首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

The Plaichumpol Irrigation Project, in Nan Basin of Thailand, is selected as a case study of impact study, where farmers depended on both surface and groundwater sources (especially in the dry year), to assess the impact on irrigation systems. The study used the MRI-GCM data to project the future climate condition and assess the impact on irrigation systems focusing on water shortage and groundwater pumping aspects in the selected consecutive dry years. The responses from farmers on the impact and adaptation were also gathered via site interviews and analyzed. Based on the bias-corrected MRI-GCM data, the annual rainfall in Nan Basin will decrease in the near future (2015–2039), compared with the past average data (1979–2006), while the rainfall will increase in the far future (2075–2099) compared with past. Water supply from dam will decrease in wet season and dry season, while water demand in both of near future and far future will increase in wet season and dry season. Less water shortage and groundwater pumping in both near-future and far-future periods are expected in the future consecutive dry years compared with the past, though the groundwater is still an important supplementary irrigation water source in the dry year. From the field interview, the farmers are ready to adapt to the changing situations and join in the water use meeting to follow up with irrigation officers about the adjustment of plant calendar and water allocation due to the climate change and to prepare adaptation measures as necessary.

  相似文献   

2.
The water balance and groundwater dynamics due to surface–groundwater interactions for watershed health assessment were investigated for the Han River basin (34,148 km2) of South Korea using the Soil and Water Assessment Tool (SWAT). The model was established considering 4 multipurpose dams and 3 multifunction weirs. The SWAT was spatially calibrated and validated using daily observed inflows for the dam (2005–2014) and weir (2012–2014) as well as evapotranspiration, soil moisture, and groundwater level data (2009–2013). The simulation results revealed the impact of surface–groundwater exchange fluxes on the water balance and baseflow by evaluating the vertical water budget and horizontal water transfer. Evapotranspiration in the surface and return flows from the shallow aquifer for the dry season was estimated to be 29 and 10% higher than for the wet season, respectively. Percolation’s role was also significant, providing approximately 24% of the annual groundwater recharge to shallow aquifers in the rainy season. On average, the February to August period (A) was characterized by a net flux of infiltration into the groundwater. For the September to January period (B), the proportion of groundwater flow into the river of the basin was nearly balanced by a slight increase in surface water infiltration. During period A of average surface water infiltration into the groundwater, the net groundwater recharge was positive and up to 20% of the infiltration during this period resulted from groundwater recharge. These results showed that groundwater recharge is strongly affected by the surface water and groundwater interactions.  相似文献   

3.
Rice is the main crop produced in the Senegal River Valley under the semiarid Sahelian climate where water resource management is critical for the resource use sustainability. However, very limited data exit on rice water use and irrigation water requirement in this water scarcity environment under climate change conditions. Understanding crop water requirements is essential for better irrigation practices, scheduling and efficient use of water. The objectives of this study were to estimate crop water use and irrigation water requirement of rice in the Senegal River Valley at Fanaye. Field experiments were conducted during the 2013 hot and dry season and wet season, and 2014 hot and dry season and wet seasons. Three nitrogen fertilizer treatments were applied to rice variety Sahel 108: 60, 120, and 180 kg N ha?1. Rice water use was estimated by the two-step approach. Results indicated that crop actual evapotranspiration (ETa) varied from 632 to 929 mm with the highest ETa obtained during the hot and dry seasons. Irrigation water requirement varied from 863 to 1198 mm per season. Rice grain yield was function of the growing season and varied from 4.1 to 10.7 tons ha?1 and increased with nitrogen fertilizer rate. Rice water use efficiency relative to ETa and irrigation requirements increased with nitrogen fertilizer rate while rice nitrogen use efficiency decreased with the nitrogen fertilizer rates. The results of this study can be used as a guideline for rice water use and irrigation water requirement for the irrigation design projects, consultants, universities, producers, and other operators within rice value chain in the Senegal River Valley.  相似文献   

