare gave the highest yield in CF and AWD. The improved upland cultivar, UPLRi-7, and the traditional upland cultivar, Sensho gave the highest yield in A15 and A30, respectively. The yields of traditional upland cultivars,Sensho and Beodien in A30 were not lower than the yields in CF. However, the yields of the improved lowland cultivars, Koshihikari and Nipponbare, were markedly lower in A15 and A30. Total water input was 2145 mm in CF, 1706 mm in AWD, 804 mm in A15, and 627 mm in A30. The water productivity of upland rice cultivars in aerobic plots was 2.2 to 3.6 times higher than that in CF, while those of lowland cultivars in aerobic plots were lower than those in CF. The bleeding rate of Koshihikari was lower in A15 and A30 than in CF and AWD, and its LWP was significantly lower in A15 and A30 than in CF and AWD, but Sensho and Beodien showed no differences among the four cultivation conditions. We conclude that aerobic rice systems are promising technologies for farmers who lack access to enough water to grow flooded lowland rice. However, lowland cultivars showed severe growth and yield reductions under aerobic soil conditions. This might result from poor root systems and poor root function, which limits water absorption and thus decreases LWP. More research on the morphological and physiological traits under aerobic rice systems is needed.  相似文献   

9.
The system of rice intensification (SRI) is reported to have advantages like lower seed requirement,less pest attack,shorter crop duration,higher water use efficiency and the ability to withstand higher degree of moisture stress than traditional method of rice cultivation.With this background,SRI was compared with traditional transplanting technique at Indian Agricultural Research Institute,New Delhi,India during two wet seasons (2009-2011).In the experiment laid out in a factorial randomized block design,two methods of rice cultivation [conventional transplanting (CT) and SRI] and two rice varieties (Pusa Basmati 1 and Pusa 44) were used under seven crop nutrition treatments,viz.T 1,120 kg/hm2 N,26.2 kg/hm2 P and 33 kg/hm2 K;T 2,20 t/hm2 farmyard manure (FYM);T 3,10 t/hm2 FYM+ 60 kg/hm2 N;T 4,5 t/hm2 FYM+ 90 kg/hm2 N;T 5,5 t/hm2 FYM+ 60 kg/hm2 N+ 1.5 kg/hm2 blue green algae (BGA);T 6,5 t/hm2 FYM+ 60 kg/hm2 N+ 1.0 t/hm2 Azolla,and T 7,N 0 P 0 K 0 (control,no NPK application) to study the effect on seed quality,yield and water use.In SRI,soil was kept at saturated moisture condition throughout vegetative phase and thin layer of water (2-3 cm) was maintained during the reproductive phase of rice,however,in CT,standing water was maintained in crop growing season.Results revealed that CT and SRI gave statistically at par grain yield but straw yield was significantly higher in CT as compared to SRI.Seed quality was superior in SRI as compared to CT.Integrated nutrient management (INM) resulted in higher plant height with longer leaves than chemical fertilizer alone in both the rice varieties.Grain yield attributes such as number of effective tillers per hill,panicle length and panicle weight of rice in both the varieties were significantly higher in INM as compared to chemical fertilizer alone.Grain yields of both the varieties were the highest in INM followed by the recommended doses of chemical fertilizer.The grain yield and its attributes of Pusa 44 were significantly higher than those of Pusa Basmati 1.The seed quality parameters like germination rate and vigor index as well as N uptake and soil organic carbon content were higher in INM than those in chemical fertilizer alone.CT rice used higher amount of water than SRI,with water saving of 37.6% to 34.5% in SRI.Significantly higher water productivity was recorded in SRI as compared to CT rice.  相似文献   

10.
In the system of “aerobic rice”, especially adapted aerobic rice varieties are grown under non-flooded conditions in non-puddled and aerobic soils with supplemental irrigation and moderate external inputs. Limited research has been done so far on optimizing nutrient management to produce high yields. In this study, we investigated yield formation and dry matter translocation of aerobic rice cultivar HD297 in response to N application, grown under different irrigation regimes at two sites close to Beijing, North China. At the “experimental farm”, the groundwater table depth was 0.2–1 m; at the “experimental station”, it was deeper than 2 m. Fertilizer-N rates were 0, 75, and 150 kg N ha−1 applied in split dressings according to regional recommendations for lowland rice, with 30% being applied at sowing, 40% at tillering, and 30% at panicle initiation.  相似文献   

