首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
为解析小麦硝酸盐转运蛋白基因 TaNRT1.1的生物学功能,本研究通过同源克隆的方法从普通小麦中克隆了小麦硝酸盐转运蛋白基因 TaNRT1.1(TaNRT1.1-1A TaNRT1.1-1B TaNRT1.1-1D)。生物信息学分析表明,这三个同源基因编码的蛋白均为疏水蛋白,含有丰富的α-螺旋和无未见则卷曲,主要定位于质膜上。小麦不同组织qRT-PCR分析表明, TaNRT1.1-1A TaNRT1.1-1B基因在根中表达量最高,其次是叶和茎, TaNRT1.1-1D基因在茎中表达量最高,其次是叶和根。因此,推测 TaNRT1.1-1A TaNRT1.1-1B基因在硝酸盐吸收过程中发挥了重要作用, TaNRT1.1-1D基因在硝酸盐转运过程中发挥了重要作用。通过对小麦 TaNRT1.1基因多态性筛选发现,在 TaNRT1.1-1A基因启动子上游1 120 bp的位置有一个8 bp(TGCATGCA)的插入位点,该位点可能与小麦氮利用效率相关。不同氮利用效率小麦品种qRT-PCR分析结果表明,氮高效小麦品种(基因型为 TaNRT1.1-1A-b)苗期根中 TaNRT1.1-1A基因的相对表达量显著高于氮低效小麦品种(基因型为 TaNRT1.1-1A-a)。  相似文献   

2.
氨基酸转运蛋白是植物体内一类负责氨基酸运输的蛋白,是植物氮代谢的重要媒介。CAT9(阳离子氨基酸转运蛋白9)是氨基酸转运蛋白家族的一员,为深入了解小麦中该基因的序列特征及表达特性,采用同源克隆的方法从普通小麦品种豫麦49-198中获得TaCAT9两个部分同源基因的cDNA序列。因两基因分别位于小麦6 A和6 B染色体长臂上,故分别命名为TaCAT9-ATaCAT9-B。生物信息学分析结果表明,两个TaCAT9基因的CDS长度均为1 818 bp,编码605个氨基酸;它们的编码蛋白等电点分别为8.23和8.27,分子量分别为64.04 kDa和64.08 kDa,属于疏水稳定蛋白。并且两蛋白均含有阳离子氨基酸转运蛋白的C末端和13个跨膜区。进化分析结果表明,小麦CAT9蛋白与乌拉尔图小麦和山羊草的CAT9蛋白亲缘关系密切。实时荧光定量反转录PCR结果表明,TaCAT9基因在根、茎、叶和籽粒中都有表达,但在叶中的表达量最高;在氮饥饿条件下,该基因的表达上调,推测该基因参与小麦低氮胁迫应答。  相似文献   

3.
核氧还蛋白(nucleoredoxin,NRX)可通过还原目标蛋白的二硫键来调控其生物活性,在植物的生长发育和抗逆境胁迫中发挥着重要作用。蛋白质二硫键异构酶(protein disulfide isomerase,PDI)、h型硫氧还蛋白(h-type thioredoxin,TRXh)和蛋白磷酸酶2A催化亚基(protein phosphatase 2A catalytic subunit,PP2Ac)是小麦核氧还蛋白TaNRX1的互作蛋白。为了明确TaNRX1互作蛋白的抗旱性功能,本研究在拟南芥中过表达了小麦 TaPDI-A TaTRXh-A TaPP2Ac-D基因,对野生型和转基因拟南芥的表型和抗旱相关生理指标进行了鉴定。结果表明,干旱胁迫处理后,转 TaPDI-A TaTRXh-A TaPP2Ac-D基因拟南芥的根长、存活率、脯氨酸含量均大于野生型,离体叶片失水率、丙二醛(MAD)含量均小于野生型。二氨基联苯胺(diaminobenzidine,DAB)对H2O2组织定位染色结果表明,干旱胁迫处理后,转 TaPDI-A TaTRXh-A TaPP2Ac-D基因拟南芥的H2O2含量均低于野生型。上述结果说明,TaNRX1的互作蛋白基因 TaPDI-A TaTRXh-A TaPP2Ac-D增强了拟南芥对于干旱胁迫的抵抗能力。本研究可为小麦抗旱育种提供候选基因和理论基础。  相似文献   