4.
For sustainable development of irrigated agriculture in arid regions, improvement of water use efficiency is essentially required to maintain current production levels and meet food and fiber for population growth in future. To achieve high water use efficiency, a key consideration is to reduce unnecessary soil water loss due to evaporation. In this article, regional daily evaporation over Hetao Irrigation District in a typical arid region during the irrigation period of 2009 was determined by a developed maximum surface temperature model combining Moderate Resolution Imaging Spectroradiometer (MODIS) satellite imagery. The results showed that maximum land surface temperature (LST) from MODIS satellite imagery was relatively higher in the western and middle parts than that of the eastern part of the district. At the same time, the mean minimum LST was shown somewhat higher in the eastern part. Mean daily evaporation was relatively higher in the eastern part, which showed water consuming is higher in the eastern part of the district. During the irrigation period of 2009, the total income water (irrigation water and rainfall) amount is 590.3 mm, and the outcome water (drainage discharge and evaporation) amount is 497.5 mm. The surplus of 92.8 mm in the irrigated season is considered to be consumed in winter season. Throughout the irrigated season, income and outcome almost equals each other. The daily evaporation distribution map could specify particular water consuming areas over the district where high daily evaporation may be occurred.  相似文献   

5.
The Plaichumpol Irrigation Project, in Nan Basin of Thailand, is selected as a case study of impact study, where farmers depended on both surface and groundwater sources (especially in the dry year), to assess the impact on irrigation systems. The study used the MRI-GCM data to project the future climate condition and assess the impact on irrigation systems focusing on water shortage and groundwater pumping aspects in the selected consecutive dry years. The responses from farmers on the impact and adaptation were also gathered via site interviews and analyzed. Based on the bias-corrected MRI-GCM data, the annual rainfall in Nan Basin will decrease in the near future (2015–2039), compared with the past average data (1979–2006), while the rainfall will increase in the far future (2075–2099) compared with past. Water supply from dam will decrease in wet season and dry season, while water demand in both of near future and far future will increase in wet season and dry season. Less water shortage and groundwater pumping in both near-future and far-future periods are expected in the future consecutive dry years compared with the past, though the groundwater is still an important supplementary irrigation water source in the dry year. From the field interview, the farmers are ready to adapt to the changing situations and join in the water use meeting to follow up with irrigation officers about the adjustment of plant calendar and water allocation due to the climate change and to prepare adaptation measures as necessary.  相似文献   

6.
马铃薯膜下滴灌节水及生产效率的初步研究   总被引:13,自引:0,他引:13  
为了探索膜下滴灌在马铃薯生产中应用的可行性,于内蒙古达茂旗进行了膜下滴灌试验。结果表明:膜下滴灌比露地滴灌平均增产26%,水分利用效率提高28.5%,灌水的平均生产效率提高26%,因此,膜下滴灌应该成为内蒙古西部地区马铃薯生产中有效的增产节水措施。一带双行滴灌模式下马铃薯平均产量显著高于一带一行处理,这种滴灌模式不仅节约管道设备,而且进一步提高了水分利用效率和灌水生产效率,值得在生产中广泛推广。尽管露地滴灌条件下马铃薯产量与滴灌带的密度有关,一带一行灌溉方式下产量高于一带双行,但总体而言,露地滴灌在水分利用效率上显著低于膜下滴灌,因此在水分不足的内蒙古西部马铃薯产区,不建议广泛推广露地滴灌。  相似文献   

7.
Recent water shortages in reservoirs have caused such problems as insufficient water and fallow rice fields in Southern Taiwan; therefore, comparing irrigation water requirements and crop production of paddy fields using a technique that differs from the conventional flood irrigation method is important. Field experiments for the second paddy field with four irrigation schedules and two repeated treatments were conducted at the HsuehChia Experiment Station, ChiaNan Irrigation Association, Taiwan. Experimental results demonstrate that irrigation water requirements for the comparison method, and 7-, 10- and 15-day irrigation schedules were 1248, 993, 848, and 718 mm, respectively. Compared to the conventional method of flooding fields at a 7-day interval, the 10- and 15-day irrigation schedules reduced water requirements by 14.6 and 27.3 %, respectively; however, crop yields decreased by 7 and 15 %, respectively. Based on the results, it was recommended that the ChaiNan Irrigation Association could adopt 10 days irrigation schedule and plant drought-enduring paddy to save irrigation water requirements for the water resource scarcity in southern Taiwan. The CROPWAT model was utilized to simulate the on-farm water balance with a 10-day irrigation schedule for the second paddy field. A comparison of net irrigation water requirements with the 10-day irrigation schedule from model and field experiment were 818 and 848 mm, respectively, and the error was 3.54 %.  相似文献   

