首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
番茄绿果与橙果间果实颜色及主要色素含量的遗传研究   总被引:1,自引:0,他引:1  
对番茄组合绿樱(绿果)×金珠1号(橙果)的6个世代遗传群体(P1、P2、F1、BC1、BC2和F2)进行果色性状、番茄红素含量、叶绿素含量和胡萝卜素含量等的遗传规律分析。结果表明:正反交F1的果色性状无明显差异,而色素含量存在显著差异;说明番茄果色性状受核基因控制,而色素含量遗传除受核基因控制外还可能存在胞质效应。采用多世代联合分析法的分析结果表明,番茄绿果与橙果间的果色性状符合2对加性主基因+加性-显性多基因(MX2-A-AD)遗传模型,其BC1、BC2和F2主基因遗传率分别为73.42%、78.25%和61.41%,多基因遗传率分别为22.87%、15.35%和34.94%,即果色性状遗传的主基因遗传力较强;叶绿素含量符合1对负向显性主基因+加性-显性多基因(MX1-AEND-AD)遗传模型,其BC1、BC2和F2主基因遗传率分别为0、1.73%和0.65%,多基因遗传率分别为45.47%、0和37.82%,即主基因遗传力在BC2群体中最高,多基因遗传力在BC1群体中最高;番茄红素含量与胡萝卜素含量均符合2对加性-显性-上位性主基因+加性-显性多基因(MX2-ADI-AD)遗传模型,其BC1、BC2和F2主基因遗传率分别为75.74%、1.79%、84.26%和61.53%、87.21%、81.05%,多基因遗传率分别为20.32%、74.12%、12.68%和0.68%、0、0,表明番茄红素含量和胡萝卜素含量的主基因遗传力较强。  相似文献   

2.
以父本200932(果肉橙红色)与母本200930(果肉绿色)为亲本,建立了6个联合世代(P1、P2、F1、F2、BC1P1及BC2P2)群体,采用植物数量性状主基因+多基因混合遗传模型,进行多世代联合分析,探讨甜瓜果肉β-胡萝卜素含量性状的遗传特点。结果表明:组合200930×200932的β-胡萝卜素含量性状遗传受两对加性-显性-上位性主基因+加性-显性多基因模型(E-1)控制,F2群体主基因遗传率为92.66%,多基因遗传率为5.40%,BC1P1群体主基因遗传率为86.80%,多基因遗传率为0,BC2P2群体主基因遗传率为59.88%,多基因遗传率为38.60%。  相似文献   

3.
甜瓜糖酸性状的遗传研究   总被引:7,自引:1,他引:6  
 以新疆厚皮甜瓜‘76-2’的60Co- γ射线诱变酸味突变自交系和‘黄皮脆’形成的P1、P2、F1与F2 为试验材料,通过4个世代联合分析法研究果实中糖含量、酸含量和糖酸比的遗传特点。结果表明, 酸味突变自交系ב黄皮脆’组合的糖含量性状遗传受两对等加性主基因和加性显性多基因模型 (E-4) 控制,主基因遗传率为88.8%,多基因遗传率为6.94%;酸含量性状遗传受一对加性—显性主基因和加性—显性上位性多基因 (D-0)模型控制,主基因遗传率为26.68%,多基因遗传率为72.77%;糖酸比性状遗传受两对加性—显性—上位性和加性—显性多基因混合遗传模型(E-1)控制,主基因遗传率为82.86%,多基因遗传率为16.02%。  相似文献   

4.
黄瓜黑斑病抗性遗传分析   总被引:1,自引:1,他引:0  
以感黑斑病自交系L63和抗黑斑病自交系L9为亲本建立了6个世代联合群体(P1、P2、F1、BC1S、BC1R、F2),采用植物数量性状主基因+多基因混合遗传模型对群体的黑斑病抗性进行多世代联合分析。结果表明,黄瓜抗黑斑病性状符合D-2遗传模型,受1对加性主基因+加性-显性多基因控制;BC1S、BC1R、F2的主基因遗传率分别为60.23%、60.23%、75.18%,多基因遗传率均为0。说明控制黄瓜黑斑病的抗性为主基因遗传,并且遗传稳定,环境方差占表型方差的比例大于24.82%、小于39.77%,也受到外界环境的影响。  相似文献   