4.
为了解小麦的 TaGB1基因特性、表达情况及其与双子叶植物同源基因的进化关系,以小麦品种济麦22为研究对象,采用同源克隆的方法获得小麦G蛋白β亚基编码区序列, TaGB1编码区全长1 143 bp,编码380个氨基酸,预测分子量为41 kD,基因组序列中包含6个外显子和5个内含子,分别位于小麦基因组的4A、4B、4D染色体上,不同拷贝的氨基酸同源性高达99.91%。 TaGB1基因结构中包含7个WD40保守域,表达产物位于胞质和质膜上。经系统发育进化关系分析,单子叶植物与双子叶植物的G蛋白β亚基分化形成两大分支; TaGB1在进化关系上与单子叶植物较近,而与拟南芥等双子叶植物较远。 TaGB1在ABA、盐、热和干旱胁迫条件下上调表达,植物的根、茎、叶等部位均有表达,叶片中表达量较高,说明该基因可能参与调控植物的抗逆反应。  相似文献   

5.
硝酸盐转运蛋白(Nitrate Transporters,NRTs)在植物根系NO3-吸收或转运中发挥重要作用。为探究玉米NRTs基因在氮素吸收中的功能,从前期转录组数据中鉴定出7个响应氮素处理的差异表达ZmNRTs基因。启动子顺式作用元件分析表明,这些ZmNRTs基因的启动子均含有多个植物逆境或激素应答元件,推测他们可能与玉米非生物胁迫应答或植物激素调控氮素吸收相关。从玉米根系中克隆了对氮素处理响应最大的ZmNRT2.5,该基因CDs全长为1 563 bp,编码520个氨基酸。进化树分析结果表明,ZmNRT2.5AtNRT2.5同源性最高,含有保守的硝酸盐转运结构域,二级结构以α-螺旋和无规则卷曲为主,含11个跨膜结构域。实时荧光定量PCR分析表明,ZmNRT2.5主要在根、老叶和叶鞘中表达。低氮处理显著诱导ZmNRT2.5在根中的表达,植物激素脱落酸、赤霉素和乙烯均参与调控ZmNRT2.5的表达。同时,ZmNRT2.5基因的表达受到盐胁迫的显著抑制。  相似文献   

6.
葡萄糖-6-磷酸脱氢酶(G6PDH)是磷酸戊糖途径中的关键限速酶,在植物生长发育及非生物胁迫响应中发挥重要作用。本研究利用生物信息学对小麦 G6PDH基因家族成员进行鉴定,并对该家族基因编码蛋白的理化性质、进化关系、亚细胞定位、基因复制事件以及在不同组织和不同胁迫下的表达模式进行分析。结果表明,在小麦基因组中共鉴定到14个 G6PDH基因家族成员,分布在小麦2A、2B、2D、4A、4B、4D、6A、6B和6D染色体上,其中5个基因编码的蛋白为胞质型,9个为质体型。亚细胞定位预测表明,胞质型G6PDH蛋白主要定位于细胞质上,而质体型G6PDH蛋白主要定位于叶绿体上。根据系统进化和保守结构域特征,可将14个小麦G6PDH蛋白分为Cy、P0、P1和P2四个亚组。共线性分析表明,小麦 G6PDH基因家族成员存在17对片段重复基因。RNA-seq分析结果表明,小麦 G6PDH基因家族成员在不同组织中存在明显的表达差异,其中 TaG6PDH1-2A/2B/2D基因在根中的表达量最高; TaG6PDH2-2A TaG6PDH2-2B基因在干旱胁迫后1 h以及热胁迫后6 h均上调表达。进一步利用qRT-PCR检测6个小麦 G6PDH基因在干旱和盐胁迫下的表达模式,发现分别有5个基因在小麦根中均上调表达,推测小麦 G6PDH基因在非生物胁迫响应过程中发挥着重要功能。  相似文献   