8.
This study of a water cycle was conducted in an evergreen forest located in the Mekong River Basin in central Cambodia. At the observation site, we measured the dynamics of the spatial distribution of groundwater levels. The groundwater movement was analyzed two-dimensionally using boundary conditions and parameters that had been observed in the field. The climate in the research area is dominated by two seasons, which occur annually: a rainy and a dry season. The groundwater levels are generally high during the rainy season and low during the dry season. Groundwater levels were measured along a stream, which flowed through the study site. The streambed was visible at the head of the stream in January. At the next downriver well point, the streambed appeared in March. Finally, it became visible at all well points in April, meaning that surface runoff had disappeared temporarily and instead flowed underground during the ensuing dry period. Groundwater levels of the studied lateral flow perpendicular to the stream that seeped and infiltrated into the stream were 1.2–2.5 m deep (in April), which was the lowest level recorded for the year. During that period, the depth of the groundwater of the studied lateral flow fell by as much as 56 mm per month. In addition, the lateral flow groundwater infiltrated into groundwater of the stream during that period. The groundwater level fluctuation was estimated based on a two-dimensional analysis of lateral flow perpendicular to the stream using a numerical simulation model with soil physical parameters and observed boundary conditions. The observations of ground water fluctuations were well reproduced. Deep seepage of groundwater was estimated using a uniform boundary condition that allowed efflux through the bottom, estimated as being approximately 30 mm per year. The simulated deep seepage rate was considered plausible considering other hydrological components such as soil water storage fluctuation.  相似文献   

9.
内蒙古河套灌区春小麦高产节水灌溉制度研究   总被引:1,自引:0,他引:1  
为给河套灌区春小麦高产节水灌溉制度的建立提供理论依据,2006-2007年在内蒙古河套平原浅层地下水灌区,研究了不同灌水处理下春小麦产量形成、耗水组成及水分利用效率的特点.结果表明,随着灌水量的增加,小麦生育期总耗水量明显增加,而水分利用效率显著降低;总耗水的增加主要是由于灌溉水消耗增多所致,地下水补给量则随灌水量增加呈明显减少趋势.小麦生育期总灌水量与产量和水分利用效率均呈抛物线关系,产量达峰值时的灌水量大于水分利用效率达峰值时的灌水量.综合两年试验结果得出,在秋季浇足底墒水的基础上,春浇2水是实现春小麦节水与高产相统一的最佳灌溉模式,即在小麦分蘖至拔节期、抽穗至开花期灌2次水,每次灌水750~1050 m3·hm 2,产量和水分利用效率可分别达到6750 kg·hm-2和1.75 kg·m-3以上.  相似文献   

10.
This study quantifies the effects of paddy irrigation water on groundwater recharge. A numerical model of groundwater flow was conducted using MODFLOW in a 600 ha study site in an alluvial plain along the Chikugo River, located in southwestern Japan. To specify the surface boundary condition, data on the land use condition stored in the GIS database were transferred into a numerical model of groundwater flow. The simulated results were consistent with the observed yearly changes of groundwater level. Thus, it was appropriate to use the model to simulate the effects of paddy irrigation on groundwater. To quantify these effects, the groundwater level was simulated during the irrigation period when all farmlands in the study site were ponded. In this situation, the groundwater level was 0.5 to 1.0 m higher, the ground water storage 20% larger, and the return flow of the groundwater to the river 50% larger than in the present land use condition.  相似文献   