5.
全雌黄瓜单性结实性遗传分析   总被引:6,自引:1,他引:5  
闫立英  娄丽娜  娄群峰  陈劲枫 《园艺学报》2008,35(10):1441-1446
 采用植物数量性状主基因+多基因混合遗传模型对黄瓜强单性结实雌性系‘6401’ 与非单性结实自交系‘6429’、‘6426’杂交组合多世代群体的单性结实性进行联合分析,结果表明:全雌黄瓜单性结实性在不同遗传背景下遗传表现基本一致,单性结实性遗传均表现为不完全隐性基因遗传,符合E-1-1模型,受2对加性-显性-上位性主基因+加性-显性多基因控制。两组合第1主基因显性效应、主基因显性×显性互作效应以及多基因效应较大。‘6401×6429’组合的B1、B2、F2群体(主基因+多基因)遗传率分别为51.36%、72.31%和76.78%;‘6401×6426’组合的B1、B2、F2群体(主基因+多基因)遗传率分别为20.50%、75.39%和74.58%。强单性结实全雌黄瓜品种选育以双亲均为强单性结实为宜。  相似文献   

6.
茄子种子发芽速度性状的遗传分析   总被引:1,自引:0,他引:1  
利用航天茄子‘变色龙’后代自交系05-3-6-14-3为母本、‘湖南小圆茄’为父本得到的F2群体,分析了茄子种子发芽速度的遗传规律。研究结果表明:茄子种子发芽速度为数量性状,符合主基因+多基因混合遗传模型,表现为1对主基因的加性-显性遗传,发芽慢为部分显性,主基因的遗传率为87.76%。  相似文献   

7.
以菊花(Chrysanthemum morifolium Ramat.)‘南农雪峰’(抗蚜虫)ב蒙白’(感蚜虫)的F1代为材料,通过温室自然感蚜方法调查苗期蚜害指数,分析抗蚜性的遗传变异,并开展QTL定位研究。结果表明:菊花抗蚜性在F1群体中广泛分离,苗期蚜害指数在0.20~0.92之间,变异系数为36.73%,中亲优势和双向超亲分离现象普遍存在,基本符合双峰偏态分布,为多基因控制的数量性状。主基因+多基因混合遗传模型分析表明,该F1群体菊花抗蚜性的遗传符合由两对主基因控制的B-2模型,主基因表现为加性—显性效应,主基因遗传率为0.91。基于复合区间作图法的QTL分析共检测到4个与菊花抗蚜性显著相关的QTL(ArX3、ArX4、ArX30和ArM9),主要分布在‘南农雪峰’遗传图谱的X3、X4、X30连锁群和‘蒙白’遗传图谱的M9连锁群上,LOD值介于2.40~3.52之间,单个QTL可以解释抗蚜性变异的5.90%~9.38%,均为微效QTL。  相似文献   

8.
《中国瓜菜》2016,(12):6-9
以高番茄红素含量的自交系‘花贝雷’(P_1)和低番茄红素含量的自交系‘13-3-3’(P_2)为亲本材料,构建了包括P_1、P_2、B_1、B_2、F_1及F_2的6个世代群体,采用数量性状主基因+多基因混合遗传的六世代联合分析法,对西瓜果实番茄红素含量的遗传规律进行研究。结果表明,番茄红素含量的遗传符合"一对加性—显性主基因+加性—显性—上位性多基因"模型,其中主基因的加性效应为6.43,显性效应为-4.00,主基因在B_1、B_2和F_2世代的遗传率分别为21.76%、3.99%、27.28%;多基因的遗传率分别为77.65%、94.64%、72.09%。研究结果将为西瓜果实高番茄红素优异基因的挖掘和优质新品种选育提供理论依据。  相似文献   