7.
磷脂酶D (Phospholipase D,PLD) 是植物体内重要的信号转导酶。为了深入了解小麦PLD基因功能,利用同源克隆的方法从普通小麦扬麦158中克隆出TaPLDδ基因后进行序列分析,同时对TaPLDδ基因在不同组织及不同胁迫条件下的表达模式进行分析。结果表明,TaPLDδ基因编码区长为2 589 bp,编码862个氨基酸,等电点为6.93,分子量约为97 kDa。氨基酸序列分析显示,TaPLDδ基因编码的氨基酸序列含有N端C2结构域及两个保守的HKD活性中心。预测分析表明,TaPLDδ蛋白属于亲水性稳定蛋白,在细胞质中合成后,不进行蛋白转运;其二级结构包含27.49%的α-螺旋、19.14%的延伸链、6.73%的β-转角和46.64%的不规则卷曲。不同物种间TaPLDδ蛋白的同源性分析比较表明,TaPLDδ与谷子、玉米和拟南芥的PLDδ氨基酸序列之间具有高度的保守性,且与乌拉尔图小麦、二穗短柄草和水稻PLDδ亲缘关系密切。此外,qRT-PCR分析表明,TaPLDδ在叶、根、茎、花和种子中均有不同程度表达,并受ABA、NaCl和PEG诱导表达增强,推测该基因参与小麦渗透胁迫应答。以上这些研究结果为进一步研究TaPLDδ的生物学功能奠定了基础。  相似文献   

8.
植物磷转运蛋白1(phosphase transporter protein 1,PHT1)家族在植物磷吸收和转运中发挥着重要作用。为研究大麦 PHT1基因家族成员的特性,利用生物信息学方法在全基因组范围内对大麦 PHT1家族成员进行鉴定,结果共鉴定到14个大麦 PHT1HvPT1HvPT14)基因,分布在2H、4H、5H和7H染色体上。根据系统发育关系、基因结构和保守蛋白基序,可将14个大麦 PHT1基因分为3个亚群。基于RNA seq数据对大麦品种GN121(磷高效基因型)根和叶片中12个 PHT1基因的表达模式进行分析,发现在低磷胁迫处理下,根中 HvPT1HvPT7HvPT10HvPT12基因以及叶片中 HvPT13基因均上调表达。进一步利用荧光定量PCR技术对大麦品种GN121和GN42(磷低效基因型)根中10个 PHT1基因的表达模式进行分析,发现两个品种根中 HvPT7HvPT8HvPT10HvPT12HvPT14基因在磷恢复后第3 d的表达量均显著低于低磷处理第22 d的表达量,推测这5个基因在低磷胁迫下参与磷的吸收和转运;此外 HvPT5基因在磷恢复后第3 d的GN42根中表达量显著下降,而在GN121根中的表达量显著上升,说明 HvPT5基因的表达与品种类型有关。  相似文献   

9.
抗逆相关bZIP (Basic leucine zipper) 转录因子家族基因主要参与ABA、干旱、高盐等胁迫应答反应,其过表达能够显著增强植物的抗逆性。本研究从偃麦草(Elytrigria repens L.)中分离到一个抗逆相关 ErABF1E. repens ABA Binding Factor 1)基因,氨基酸序列比对分析发现,该基因与小麦、玉米、拟南芥等bZIP转录因子基因同源性较高,亲缘关系较近;ErABF1基因的表达受到ABA、干旱、高盐、低温的强烈诱导;在2% PEG、200 mmol·L-1 NaCl胁迫培养基上初步功能分析表明, ErABF1过表达提高了转基因烟草对干旱、高盐的胁迫耐性。  相似文献   