11.
《Journal of Crop Improvement》2013,27(1-2):353-386
SUMMARY

Salinity in soil and water is irrevocably associated with irrigated agriculture throughout the world and as a result requires that salt management becomes an integral part of the production system. With careful water management, it is possible to sustain irrigated agriculture in areas with saline soil and saline groundwater with and without subsurface drainage. The results from two field projects conducted in an area with saline soils and saline groundwater demonstrated the type of irrigation systems and management needed to sustain production of moderately salt tolerant and tolerant crops. During the first study at Murrieta farms, yields of cotton and sugar beet were maintained using both saline and non-saline water for irrigation when pre-plant irrigation and rainfall were adequate to maintain soil salinity at a tolerable level. Wheat production was reduced in areas that used saline water for irrigation. Use of saline water containing toxic elements such as boron for irrigation poses a threat to the sustainability of the system. The second study evaluated the management of furrow and subsurface drip irrigation in the presence of shallow saline groundwater. Careful management of the furrow system during pre-plant irrigation and the first irrigation of the growing season was required to prevent waterlogging. It was possible to manage the subsurface drip system to induce significant crop water use from shallow groundwater. Rainfall and pre-plant irrigation were adequate at this site to manage soil salinity.  相似文献   

12.
This study hypothesised that different elephant grass genotypes respond differently in terms of their morphological development to irrigation. The objective of this study was to evaluate how water availability could affect the morphological development of different genotypes of elephant grass. The treatments consisted of four genotypes of elephant grass [Cenchrus purpureus (Schumach.) Morrone], managed under irrigation or not, during a two-year field trial. The experiment was arranged in a randomised block design in a split-plot, with four replicates per treatment (n = 4). Between the genotypes, two of them were classified as tall-sized (IRI 381 and Elephant B), and two as dwarfs (Taiwan A-146 2.37 and Mott). A three-way interaction between season, irrigation, and genotype affected the variables plant height, stem diameter, number of dead tillers, light interception (LI), and leaf area index (LAI) (p < .05). The morphological development of all genotypes was negatively impacted by the dry season. All genotypes grew taller during the rainy season (p < .05) and had a greater light interception (62%–80%) compared to the dry period (28%–59%). The genotype Mott, showed comparable LI and LAI to the tall-sized genotypes, whilst Taiwan A-146 2.37 was characterized by the lowest values, despite being the genotype with the greatest tiller density (60 tillers m−2) (p < .05). The use of irrigation mitigated the negative effects of the dry season on the plants, however, the type and size (tall vs. dwarf) of the elephant grass genotypes defined the extent of the responses to the use of the irrigation during the dry period.  相似文献   

13.
This study aims to investigate recent practices on water allocation and cultivation in the Upper East Bank of the Chao Phraya Delta in Thailand, by using data collected by RID local offices, questionnaires, and analyses of satellite images. As a result, we have identified the advantage that upstream areas of irrigation canals have enjoyed, namely the preferential water allocation over the downstream areas. This advantage was strongly associated with the intensive cropping patterns of rice: the upstream areas were estimated to conduct almost continuous rice cultivation throughout a year. In addition, the intensive rice cultivation would partly be supported by water from private shallow wells, which were mostly concentrated in the upstream areas of main canals. Those shallow wells would be used at the beginning of the dry season and in drought years, when farmers could not expect water supply from irrigation canals. The result indicated that the conjunctive use of surface and ground water would be practiced in this region.  相似文献   

14.
This paper examines the trends in water allocation among sectors, water use by source, cropped area, crop production and water productivity. The study was undertaken at two sites in China: the Zhanghe Irrigation District in the Yangtze River Basin approximately 200 km west of Wuhan and Kaifeng City Prefecture located just south of the Yellow River in Henan Province. In both areas, water demand for purposes other than irrigation has grown. In the Zhanghe Irrigation District this resulted in a sharp reduction of water availability for irrigation. The decline of water availability for irrigation resulted in adoption of water saving practices and policies that led to a significant gain in water productivity per unit of irrigation water. In the Kaifeng City Prefecture the increased demand from other uses was met by an increase in groundwater extraction without the dramatic cuts in supplies for agriculture as in the Zhanghe Irrigation District. Gains in water productivity were due almost exclusively to higher crop yields. There will be continuing pressure to further reduce diversions to agriculture from the Zhanghe main reservoir in the Zhanghe Irrigation District and from the Yellow River in Kaifeng. Research continues on testing practices that have the potential for further increasing water productivity, some of the results of which are reported in other papers in this volume.  相似文献   

