首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Beinan River is one of the rivers with perfect ecology and full of culture values in Taiwan. It is also the habitat of many freshwater fish species. Besides, the local agricultural crops are famous for exports due to its natural environment, too. Therefore, for these reasons, the hydraulic associations set a series of ecological constructions for waterfowl and fish species around the agricultural water intake areas. For instance, the river bank protection designs the willow works and the fascine mattress by the 8th River Management Bureau for ecological function and hydraulic protection in flood season. In this study, the concept and the methodology of the fish protection habitat predicted model is revealed. Beside the simulated hydraulic models, the indoor experiments of the willow works were conducted to gain the roughness. The hydraulic methods by one- and two-dimensional are used for simulation in flood season (2009 Typhoon Morakot event) to bring up the habitat protection locations. The experimental results showed that for the Manning’s n of the willow works is between 0.1322 and 0.1333 which corresponding height to the real field is about 144–176 cm. Therefore, it provided the revetment roughness data during the shelter effect evaluation. From the velocity distribution, it proves that the vegetated revetment can reduce the flow velocity. Fulfilling previous two main steps in experiment and model calibration, the shelter effect is made good going on discussion. Most of references indicated that the vegetated revetment provided suitable and excellent habitat condition, but rare of them provided the proof in data. This study presents that the WUA is 34,939.94 m2 and PUA is 1.53% at the highest discharge of Typhoon Morakot. The whole protection concepts, simulation methods, and results can be utilized for future plan and design of river engineering.  相似文献   

3.
In the field of agriculture, development of evaluation techniques for environmental changes is urgently required for the purpose of finding a balance between growth in agricultural productivity and environmental considerations. The habitat evaluation procedures (HEP) constitute one technique for habitat assessment. While HEP is widely applied to estimate both habitat quality and quantity in an environment, it appears to be necessary to develop an accurate habitat prediction model in order to evaluate environments precisely. In fact, habitat selection by fish is affected by complicated interaction between multiple environmental factors, which makes it difficult to relate physical environments to habitat preference. In the present study, we utilize artificial neural networks (ANNs), which are commonly applied to model complex systems, to predict the habitat selection of Japanese medaka (Oryzias latipes) in agricultural canals. Considering the essential vagueness of fish behavior, fuzzy membership functions are introduced into the input layer, which advances ANN to fuzzy neural network (FNN). In addition, symmetric triangular fuzzy numbers are employed to account for uncertainty in measurement errors and dispersions of physical environment. The FNN model precisely predicts the habitat preference of Japanese medaka in an agricultural canal, and the results show a good agreement between the calculated and observed habitat suitability indices (HSI). Finally, the habitat quality of two different reaches at the same point in time is compared using HEP, with a view of suitable habitat for Japanese medaka.  相似文献   

4.
This paper introduces an irrigation system developed in the floodplain of a lake and studies the water management technique of the irrigation system by estimating the total water balance of the whole system. The system is characterized by a reservoir combined with a dike system in the floodplain of the Tonle Sap Great Lake and an irrigation system. Two main models are used for calculating the total water balance. The first model is the water balance of the reservoir. The inputs to the model are water level of the reservoir, precipitation, lake evaporation, infiltration, and area–volume curve of the reservoir. The outputs are inflow and outflow of the reservoir. The supply from the reservoir to paddy fields is computed from the outflow. The second model is the water balance of paddy fields, based on which the water requirement in paddy fields is derived. The reference evapotranspiration needed to calculate the water requirement is simulated for monthly time series using the FAO Penman–Monteith model. Since there is no drainage network in the irrigation system, surface drainage and runoff are not included in the calculation of the water balance, and seepage is considered negligible in the flat floodplain area. The evapotranspiration, rice variety, soil type and irrigated area are used to simulate water consumption in paddy fields. Finally, the two models are connected to produce the total water balance from the reservoir to paddy fields. The total outflow from the reservoir is estimated and the total water consumption for dry season cultivation is also determined. Finally, the efficiency of the whole system is examined.  相似文献   