11.
Intermittent and prolonged dry spell during growth of transplanted rice is an important abiotic problem in north eastern region (NER). However, the productivity of rice in the region is very low, and this is mainly associated with reduced plant population, growth, and yield attributes with lower relative water content and leaf rolling with formation of soil cracks by erratic and aberrant rainfall. Keeping this in view, a field experiment on transplanted rice was conducted during two consecutive years 2011 and 2012 at NER of India, to evaluate the imposition of forced surface drainage (SD) at various growth stages (continuous drainage, SD at tillering, SD at panicle initiation, SD at booting, SD at flowering, SD at milking, and 15 days intermittent SD) and was compared with continuous flooding on growth and yield attributes, yield, relative water content, leaf rolling, and formation of soil cracks. Results revealed that continuous flooding has significant (p < 0.05) improved the plant population, growth and yield parameters, rice grain yield (3,406.7 kg ha?1) and straw yield (4,683.3 kg ha?1), relative water content maintained >90 %, no leaf roll, and soil crack. However, imposition of SD at tillering has lower tillers hill?1, but yield was compensated by improvement in yield attributes. As per the availability of water, growers of the region can utilize the water for scheduling of water and most critical stages can be avoided by moisture stress to obtain higher productivity.  相似文献   

12.
稻田水分管理方式对水稻光合速率和水分利用效率的影响   总被引:32,自引:2,他引:30  
以超级杂交稻两优培九和中优6号为材料, 设3个不同水分管理措施,在穗分化期、开花期和花后20 d分别测定叶片光合速率和水分利用率。结果表明:不同水分管理方式影响水稻地上部干物重、叶面积指数、光合速率、蒸腾速率和水分利用效率。水分好气灌溉管理地上部干物重和水分利用效率明显增加;水分低水位管理蒸腾速率、地上部干物重和叶片水分利用效率下降。淹水灌溉地上部干物重、叶面积指数、叶片光合速率和水分利用率较低。因此,水稻好气灌溉有利于光合物质积累,显著增产和提高水分利用效率。试验还表明这3种水分管理对稻米蛋白质含量的影响不显著。  相似文献   

13.
 通过严格控制土壤水分的盆栽试验,研究了超级杂交稻组合叶片丙二醛(MDA)含量对不同水分亏缺的生理响应及产量性状受到的影响,分析了叶片MDA含量与产量性状间的关系。结果表明,不同生育时段的水分亏缺均导致叶片MDA含量显著增加,受影响程度随控水时段的推迟而加重。随着叶位的降低,叶片MDA含量呈显著上升趋势,倒3叶最高,其次是倒2叶,剑叶相对较低,水分亏缺导致叶片尤其是下部叶片的MDA含量显著升高。水分亏缺均导致产量显著降低,开花至花后15 d和穗分化后15~30 d的控水处理影响较大,其次是花后15~30 d的控水处理,各组合减产均在20%以上,原因主要在于结实率和千粒重下降。叶片MDA含量的生理响应与稻株生长发育和最终产量表现存在相关性,不同组合的叶片MDA含量和产量性状对水分亏缺的响应有所不同,超级杂交稻组合所受影响小于普通杂交稻组合。作物对水分亏缺的响应除了表现胁迫程度 效应关系和胁迫时间 效应关系,还存在生育进程 效应关系。  相似文献   