15.
移栽水稻高产高效节水灌溉技术的生理生化机理研究进展   总被引:1,自引:0,他引:1  
水资源匮乏威胁水稻生产的可持续发展和粮食安全。为了应对水资源紧缺和增加粮食产量,农业科学家开发了各种节水灌溉技术和生产体系。本文综述了当前移栽水稻生产上主要应用的节水灌溉技术并从水稻生长、激素、蔗糖-淀粉代谢途径关键酶活性等方面阐述了其生理生化机制,提出水稻高产高效节水灌溉技术存在的问题与研究展望。  相似文献   

16.
水分是影响果实生长发育的重要因素,水分通过影响植株生长直接或间接来调控果实品质的形成。季节性干旱严重制约菠萝植株生长发育,但旱季灌水对菠萝产量和品质的影响尚不明确。为了探明季节性干旱期菠萝产量和品质对水分输入的响应特征,以金菠萝‘MD-2’为研究对象,在监测旱季实际降雨量的基础上,设计4个增加灌水量梯度水平(W1 20 mm、W2 50 mm、W3 100 mm、W4 150 mm)的试验,并以不灌水为对照(CK 0 mm),分析测定菠萝产量、品质指标以及糖酸组分含量。结果表明,旱季增加灌水可显著增加金菠萝果实产量、平均单果重及商品果率,其中产量最高和最低的梯度水平分别是W4和CK(W4比CK增加了45.56%);随旱季灌水量的增加,金菠萝果实的维生素C、可溶性固形物和可滴定酸度均逐渐减小,可溶性总糖和糖酸比呈现先增大后减少的趋势,其整体表现为W2>W1>CK> W3>W4,其中W2的可溶性总糖和糖酸比最高为12.94%和26.95,显著大于CK,其增幅分别为87.26%、64.6%;金菠萝果实的蔗糖含量随旱季灌水量的增加呈现一元二次曲线函数增加(P<0.05),其比例由CK的38.8%提高到W4的65.1%,整体表现为W4>W3>W1>W2>CK;而果糖和葡萄糖含量均随旱季灌水量的增加呈线性函数降低(P<0.01),二者比例的整体表现均为:CK>W2>W1>W3>W4。可见,旱季灌水促进金菠萝果实果糖和葡萄糖转化为蔗糖,且改变了其糖种类比例,进而改变了菠萝果实风味品质。随着旱季灌水量的增加,柠檬酸和奎宁酸含量均呈先增大后减小的一元二次函数关系(P<0.05),苹果酸含量呈极显著的线性函数增加(P<0.001),且旱季不同灌水量处理间,柠檬酸比例相对稳定均达到50%,而苹果酸比例仅在W4处理时显著增大,奎宁酸比例在W4处理时显著减小。综合考虑产量及果实风味品质,旱季进行灌水是非常必要的,且根据实际自然降雨量的多少,适当调整灌溉,使其总供水量保持在300 mm左右可实现雷州半岛地区菠萝果实优质高产。  相似文献   

17.
不同时期旱地冬小麦品种更替过程中灌浆特性研究   总被引:1,自引:0,他引:1  
为了解旱地小麦品种更替过程中灌浆特性的变化,以8个不同年代的旱地冬小麦品种和1个水地冬小麦品种为材料,在干旱和灌水两种水分处理下,比较了不同小麦品种间籽粒灌浆特性及产量差异。结果表明,小麦籽粒产量和千粒重随品种更替逐渐增加,灌浆速率和灌浆天数也呈增长趋势。干旱处理后,冬小麦的灌浆天数相对缩短,且现代品种的降低幅度较早期品种小;早期品种平均灌浆速率略有下降,现代旱地品种长武134和长旱58则得到提高。在灌水处理下水地品种西农9871的千粒重明显高于干旱处理,旱地品种在两种处理间差异不显著。这说明灌浆速率的提高和灌浆天数的延长是现代旱地品种具有较高粒重和产量的主要原因。  相似文献   