5.
All of steady and non-steady subsurface drainage equations were developed mostly based on water flow pattern in an ordinary field conditions. However, subsurface drainage in a paddy field is quite different from subsurface drainage in an ordinary field. Thus, it is necessary to develop new equations and mathematical models to design subsurface drainage system in a paddy field. The objective of this study was to apply the HYDRUS-2D model, based on the Richard’s equation, to simulate water flow under subsurface drainage in a paddy field for various drain depths (0.5, 0.75 and 1.0 m) and spacings (7.5 and 15.0 m), surface soil textures (clay loam and silty clay loam) and crack conditions. Simulation results were compared with two well-known drainage equations. The maximum drainage rate was obtained under 7.5-m spacings and 1-m depth. With increasing drain spacings, the drainage rate decreased. Drain spacings had more effect on drainage rate and water pressure head as compared to drain depth. Drainage rates calculated by the Hooghoudt’s and Murashima and Ogino’s equations were much lower than those calculated by the Richard’s equation. The Hooghoudt’s equation, developed for ordinary fields, did not perform well for paddy fields. This study also proved the importance of cracks in subsurface drainage system of paddy fields. HYDRUS-2D stands as a robust tool for designing subsurface drainage in a paddy field.  相似文献   

6.
7.
A field experiment was performed at two Korean research sites to evaluate water and nutrient behavior in paddy rice culture operations for 2 years. One site was irrigated with groundwater, whereas the other site was irrigated with surface water. Both sites received average annual rainfall of about 1,300 mm, and about 70–80% of it was concentrated during July–September coinciding with rice growing season. Although most of the nutrient outflow was attributed to plant uptake, nutrient loss by surface drainage was substantial. The simplified computer model, PADDIMOD, was developed to simulate water and nutrient behaviors in the paddy rice field. The model predicts daily ponded water depth, surface drainage, and nutrient concentrations. It was formulated with a few equations and simplified assumptions, but its application and a model fitness test indicated that the simulation results reasonably matched the observed data. It is a simple and practical planning model that could be used to evaluate nutrient loading from paddy rice fields alone or in combination with other complex watershed models. Further validation might be required for general application of the PADDIMOD to the simulation of paddy rice fields with various agricultural environments.  相似文献   

8.
Paddy fields converted into winter wheat fields in Hokkaido, Japan, receive extremely high snowfall, creating a risk of flood damage to crops in spring due to waterlogging of snowmelt runoff and poor drainage. Meanwhile, in June there is relatively little rainfall, and a lack of moisture inhibits winter wheat growth. Therefore, we developed a method involving a series of 30-cm-deep ditches in agricultural fields to be used for drainage during the flood-prone period and for furrow irrigation during the dry period using water drawn from the canals that feed the paddy fields. The ditches are called ‘hybrid ditches’ as they are able to perform both drainage and irrigation functions. In this study, we investigated the optimal construction timing and spacing for hybrid ditches. We also evaluated their ability to improve the drainage and irrigation of winter wheat. We found that the optimal timing for digging hybrid ditches is immediately after sowing, and the inter-ditch spacing for irrigation should be 15 m or less. The hybrid ditches promoted increased soil temperature and healthy development of wheat plants by improving drainage during the flood-prone period. In addition, water was successfully supplied via the hybrid ditches to irrigate the fields in June. Under experimental conditions in which rainfall was excluded, grain yield was 10% higher and percent protein content was more than 1% point greater in the irrigated plot compared with the non-irrigated plot. Grain yield was also observed to increase by 3–29% in demonstration tests conducted at local farms. From these results, we conclude that hybrid ditches are capable of improving the growth and yield of winter wheat by improving drainage and providing irrigation in converted paddy fields in Hokkaido.  相似文献   

9.
Observations were performed in a small agricultural watershed for four consecutive irrigation periods in order to characterize fluctuations in the characteristics of pollutant runoff from paddy fields. During the puddling and rice-planting period and at the beginning of the mid-summer drainage period, both the pollutant concentrations and pollutant loadings of suspended solids, total nitrogen, and total phosphorus increased. In contrast, the pollutant net loading of total nitrogen was negative during the intermittent irrigation period. These results indicate that changes in the specific agricultural activities in the paddy fields cause temporal fluctuations of the pollutant runoff. Previous studies which focused on paddy fields have dealt with unit loading for entire irrigation period only. However, the unit loading for the entire irrigation period cannot take into account pollutant loading fluctuations due to differences in agricultural activity. Thus the unit loading of pollutant should be evaluated for each agricultural activity during the irrigation period.  相似文献   