9.
以强雌性苦瓜品系09C-51、09C-54和普通性型品系09C-57为亲本配制杂交组合,调查单株主茎50节位内的雌花节率。通过对两个组合的P1、P2、F1、F2、BC1P1各世代植株的性型观察,并经χ2 测验,表明苦瓜强雌性性状由1对不完全显性基因控制。利用组合09C-51×09C-57的Pl、P2、Fl、F2群体的性型分离数据,进一步对性型进行数量遗传学分析,表明强雌性性状符合1对显性主基因+加性-显性多基因模型,说明苦瓜强雌性性状由1对主基因控制,且存在微效多基因的影响,其主基因遗传率为63.06%,多基因遗传率为26.96%。  相似文献   

10.
结球甘蓝耐裂球性状遗传分析   总被引:1,自引:0,他引:1  
 以结球甘蓝‘79-156’和‘96-100’为亲本配制的6 个联合世代(P1、P2、F1、B1、B2、F2)群体为试材,采用主基因+ 多基因混合遗传模型对耐裂球性状进行了遗传分析。两年结果均表明,耐裂球性状的最适遗传模型为E-0 模型,即两对加性–显性–上位性主基因+ 加性–显性–上位性多基因控制。两对主基因均以加性效应为主,且存在明显的互作效应。2010 年该组合B1、B2、F2 分离群体的主基因遗传率分别为67.3%、1.4%和59.1%,多基因遗传率分别为0、56.2%和0,遗传变异平均值占表型变异的60.9%,环境变异平均值占表型变异的39.1%;2011 年该组合B1、B2、F2 分离群体的主基因遗传率分别为85.5%、22.3%和84%,多基因遗传率分别为0、24.3%和0,遗传变异平均值占表型变异的63.9%,环境变异平均值占表型变异的36.1%。表明该性状以主基因遗传为主,同时受环境影响较大,应在早期世代进行选择,B1、F2 主基因选择效率较高  相似文献   

11.
以4个不同生态型结球甘蓝为亲本构建的2个DH群体为试材,采用主基因+多基因(P1、P2、DH)混合遗传模型对耐裂球、球色及球形等叶球相关性状进行了遗传分析,为进一步研究相关性状的分子机制奠定遗传基础。结果表明:各性状的正反F1不存在显著差异,不受细胞质遗传。耐裂球性状的遗传符合G-0模型,即耐裂球性状的遗传受3对加性-上位性主基因+加性-上位性多基因控制;球色遗传模式为E-1-3模型,受2对独立的并有等加性主基因+多基因控制;球高性状的遗传符合E-2-0模型,由2对连锁的并有加性-加性×加性上位性主基因+多基因控制;球宽的最优遗传模式为E-1-5模型,由2对独立的并有隐性上位性主基因+多基因控制;球形指数最优遗传模式为E-2-6,即由2对连锁的并有累加作用主基因+多基因控制。主基因遗传率为25.04%~88.03%,耐裂球和球高具有较高的遗传力;球色和球宽的遗传力为中等水平;球形指数的主基因遗传力最低,以多基因调控为主。  相似文献   

12.
摘要:为了探究茄子产量相关性状与基因间互作的遗传模型,为茄子高效育种提供理论依据,以绿圆茄 “茄27”自交系为母本,紫长茄“茄31”自交系为父本,配制成F1杂交组合,分别进行自交、回交,构建了 P1、P2、F1、F2、B1、B2 6个世代遗传群体,利用主基因、多基因混合分析法研究了茄子产量相关性状的遗传 模型。结果表明:茄子单株产量受1对主基因的加性-显性遗传,单株结果数受2对加性主基因+加性-显性多基 因混合遗传,单株最大单果质量受2对加性主基因+加性-显性多基因遗传;单株产量和单株结果数以非加性 遗传为主,其中单株结果数以2对主基因加性效应遗传为主;单株最大果质量中B1和F2世代以主基因加性遗传 为主,其主基因遗传率分别为50.48%和54.33%,B2世代以多基因遗传为主,多基因遗传率为50.88%。综上可 知,茄子产量性状受到加性和显性遗传效应的影响。  相似文献   