10.
小麦品种铭贤169是我国黄淮麦区育种研究广泛应用的条锈病诱发材料,但其种子休眠时间过长,不仅影响播种后均匀发芽和生长发育,其收获掉落籽粒也容易导致秋季育种田的生物学混杂。本研究通过筛选其休眠种子与萌发种子的转录组学数据,克隆获得差异表达基因TaJAZ1,并对其生物信息学特性、亚细胞定位、表达模式进行分析,结合解析拟南芥jaz3(与TaJAZ1同源性最高)突变体、TaJAZ1过表达拟南芥和水稻的表型反应。结果表明,TaJAZ1基因编码区全长1 230 bp,可编码409个氨基酸,在不同物种间保守性较强,与野生二粒小麦JAZ1基因的亲缘关系最近;启动子区含有脱落酸响应元件ABRE 和茉莉酸甲酯响应元件CGTCA-motif和TGACG-motif;该基因定位于细胞核和细胞膜,TaJAZ1基因在种子发育中穗发芽时期表达量达到最高,进入成熟时期表达量显著降低;ABA能诱导TaJAZ1基因的表达,ABA处理下过表达拟南芥的萌发率比野生型和jaz3突变体高,ABA信号通路基因AtABI5的诱导量变低;TaJAZ1过表达水稻的萌发率高于受体水稻, ABA处理后,OsABI5的诱导量也降低。以上结果证明,TaJAZ1基因能促进种子萌发,进一步验证其在ABA信号通路中起负调控作用,为改良铭贤169等强休眠性小麦品种提供参考。  相似文献   

11.
miR398是受逆境胁迫负调控的miRNA,其靶基因CSD编码超氧化物歧化酶(SOD),使植物抵御活性氧(ROS)的毒害。为进一步了解低温胁迫下miR398的调控机制,从东农冬麦1号中克隆小麦miR398前体,构建过表达载体并转化拟南芥,用Real-time PCR检测T0代植株中小麦miR398及其靶基因CSD1在低温胁迫下的表达量。结果表明,随着低温胁迫时间的延长,miR398表达下调、CSD1基因表达上调,认为小麦miR398能响应低温胁迫、负调控CSD1基因表达,间接提高了拟南芥的抗寒性。  相似文献   

12.
MicroRNA(miRNA)是一类长度为18~24nt的非编码小分子RNA,参与植物各种发育进程。tae-miR9663是新发现的在小麦幼苗、旗叶和籽粒中高表达的miRNA,但其生物学功能未知。为了探索taemiR9663的功能,通过人工合成tae-miR9663的小串联模拟靶标(short tandem target mimic,STTM),将其构建到大麦条斑花叶病毒(barley stripe mosaic virus,BSMV)载体上,利用病毒介导的基因沉默(virus-inducing gene silencing,VIGS)技术转染小麦宁春16五叶一心期的第5片叶,转染20d后观察叶片表型并取旗叶进行实时定量PCR,成熟时观察种子大小。叶片表型观察结果表明,与BSMV:00相比,接种BSMV:STTM-taemiR9663的9株幼苗中出现4种叶片表型,即第6片叶有白点或白条纹,旗叶(第7片叶)有白点或白条纹,第6片叶边缘有锯齿状,旗叶叶尖处有皱缩。实时定量PCR分析结果表明,STTM-tae-miR9663过表达植株的tae-miR9663表达丰度下降,说明BSMV-VIGS技术可通过过表达STTM有效地沉默内源miRNA。成熟种子大小观察结果表明,与BSMV:00比较,接种BSMV:STTM-tae-miR9663的植株种子的长和宽均减小。  相似文献   

13.
为了验证小麦籽粒大小相关基因TaCYP78A5在小麦籽粒发育中的功能,对pINO启动子驱动的TaCYP78A5基因过表达的转基因小麦后代株系进行了鉴定,检测了T_0代植株目标基因拷贝数,定量分析了7个T_1代阳性植株的目标基因表达,并对其籽粒大小进行了统计。结果表明,利用Bar试纸条和目标基因特异PCR检测相结合的方法对21株转基因T_0代再生苗进行检测,共鉴定出14个阳性植株,除2个植株的目标基因拷贝数为3和1个植株为7外,其余11个T_0代转基因植株目标基因插入拷贝数均为1~2个,其中有6个单拷贝植株。与野生型相比,7个T_1代阳性植株目标基因表达量均极显著增加,粒厚和粒宽均有不同程度增加,粒重极显著增加。  相似文献   