10.
Water quality is degraded due to urbanization because it causes population growth and land-use changes in a watershed. These changes are usually simulated using a linear equation; however, in reality, population and land use are very closely related. A watershed system dynamics model (WSD model) was developed in the simulation of the relation among population, land use (paddy fields, upland fields, forest, and household), and runoff. The model comprised of three sectors: the agricultural sector, nature sector, and urban sector. The elements in the WSD model were selected based on interviews with local government officers and references. The WSD model simulated population, land use, and runoff with an average relative error of about 5%. Total nitrogen (T-N) and total phosphorus (T-P) were simulated using the results of the WSD model and unit effluent loads. Field surveys were conducted to determine the rate of mitigation in paddy fields. In addition, correction equations for runoff and phosphate-containing detergent were introduced. The model simulated T-N with an average relative error of 9%, and T-P with 27%; a sensitivity analysis for the principal elements in the WSD model showed reasonable results.  相似文献   

11.
Water shortage has become an important issue for Korean agriculture. Korea suffers from a limited agricultural water supply, and wastewater reuse has been recommended as an alternative solution. This study examined the concentrations of toxic heavy metals and Escherichia coli in a paddy rice field irrigated with reclaimed wastewater to evaluate the risk to farmers. Most epidemiological studies have been based on upland fields, and therefore may not be directly applicable to paddy fields. In this study, a Beta-Poisson model was used to estimate the microbial risk of pathogen ingestion. The risk value increased significantly after irrigation and precipitation. The results of the microbial risk assessment showed that risk values of groundwater and reclaimed wastewater irrigation were lower than the values of effluent directly from wastewater treatment plants. The monitoring results of heavy metals for each irrigated paddy fields did not show specific tendency. A risk assessment for toxic heavy metals was performed according to various exposure pathways; however, the results of the carcinogenic and noncarcinogenic risk estimation showed that the risk from reclaimed wastewater-irrigated paddy fields was the lowest.  相似文献   

12.
A cell-based distributed watershed model is developed which enables us to simulate the hydrological and hydraulic aspects of the watershed in a refined fashion. With three-zoned cell profiling, the model is composed of three sub-models; tank model for a surface water zone, soil moisture model for a surface soil zone, and unconfined shallow groundwater flow model for a subsurface zone. Inclusion of the soil moisture sub-model modified to reroute the infiltration, routed from the tank sub-model, into the return flow and the groundwater recharge features the model. The groundwater flow sub-model, numerically approximated by use of the finite volume method and the implicit time-marching scheme, considers a network of on-farm drainage canals as internal boundaries, which is an essential need for modeling the watershed including farmlands. Cascade-linking of the three sub-models in a cell and assembling of all the cells over the entire watershed domain provides the global equations system to be solved. Applicability of the model is demonstrated with its practical application to a real watershed in that paddy and upland crop fields take great part of the land-use practice. It is then indicated in a quantified manner that rice farming significantly contribute as a major groundwater recharger in an irrigation period to fostering and conservation of regional water resources. Along with appropriately profiling a cell, the model is so versatile and tough that it can be applied without difficulty to a watershed of diverse terrains and land-uses and the computations can stably be carried out. It is thus concluded that the model presently developed could be a powerful “watershed simulator” to investigate and assess the time-varying hydro-environmental properties of a watershed while separating and integrating the hydrological and hydraulic components of particular importance.  相似文献   

13.
A new coupled model (PCPF–SWMS) was developed for simulating fate and behavior of pollutant in paddy water and paddy soil. The model coupled the PCPF-1, a lumped model simulating pesticide concentrations in paddy water and 1 cm-surface sediment compartment, and the SWMS-2D, a finite element numerical model solving Richard's and advection-dispersion equations for solute transport in soil compartment. The coupling involved improvements on interactions of the water flow and the concentration the pollutant of at the soil interface between both compartments. The monitoring data collected from experimental plots in Tsukuba, Japan in 1998 and 1999 were used to parameterise and calibrate hydraulic functioning, hydrodynamic and hydrodispersive parameters of the paddy soil. The analysis on the hydraulic functioning of paddy soil revealed that the hard pan layer was the key factor controlling percolation rate and tracer transport. Matric potential and tracer monitoring highlighted the evolution of saturated hydraulic conductivity (K S) of hard pan layer during the crop season. K S slightly decreased after puddling by clay clogging and strongly increased after mid term drainage by drying cracks. The model was able to calculate residential time in every soil layers. Residential time of tracer in top saturated layers was evaluated to be less than 40 days. It took 60 days to reach the unsaturated layers below hardpan layer.  相似文献   