13.
摘要:以感黑斑病自交系L63和抗黑斑病自交系L9为亲本建立了6个世代联合群体(P1、P2、F1、BC15、BC1R、F2),采用植物数量性状主基因+多基因混合遗传模型对群体的黑斑病抗性进行多世代联合分析。结果表明,黄瓜抗黑斑病性状符合D-2遗传模型,受1对加性主基因+加性一显性多基因控制;BC15、BC1R、F2的主基因遗传率分别为60.23%、60.23%、75.18%,多基因遗传率均为0。说明控制黄瓜黑斑病的抗性为主基因遗传,并且遗传稳定,环境方差占表型方差的比例大于24.82%、小于39.77%,也受到外界环境的影响。  相似文献   

14.
番茄绿果与红果颜色性状遗传的研究   总被引:3,自引:0,他引:3  
吴浪  刘婧仪  梁燕 《园艺学报》2016,43(4):674-682
以绿果番茄‘绿樱’和红果番茄‘TTD1003A’为亲本材料,构建4个世代P_1、P_2、F_1和F_2遗传群体,采用标准比色卡,对成熟果实的果色、果皮色、果肉色和胎座胶状物质颜色进行观察分析。结果表明:在F_2代分离群体中,果色分离比例为,红︰棕︰黄︰绿=9︰3︰3︰1;果皮色为,黄色︰透明=3︰1;果肉色为,红︰浅黄︰浅绿=12︰3︰1,即果色、果皮色和果肉色的遗传符合孟德尔遗传规律,且分别由两对、一对和两对核基因控制;果实绿色相对果实红色为隐性,果皮透明相对果皮黄色为隐性,果肉浅绿色相对果肉红色为隐性,果皮与果肉颜色独立遗传。同时,运用色差仪测定果实表面颜色的L值、a值和b值,计算色光值后,运用植物数量性状主基因+多基因遗传分析法分析得出:番茄果实绿色对红色的遗传可能符合两对加性—显性—上位性主基因+加性—显性多基因遗传(MX2-ADI-AD),其中两对主基因均以加性效应为主,第一对主基因的加性作用更为明显。在F_2代中,色差仪测定指标的主基因遗传率为76%~89%,而多基因遗传率接近0,即该组合控制果色性状的主基因遗传力很高,多基因遗传力很低,对番茄果色的选择应在分离早期世代进行。  相似文献   

15.
唐慧珣  司龙亭 《园艺学报》2013,40(3):549-553
 采用发芽率作为种子休眠性的参考性状,对黄瓜种子休眠性进行遗传分析。运用植物数量 性状主基因 + 多基因混合遗传模型多世代联合分析的方法对2 个稳定的黄瓜高代自交系M6(P1)与M87 (P2)杂交组合的P1、P2、F1、B1、B2 和F2 共6 个世代群体的种子休眠性进行了分析。结果表明:黄瓜 种子休眠性的遗传符合1 对加性–显性主基因 + 加性–显性–上位性多基因模型(D-0),在B1、B2 和 F2 这3 个家系世代,主基因遗传率分别为35.75%、44.60%、64.29%,多基因遗传率分别为13.89%、13.20% 和3.38%。环境方差占表型方差的比例分别为50.36%、42.20%、32.33%。黄瓜种子休眠的遗传体系中主 基因具有重要作用,环境方差占有较大比例,不适宜早代选择。  相似文献   

16.
黄瓜嫩果果皮叶绿素含量的遗传   总被引:9,自引:0,他引:9  
 选用4个皮色性状不同的黄瓜品种配成正反杂交组合8个,测定结果表明相同亲本正反交组 合叶绿素含量差异不显著,表明黄瓜嫩果果皮叶绿素含量受核基因控制。应用植物数量性状主基因+多基因混合模型,对黄瓜嫩果果皮叶绿素低含量品种‘海阳白皮’与高含量品种‘济宁秋黄瓜’杂交组合的6个家系世代(P1、F1、P2、B1、B2和F2)进行群体叶绿素含量的多世代联合分析,结果显示:该组合叶绿素含量的遗传受2对加性一显性主基因+加性-显性多基因(E-2模型)控制。其B1、B2和F2群体叶绿素含量主基因遗传率(h2mg%)分别为83.94%、62.12%和86.98%,多基因的遗传率(h2pg%)为5.86%-18.15%。主基因中加性效应明显,第一对主基因的加性效应值显著高于第二对主基因的效应值,2对主基因对叶绿素含量的贡献率差异较大。两主基因的显性效应差异不大,分别为2.7762(ha)和2.3392(hb )。多基因效应主要表现为显性效应[h],效应值为-5.5243。  相似文献   