14.
水分胁迫对水稻产量和食味品质抗旱系数的影响   总被引:13,自引:2,他引:13  
 选用上育397和绥粳3号两个水稻品种,于分蘖期、穗分化期、抽穗后1~10 d、抽穗后11~20 d、抽穗后21~30 d、抽穗后1~30 d分别进行土壤水势为-30~-35 kPa和-60~-65 kPa的控水处理,两品种的产量抗旱系数为穗分化期<分蘖期<抽穗后1~10 d处理,其他时期差异不大。 两品种的食味品质抗旱系数均以穗分化期最低,其他时期差异不大。 穗分化期不仅是产量的水分敏感期,也是食味品质的水分敏感期。 食味的抗旱系数大于产量的抗旱系数,尤其是抽穗前和抽穗后1~10 d 的处理,表明控水对产量的影响大于对食味品质的影响,节水栽培中要充分注意对产量的影响。  相似文献   

15.
为明确开花期土壤含水量对不同穗型小麦品种花后光合特性及籽粒产量的调控效应,在大田条件下,以中穗型品种济麦229和大穗型品种泰山27为材料,设置3个水分处理[开花期不灌水(W0)、开花期0~40 cm土层土壤相对含水量补灌至70%(W1)和85%(W2)],研究不同土壤水分含量对小麦光合特性和籽粒产量的影响。结果表明:(1)两个小麦品种W1处理的旗叶叶绿素相对含量和净光合速率在开花后7~35 d均显著高于W2处理,W0处理最低。(2)两品种开花后21~35 d的籽粒灌浆速率均表现为W1W2W0。(3)两品种的单位面积穗数在不同处理间均无显著差异,千粒重均表现为W1W2W0;济麦229的穗粒数表现为W2W1W0,籽粒产量表现为W1、W2W0;泰山27穗粒数表现为W1、W2W0,籽粒产量表现为W1W2W0;两品种的水分生产效率均表现为W1W0、W2。(4)开花后旗叶的叶绿素相对含量、净光合速率、开花后14~21 d的籽粒灌浆速率及千粒重均表现为泰山27显著高于济麦229;在W1条件下,泰山27开花后21 d的叶绿素相对含量和净光合速率比济麦229分别高9.25%和12.80%,千粒重和产量显著高于济麦229。因此,综合考虑籽粒产量和水分生产效率,泰山27为高产节水品种,且在小麦开花期将0~40 cm土层土壤相对含水量补灌至70%可同步实现小麦高产和节水。  相似文献   

16.
Near isogenic lines carrying large-effect QTL (qtl12.1), which has a consistent influence on grain yield under upland drought stress conditions in a wide range of environments, were evaluated under water stress in the fields. The line which gave higher yield under drought was crossed with a local elite line, PMK3, and forwarded to F2:3 generation. Significant variation was found among the F2:3 lines for agronomic traits under water stress in the fields. Low to high broad sense heritability (H) for investigated traits was also found. Water stress indicators such as leaf rolling and leaf drying were negatively correlated with plant height, biomass and grain yield under stress. Bulked segregant analysis (BSA) was performed with the markers in the vicinity of qtl12.1, and RM27933 was found to be segregated perfectly well in individual components of drought resistant and drought susceptible bulks which were bulked based on yield under water stress among F2:3 lines. Hence, this simple and breeder friendly marker, RM27933, may be useful as a potentially valuable candidate marker for the transfer of the QTL qtl12.1 in the regional breeding program. Bioinformatic analysis of the DNA sequence of the qtl12.1 region was also done to identify and analyze positional candidate genes associated with this QTL and to ascertain the putative molecular basis of qtl12.1.  相似文献   

17.
以2010~2012年示范和展示品种为材料,以各品种单位面积平均产量及其株高、有效穗数、每穗粒数、结实率、千粒重、穗长等6个产量性状的表型值为依据,通过三年平均产量比较试验,系统的阐述了不同熟期品种在二积温带的产量及产量性状表现。试验结果表明:与主栽品种空育131比较,2010~2012年平均产量较高的11片叶品种为龙粳29、垦粳2号、垦稻21、垦稻20、龙粳27、龙粳20、龙粳26;产量较稳定的品种为空育131、龙粳25、龙粳20、垦粳2号、龙粳29。12片叶品种年际间产量差异较显著,相对较稳定的品种为垦鉴稻6号、垦稻14、龙粳21,绥粳10、松粳10、北稻5号;与主栽品种垦稻12比较,三年平均产量较高的品种为垦粳4号、垦稻14、垦鉴稻6号、绥粳10、龙粳21。本地区适宜选择11片叶品种为主栽品种。  相似文献   