18.
Impact of climate change on paddy field irrigation in southern Taiwan   总被引:1,自引:1,他引:0  
Climate change can have a serious impact on water resources. The main agricultural product in southern Taiwan is rice, the planting of which consumes far more water than other crops. This makes agriculture in Taiwan especially vulnerable to climate change. In this study, we used the generalized watershed loading functions (GWLF) hydrological model to simulate the discharge of the Kaoping River under climate change scenarios A2 and B2 as released by the Intergovernmental Panel on Climate Change. We discussed the potential impact of climate change on water resources based on the results of GWLF simulations carried out using rainfall and temperature data from five general circulation models (GCMs). The simulation results indicate that river discharge in the wet season increases significantly, and decreases in the dry season. The discharge variations from using the various GCMs as inputs fall within the range of ?26 to +15 % for the dry season and ?10 to +82 % for the wet season. The variation in available water will seriously impact the first period rice farming (the period between the beginning of January and the end of May) in southern Taiwan. Consequently, effective reduction in conveyance loss in the irrigation canal systems and proper fallowing of paddy fields will be the main challenges to Taiwan’s agricultural sector for alleviating the impact of climate change. For further decision making, we show the effects of adapting to climate change by various degrees of the following two methods: fallowing paddy fields to various degrees and reducing conveyance loss in irrigation canal systems.  相似文献   

19.
The unevenness of rice productivity in lowland areas is caused by differences in farming techniques, accessibility of water, planting environment, and other field-specific factors. In order to increase rice production in low-productivity fields, this study examined the factors affecting yield reduction. In this study, the influence of water conditions, farming activities, and soil fertility on rice yield were analyzed in a lowland area located in the northern part of Lao PDR. A field survey was conducted in a village in Vientiane Province during the rainy season of 2013. Water conditions were observed (i) prior to land preparation, (ii) between land preparation and transplanting, and (iii) after transplanting. Farming activities were recorded in each lowland rice field weekly from June to August. Yield surveys were also conducted in 47 field blocks, and soil samples were collected for soil fertility analyses. The ponding of fields commenced in the middle of June, and extended from the upper part to the lower part of the lowland area. Transplanting was conducted following the distribution of surface water, and no serious water shortages were observed after transplanting in the surveyed areas. There was no correlation between grain yield and the content of total nitrogen or available phosphorus in the field soil. Significant differences in grain yield were detected between direct and plot-to-plot irrigation, early and late ponding, and transplanting in July and in August. The results suggest that water shortages and the delay of field ponding before land preparation led to late transplanting which caused yield reduction.  相似文献   

20.
Field survey and satellite image processing methods were used to estimate the total available forage over an area of 95 034 ha in north‐eastern Syria, and to assess grazing impact on the area. The above‐ground plant biomass was measured by a quadrat method at three sites in each of eight vegetation classes. Available forage was measured by excluding woody parts of shrubs from the whole aerial plant parts. The total above‐ground plant biomass and available forage were estimated by extrapolating the measured point data to the whole target area using classified vegetation data by satellite image processing. Grazing impact was assessed by calculating the differences between the total available forage at the end of growing season and the end of dry season. The values for the estimated total available forage (s.e. of mean) in the area were 55 628 000 (12 920 000) kg DM and 30 007 000 (2 437 000) kg DM at the end of growing season and dry season respectively. Although the area of the cereal fields covered only 0·315 of the area, about 0·69 and 0·82 of the available forage existed in the harvested cereal fields at the ends of growing season and dry season respectively. The integration of cereal fields and rangeland is a normal land use system for livestock management in the area. The higher cover of herbaceous vegetation types showed higher grazing impacts which reduced the total available forage at the end of the growing season by 0·817 (0·199) at the end of the dry season. Although these dense herbaceous vegetation types could possibly produce more available forage, they would incur more intensive grazing impact. On the contrary, lighter grazing impact would occur with a higher cover of shrub vegetation types. The importance of maintaining plant cover over the rangeland area to protect the land against soil erosion is stressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号