14.
为了解小麦品种山融3号耐盐性的基因状况,以大麦HvHAK1为探针,通过电子克隆和PCR方法,从该品种根的cDNA文库中克隆到一个小麦的耐盐相关基因TaHAK1(High Affinity K+transporter1)。该基因ORF全长2 405bp,编码776个氨基酸,含有8个内含子。与已报道的大麦、水稻、玉米等单子叶植物的HAK基因具有较高的相似性。RT-PCR分析表明,TaHAK1在小麦根中表达量较高,且受钾饥饿和盐胁迫诱导表达。在200mmol.L-1 NaCl胁迫条件下,TaHAK1在耐盐小麦品种山融3号中的最高表达量高于在盐敏小麦品种济南177中的最高表达量。这些结果说明,在小麦中克隆到了大麦HvHAK1的同源基因,该基因参与了小麦对高盐、低钾等非生物胁迫的响应,可能对山融3号的耐盐性具有一定贡献。  相似文献   

15.
蔗糖非发酵相关的蛋白激酶2(SnRK2)通过磷酸化在植物胁迫信号转导途径中起关键作用。为发掘并利用燕麦中的 SnRK2基因,本研究基于燕麦转录组数据的注释信息,利用RT-PCR技术从燕麦品种美达中克隆了 AsSnRK2.7基因,借助生物信息学、瞬时表达及实时荧光定量RT-PCR(qRT-PCR)技术分别对该基因或其编码蛋白进行分子特征分析、亚细胞定位和表达特异性研究。结果表明, AsSnRK2.7基因包含一个1 074 bp的开放阅读框,编码357个氨基酸,预测其编码蛋白含有一个STKc_SnRK2结构域和一个PKc_like superfamily结构域,属于SnRK2蛋白激酶家族成员。AsSnRK2.7蛋白一级序列中包含多个SnRK2家族特有的重要功能区。AsSnRK2.7蛋白与水稻的SnRK2蛋白激酶相似性最高,属于Group Ⅰ(SnRK2b)亚家族。亚细胞定位结果显示,AsSnRK2.7蛋白主要定位在细胞核中。qRT-PCR结果显示, AsSnRK2.7基因为组成型表达,在根、茎、叶和穗中的最大表达量分别出现在苗期、分蘖期、抽穗期和灌浆期;此外, AsSnRK2.7基因的表达不被ABA激活,但可以积极应答PEG、盐和低温胁迫。以上结果说明, AsSnRK2.7基因可能作为一个调节因子,通过非依赖ABA途径来调节干旱、盐和低温所引发的信号传导。  相似文献   

16.
为给深入研究Ta DHN2基因在小麦抗旱机制中的作用机理奠定基础,并为进一步丰富小麦DHN基因研究内容提供参考,本研究通过筛选石麦15基因组BAC文库和BAC克隆测序方法克隆了Ta DHN2基因及其启动子,并对Ta DHN2基因序列特征、表达模式和启动子功能等进行了分析和探讨。结果表明,Ta DHN2基因含有1个88 bp的内含子,开放读码框长为696 bp,编码1个含有231个氨基酸的脱水素蛋白。Ta DHN2蛋白具有Y-segment、S-segment和K-segment结构域,属于YSK2类型脱水素蛋白。此外,该蛋白含有明显的核定位信号序列S-segment和基序RRKK。Ta DHN2基因受渗透胁迫诱导表达,在根和叶中表达模式类似,叶中表达量显著高于根中。Ta DHN2基因启动子序列长为2 025 bp,预测含有9个脱水响应顺式元件。在转基因拟南芥中,Ta DHN2基因启动子能够启动GUS基因表达,并在渗透胁迫下诱导GUS基因上调表达。以上结果说明,Ta DHN2基因为脱水响应基因,其启动子为渗透胁迫强诱导启动子。  相似文献   