17.
陈凤真 《北方园艺》2011,(5):159-162
选用西葫芦自交系配制q-1×23-4G(组合1)和q-1×A-7(组合2)2个组合,构建P1、F1、P2、B1、B2和F26个家系世代群,应用植物数量性状主基因-多基因混合遗传模型对该6个世代群体果实整齐度进行多世代联合分析。结果表明:2个组合的西葫芦的果实整齐度性状遗传均为1对加性主基因+加性-显性多基因(D-2)遗传模型,以显性效应为主;2个组合F2的基因遗传率较高,环境影响相对较小;因此,西葫芦果实整齐度育种宜早代选择。  相似文献   

18.
黄瓜叶面积的主+多基因混合遗传模型分析   总被引:3,自引:0,他引:3  
以叶面积差异极显著的黄瓜小叶自交系‘SJ57-h’和大叶自交‘系SJ11-1’配制成的P1、P2、F1、F2、B1、B2等6个世代为材料,应用主基因+多基因混合遗传模型,结合春秋两季的试验数据,研究了叶面积的遗传规律。结果表明:春季和秋季叶面积的最适遗传模型均为E-0模型,即叶面积由两对加性—显性—上位性主基因+加性—显性—上位性多基因控制,且均具有大叶亲本优势,即叶面积大小更趋近于大叶亲本。春季,B1、B2和F2分离世代的主基因遗传力分别为75.1%、26.59%和61.19%,多基因遗传力分别为0.36%、55.41%和21.39%,环境方差占表型方差的比例分别为25.03%、73.79%和39.01%;秋季B1、B2和F2分离世代的主基因遗传力分别为80.16%、34.82%和86.59%,多基因遗传力分别为0、49.18%和0,环境方差占表型方差的比例分别为20.43%、65.48%和13.51%,表明黄瓜叶面积主要受两对主基因控制,B2世代受环境影响较大,B1、F2世代主基因选择率较高,B2世代多基因选择率较高,应该在早期世代进行选择。  相似文献   

19.
青花菜花球‘荚叶’性状主基因+多基因遗传分析   总被引:4,自引:2,他引:2  
 以青花菜86101 ×90196组合获得的DH群体和配制的6个联合世代( P1、P2、F1、B1、B2和F2 ) 群体为试材, 采用主基因+多基因混合遗传模型对花球‘荚叶’性状进行了遗传分析。DH群体分析结果表明, 花球荚叶性状的遗传受到2对连锁并具有加性-加性×加性-上位性作用主基因+多基因( E-220模型) 的控制; 经6个世代联合分析结果表明, 花球荚叶性状的遗传受到2对加性-显性-上位性主基因+加性-显性-上位性多基因( E模型) 的控制, DH群体的主基因遗传率为70.80% , B1、B2和F2世代主基因遗传率分别为73.59%、57.70%和87.07%。上述结果表明: 青花菜花球荚叶性状的遗传受到2对主基因+多基因的控制, 主基因遗传率相对较高。  相似文献   

20.
西葫芦熟性性状主基因-多基因遗传分析   总被引:1,自引:1,他引:0  
陈凤真 《中国蔬菜》2011,1(6):42-48
以西葫芦自交系配制q-1×23-4G(组合1)和q-1×A-7(组合2)杂交组合,构建6个联合世代(P1、P2、F1、BC1、BC2和F2)群体,应用植物数量性状主基因-多基因混合遗传模型对西葫芦熟性性状进行遗传分析。结果表明:2个组合的第1雌花节位为D-2模型,始花期性状遗传为加性-显性-上位性两对主基因(B-1)遗传模型;2个组合的第1雌花节位均以主基因的加性效应为主,而始花期以加性效应和加性×显性上位性互作效应为主,组合1以第2对主基因加性效应为主;由于环境因素对西葫芦F2第1雌花节位和始花期有较大的影响,因此对第1雌花节位的选育定向选择会有较好的效果,在育种中对始花期性状的选择宜在高世代进行。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号