18.
The uncertainty of monsoon rainfall and the decreasing availability of irrigation water, as a result of climate change, and high water demand of other sectors have resulted to wide adoption of alternate wetting and drying (AWD) technique especially in irrigated lowland rice production to overcome water scarcity. However, under climate change circumstances, AWD can be optimized when taking advantage of favorable water seasonality conditions to increase crop yield and irrigation water use efficiency. Therefore, a field trial was conducted to find suitable water depth for reducing rice irrigation water use by combining four different water depth treatments (T2cm, T3cm, T4cm, and T5cm) with rainfall through a randomized complete block design having 3 replications. Water depths were applied weekly from transplanting to heading. The results showed that water stress at vegetative stage decreased plant height and tillers number between 7 and 33 % at panicle initiation, followed by total and partial growth recovery. In addition, panicle number per hill showed a 53–180 % decrease at the heading stage. Severe water stress induced by the lowest water treatment significantly reduced yield components between 15 and 52 % at harvest. It was found that weekly application of 3 cm water depth combined with rainfall improved AWD effectiveness, and yielded the highest beneficial water productivity with less yield expenses.  相似文献   

19.
《Plant Production Science》2013,16(4):233-239
Summary

Photosynthetic ability in terms of CO2 exchange rate and leaf area, dry matter accumulation (dry weight) and other important growth components along with yield and yield contributing characters in two F1 hybrids of Akebono × Chiyonishiki (A × C) and Zenith × Akebono (Z × A) were studied. The photosynthetic rate at the flowering stage was lower than that at the panicle initiation stage in all the inbred parent cultivars and F1 hybrids. Heterosis in photosynthetic rate was higher at the panicle initiation stage than that at the flowering stage. Pre-anthesis leaf area in the F1 hybrid was significantly larger than that in the parent cultivars. However, the post- anthesis decline in leaf area was more rapid in the F1 hybrids than in the parent cultivars and its magnitude was the highest in the F1 hybrid of Z × A which was tall having long and curved panicles. Pre-anthesis dry matter accumulation in both hybrids was significantly higher in the F1 plants than the parental cultivars, but post-anthesis dry matter accumulation in the F1 hybrid was lower than the mid-parental value in Z × A. The degree of heterosis in grain yield varied with the hybrid combination, an average heterosis being 1.03. Heterosis in grain yield was closely associated with heterosis in harvest index.  相似文献   

20.
In water-efficient rice production, grain yield is often constrained by panicle size. The objective of this study was to genetically dissect the response of panicle morphology to irrigation regimes in aerobic rice culture. We grew ‘Akihikari’ (a lowland japonica cultivar) × ‘IRAT109’ (an upland japonica cultivar) backcross inbred lines in aerobic soils with full or limited irrigation for 2 years, and examined 4 panicle traits—number of florets per panicle (FPP), number of primary branches per panicle (BPP), number of florets per primary branch (FPB), and frequency of pre-flowering floret abortion (%FA)—and grain yield. QTLs for BPP were detected in both the irrigation regimes but QTLs for FPB and %FA were detected mostly only in either of the irrigation regimes. The QTL for FPP on chromosome 2 (RM3421–RM213) coincided with that for yield under full irrigation, showing that this QTL is related to sink capacity and yield potential in aerobic rice culture. On the other hand, the QTL for FPB on chromosome 1 (RM3148–RM243) coincided with that for yield under limited irrigation, when water deficit was moderate. The QTL for root axis length at vegetative stage, previously identified in the same mapping population, was located near this region. This study unravelled the complicated genetic control on panicle morphology in aerobic rice culture, and suggested the positive roles of the dehydration avoidance mechanism by vigorous root growth on panicle size and yield under dry soil conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号