17.
外源基因拷贝数是影响转基因植物遗传稳定性及其自身表达水平的重要因素。为了探析TaNAC14基因在小麦生长发育中的生物学功能,本研究通过农杆菌介导的遗传转化法获得了14个T0代TaNAC14转基因小麦植株,采用BASTA溶液涂抹和目标序列PCR检测相结合的方法,从14个转基因小麦植株中鉴定出9个阳性植株。通过TaqMan实时定量PCR方法,以小麦内源单拷贝基因Pinb为内参基因,对9个T0代转基因小麦阳性植株中外源目标基因拷贝数进行检测,结果表明,T0代转基因小麦再生植株中有5株为单拷贝,4株为双拷贝,其中单拷贝插入整合的比率接近55.6%。选取单拷贝转基因植株收获的种子进行种植,根据BASTA溶液涂抹鉴定对T0:1代小麦株系遗传情况进行分析,结果表明目标基因TaNAC14是可遗传的。此外,还对T1代转基因小麦目标基因表达水平进行测定,结果表明,与野生型JW1相比,各转基因小麦植株目的基因TaNAC14表达量均极显著增加。该研究结果为后续TaNAC14基因的功能研究奠定了基础。  相似文献   

18.
非寄主抗性基因 NHO1(non-host resistance 1)编码的甘油激酶(glycerol kinase,GK),是甘油代谢中的限速酶之一,参与植物对多种病害的抵御过程。为进一步探究其响应小麦白粉菌侵染的表达模式,利用RT-PCR方法克隆获得了转录自抗病种质N9134的三个部分同源染色体的小麦 NHO1基因(分别命名为 TaNHO1-2A、 TaNHO1-2B和 TaNHO1-2D),分析三个 TaNHO1同源基因的序列、启动子组成元件和表达模式,并明确了其亚细胞定位。序列分析结果表明,小麦 TaNHO1-2A/2B/2D基因CDS区序列全长分别为1 605、1 599和1 605 bp,分别编码534、532和534个氨基酸残基;3个同源基因均含有与 AtNHO1(AT1G80460.1)基因以及 OsNHO1(Os04G0647800)基因高度相似的FGGY_N端和FGGY_C端结构域。经对启动子区结构分析,该基因启动子区含有大量与植物激素及逆境响应相关的顺式作用元件,意味着 TaNHO1可受到多种植物激素诱导并参与小麦抗病过程。qRT-PCR结果表明,在N9134抗病近等基因系响应白粉菌(Blumeria graminis f. sp.tritici,Bgt)侵染过程中,三个同源基因在不同时间点表达模式不同,其中 TaNHO1-2A、 TaNHO1-2B基因在侵染早期均上调表达,而 TaNHO1-2D则表现出多次波动的表达模式;在N9134感病近等基因系遗传背景下,同源基因的表达水平在病菌侵染后48 h均表现出下调,说明该基因能够响应白粉菌侵染。经亚细胞定位分析,该基因主要作用于细胞质、细胞膜以及核膜。  相似文献   

19.
为建立小麦抗条锈病基因分子检测体系,分别以Yr1和Yr2紧密连锁的标记为检测标记,以Sull-1、CYR29、CYR32、CYR33和V26/CM42为小麦条锈菌鉴别菌株,构建Yr1和Yr2分子检测体系,并对181份小麦高代系材料进行了抗病鉴定和Yr1和Yr2基因分析。结果表明,gwm372和gwm382可作为Yr1的检测标记;wmc364可作为Yr2的检测标记;5个鉴别菌株对Yr1和Yr2具有较好的区分能力。Yr1和Yr2基因在181份小麦高代系材料中比例较低,表明这两个基因在我国小麦抗病育种过程中丢失严重。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号