14.
Paddy fields not only serve to produce food but also have a variety of important ecological functions. Apart from the internal benefit (i.e., crop production), there are external benefits (i.e., reduction of greenhouse gases, oxygen generation, reduction of biological oxygen demand, flood mitigation, and other functions that are difficult to quantify). In the present study, the optimal fallow locations and areas were determined for evaluating the multifunctional benefits of paddy fields during drought periods, by using an optimization model for fallow fields under different exceedance probabilities of river inflows. For each time step, the appropriate probability distributions for river inflows to the Chi-Chi Weir (range 50–90 %) for generating system inflows were obtained. The optimization model for fallow fields was solved using Lingo. It was observed that the external benefits of paddy fields accounted for 76 % of total benefits, with the production benefit accounting for the remainder. The total benefits decreased as the exceedance probability of river discharges increased. Our findings indicate that fallow areas increase as irrigation areas shift downstream.  相似文献   

15.
《Plant Production Science》2013,16(3):385-392
We evaluated the usefulness of the Stylosanthes guianensis (stylo)- rice relay-intercropping system for increasing agricultural productivity in Northeast Thailand. Although large production variability was observed, the relay-intercropping system produced an average of 350 g m-2 stylo dry matter during the dry season under non-irrigated and non-fertilized conditions in the experimental fields at the Ubon Rice Research Center. Utilization of the stylo production as green manure increased rice yield, but only slightly. The relay-intercropping also slightly improved soil chemical properties, but not significantly. The trial of the relay-intercropping in farmer’s fields produced a maximum of 367 g m-2 stylo dry matter. Since the stylo production did not decrease the subsequent rice production, the rice-stylo relay-intercropping system is worth considering as one way to utilize the paddy fields during the dry season in Northeast Thailand.  相似文献   

16.
Ralstonia solanacearum (formerly Pseudomonas solanacearum) causes large losses in more than 200 different cultivated plant species. Banana and plantain “Moko” disease is caused by R. solanacearum race 2. Moko disease may cause 100% loss if prompt control measures are not applied. Although a number of investigations have been carried out, many ecological and epidemiological aspects of R. solanacearum race 2 are still unknown, particularly in the tropics. Bacteria dispersion occurs by infested tools, soil, water, insects, domestic animals and agricultural labourers. Alternative hosts have been described which may contribute to inoculum availability in crop fields. In banana crops, cable-ways are routinely used to transport fruit and materials inside plantations. In most humid tropical areas, drainage channels are made to evacuate excess soil water. It is thought that agricultural activities associated with drainage channels and cable-ways may play a role in bacteria dispersion but individual contributions have not yet been quantified. In this work we have used field-integrated information in geographical information systems (GIS)-based maps to evaluate Moko presence in the Urabá region of Colombia, during three different time periods. A previously described risk index (RI) and losses throughout the three periods were quantified. A regression model was developed to quantify the relationship between infested area and distance from every Moko focus to the nearest cable-way and drainage channels. Farms were grouped into four different profiles according to the RI. Parameters calculated using the regression model showed that 76% of Moko foci detected during the three time periods were associated with cable-ways used for transport of fruit and consumables. This finding has important implications for disease management since bacteria spread in these ways may be prevented by simple measures taken inside plantations.  相似文献   

17.
Chiyoda basin is located in Saga Prefecture in Kyushu Island, Japan, and lies next to the tidal compartment of the Chikugo River to which the excess water in the basin is drained away. Chiyoda basin has a total area of about 1,100 ha and is a typical flat and low-lying paddy-cultivated area. The main environmental issue in this basin is total nitrogen (TN) and total phosphorus (TP) load management because TN and TP, which loaded from farmlands, degrade surface water as a result of anthropogenic eutrophication. This paper presents a mathematical model of TN and TP runoff during an irrigation period in Chiyoda basin in order to elucidate the pollutant fluxes that accompany water transportation in paddy fields and drainage canals, and to evaluate pollutant removal from the study area to the Chikugo River. First, the water flow and the algorithm of gate operation were simulated by a continuous tank model and the accuracy of the model was then evaluated by comparing the simulated water levels with observed ones during an irrigation period. The observed and simulated water levels were in good agreement, indicating that the proposed model is applicable for drainage and water supply analyses in flat, low-lying paddy-cultivated areas. Second, the TN and TP runoff during an irrigation period was simulated based on the TN and TP loads that were determined by observed data in paddy fields. For TN runoff, the simulated results and observed data were in good agreement whereas for TP runoff, the simulated results were higher than the observed data. However, if the settled TP within the paddy tank was calculated as 6%, then the simulated results and the observed data were in good agreement. We concluded that TN runoff from paddy field to the drainage canal system was not affected much by the sediment related process. The present study could provide farmers and managers with a useful tool for controlling the water distribution in an irrigation period, and the TN and TP loads in the downstream area as well as the Chikugo River.  相似文献   

18.
The relationship between agricultural water demand and supply has been of interest to government decision makers and scientists because of its importance in water resources management. We developed a water cycle model for eastern Eurasia that can estimate water requirements for crop growth and evaluate the demand–supply relationships of agricultural water use on a continental scale. To produce an appropriate water cycle, the model was constructed based on small drainage basins. To validate the model performance with respect to simulated runoff, which is here considered as the available water resource, we compared our outputs with those of other models and with observed river discharges. The results show that this model is comparable to other models and that it is applicable for the evaluation of water cycles at continental scale. We defined two types of crop water deficits (CWDs) as indicators of agricultural water demand. These were formulated by considering the physical processes of crop water use; we did not include water consumption that is dependent on cultivation management practices, such as water losses in irrigation systems. We assessed the reliability of our indicators by comparison with indicators from other studies and with published statistics related to agricultural water use. These comparisons suggest that our indicators are consistent with independent data and can provide a reasonable representation of water requirements for crop growth.  相似文献   

19.
River water and groundwater are used to irrigate paddy fields and are also principal sources of drinking water for humans. It is important to understand the transport characteristics of water (e.g., direction and intensity of water flow), when grasping a pollution situation in the soil. Endo and Hara (Soc Inst Contr Eng Trans Ind App 2:88–95, 2003) developed the Quintuple-Probe Heat-Pulse (QPHP) sensor to identify water flux density vectors and thermal properties under saturated and steady state conditions. However, there has not yet been any investigation of moisture transfer under transient conditions such as during internal drainage and mid-summer drainage of paddy fields. Only Sand has been used in previous experiments, and examinations with Loamy and Clayey soils have not yet led to done. Simultaneous measurements of the water flux density vectors and thermal properties of soil texture of three types under drainage conditions as well as the soil moisture transfer analysis with Finite Element Method (FEM), were done. The representative drainage flow was indicated as downward, except in the Sandy-Clayey Loam, in which the rightward flux exceeded the downward flux owing to anisotropy of the soil-pore structure and hydraulic conductivity. The apparent horizontal/vertical advanced distance was introduced in order to know about how water moved through the soil column. The estimated volumetric water content was in good agreement with the measured value. Thus, this measurement method was shown to be valid under transient water flow conditions.  相似文献   

20.
The main problem facing farmers in the Nile Delta is water shortages at the ends of irrigation networks and canals. These problems have worsened as water demands have increased. Egypt’s Ministry of Water Resources and Irrigation is currently trying to avoid water deficits by returning agricultural drainage water to the irrigation canals. In the Kafr El-Sheikh Governorate, some canals have an oversupply in some months and deficits in others. Ministry officials started a project by constructing culverts connected canal ends with the main drain (Bhr Nashrat) to provide supplemental agricultural drainage backflows (SADB) channeled through these culverts. However, this return is not controlled, and flows are based only on differences in the hydraulic head. In this study, we evaluated the effectiveness of SADB to counteract water shortages when the water supply from head regulators (WSHR) is insufficient. Our analysis considered the adequacy of the water supply and indicators of dependability and equity of supply. We tested two water supply conditions: (1) WSHR only and (2) WSHR plus SADB. During the summer (May–September) of 2008, SADB significantly improved the system’s ability to meet the irrigation water requirements (IWR) in some months. Adequacy and dependability, therefore, improved from “fair” to “good.” During the following winter (October–April), SADB improved adequacy and equity only in March and April, since water availability was generally sufficient under WSHR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号