首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
韦莉  彭方仁  王世博  谭鹏鹏 《园艺学报》2010,37(8):1303-1310
以蝴蝶兰‘V31’为材料,观察了花芽分化过程,比较了成花诱导和花芽分化过程中叶片内C/N、核酸及相关代谢物质含量的变化。结果表明:蝴蝶兰花芽分化过程可分为6个阶段,即分化初始期、花序原基分化期、小花原基分化期、萼片原基分化期、花瓣原基分化期和合蕊柱及花粉块分化期。叶片中可溶性糖、淀粉和可溶性蛋白质含量均在低温处理35 d达最大值;C/N值的2次高峰先后出现于处理15 d和30 d,进入花器官分化期,可溶性糖、淀粉和可溶性蛋白质含量及C/N值均呈下降趋势。RNA和总核酸含量的变化趋势一致,处理15 d后持续增加,45 d后随着合蕊柱和花粉块的大量分化而迅速下降;RNA/DNA值在处理前30 d基本稳定,花芽萌出后急剧增长,而DNA含量的变化相对平缓。认为高水平的C/N有利于蝴蝶兰花芽的分化,RNA/DNA值(主要是RNA合成量)的急剧增长与植株由生理分化转向花芽形态分化有关。  相似文献   

2.
【目的】探讨阳光玫瑰葡萄生长期花芽分化进程及相关生理分子水平变化,为葡萄生产调控及花芽分化深入研究提供理论参考。【方法】以4年生阳光玫瑰葡萄为试材,通过徒手剥离冬芽鳞片在体式解剖镜下观察冬芽形态结构变化,测定花芽分化过程中第5节位叶片内碳水化合物、矿质元素含量及冬芽内9个成花关键基因的表达。【结果】南宁地区阳光玫瑰葡萄在新梢6片展叶期时开始花芽形态分化,在末花期进入花序原基分化期。叶片可溶性总糖、淀粉含量在花序原基分化期后显著升高。叶片P、K、Ca和Mg元素含量在花芽形态分化起始时下降,在花序原基分化后60 d时含量显著降低。冬芽中VvFT和VvSOC1基因在花芽分化起始时表达水平较高;VvLFY、VvAP1、VvFUL、VvAP2、VvAP3和VvAG基因均在花序原基分化期及花序原基分化期后80~100 d出现表达波峰,VvFLC基因在花序原基分化后60~100 d的表达水平较高。【结论】南宁地区阳光玫瑰葡萄花芽分化进程开始较早。生产上在果实膨大期和软化期前后应适当补充磷、钾、钙、镁肥,以促进果实发育、花序原基及其各级穗轴分化。VvFT和VvSOC1基因参与诱导始原基及花序原基分化,...  相似文献   

3.
以墨兰‘企剑白墨’花芽分化期的花芽和功能叶为试材,通过研究花芽分化的形态建成,分析花芽分化期其功能叶淀粉、可溶性糖、可溶性蛋白质含量和过氧化氢酶(CAT)、过氧化物酶(POD)活性及内源激素的动态变化过程,以期为墨兰成花调控机理提供参考依据。结果表明:‘企剑白墨’花芽分化可分为6个时期,未分化期、花序原基分化期、小花原基分化期、花萼原基分化期、花瓣原基分化期以及合蕊柱及花粉块原基分化期。在花芽分化过程中,功能叶中淀粉、可溶性糖和可溶性蛋白质含量均呈上升-下降-上升趋势;CAT和POD活性处于较高水平;赤霉素(GA3)含量整体呈下降趋势,而生长素(IAA)含量持续增加并保持稳定水平,脱落酸(ABA)总体呈上升趋势。综上所述,碳水化合物和可溶性蛋白质的积累有利于诱导花芽形成,花芽的形态建成需要消耗大量糖分和可溶性蛋白质;高活力CAT和POD可保障花芽分化顺利进行;低水平GA3和高水平IAA及ABA利于诱导花芽的发育,高含量GA3、IAA和ABA对花被片原基的分化起重要作用。  相似文献   

4.
【目的】探讨锥栗花芽分化的营养生理基础,为人工调控锥栗花芽分化提供理论依据。【方法】以‘华栗4号’锥栗为试材,采用石蜡切片法,明确花芽雏梢分化进程,对比分析此期间完全混合花芽、不完全混合花芽及叶芽中内含营养成分动态变化规律。【结果】锥栗花芽雏梢分化分为冬前花序原基分化期(时期Ⅰ)、冬后花序原基分化期(时期Ⅱ)、花簇苞片原基分化期(时期Ⅲ)和花簇原基分化期(时期Ⅳ)4个时期;在花芽雏梢分化过程中,花芽与叶芽中可溶性糖含量(ω,下同)峰值出现在时期Ⅱ,分别为11.561、10.14、9.085 mg·g~(-1),可溶性蛋白含量在时期Ⅳ达到最高,分别为3.314、2.776、1.712 mg·g~(-1);花芽与叶芽中淀粉含量峰值出现在时期I,分别为148.286、170.482、189.661 mg·g~(-1);完全混合花芽中N、Mg、Fe含量在花芽雏梢分化期均先减后增再减,而K、Mn、Zn含量先增后减再增,Ca含量在时期IV最高,为144.05 mg·g~(-1);不完全混合花芽与叶芽中Zn、N、K、Ca含量均是先加后减。花芽与叶芽中的C/N均是先升后降再升。【结论】碳水化合物和可溶性蛋白的累积及高水平的C/N有利于锥栗完全混合花芽的分化。  相似文献   

5.
菊花花芽分化期超微弱发光及生理代谢的变化   总被引:9,自引:1,他引:8  
林桂玉  黄在范  张翠华  郑成淑 《园艺学报》2008,35(12):1819-1824
 研究了菊花花芽分化期超微弱发光(UWL),呼吸速率和ATP、可溶性糖、可溶性蛋白含量的变化。结果表明,菊花花芽分化起动期(II)与未分化期(I)相比,UWL强度增加119.3%,呼吸速率提高102.4%,ATP含量增加148.6%,可溶性糖增加95.5%,可溶性蛋白增加18.3%;在总苞鳞片分化期(III)、小花原基分化期(IV)和花冠形成期(V),UWL强度、呼吸速率和ATP含量逐渐下降,可溶性糖在IV和V期下降幅度很大并接近对照水平,可溶性蛋白在II、III和IV期保持较高水平,在V期下降幅度较大,但仍比对照增加14.0%;而长日照处理的对照菊花UWL强度、呼吸速率以及ATP、可溶性糖和可溶性蛋白含量基本保持较稳定水平。显示菊花花芽分化期叶片UWL水平与呼吸速率和能量代谢密切相关。  相似文献   

6.
以新疆主栽早实核桃品种'新新2'为试材,制作花芽石蜡切片,观察花芽形态分化进程。结果表明:早实核桃品种'新新2'雌花芽分化分为5个时期,即雌花芽形态分化初期、雌花原基分化期、苞片原基分化期、花被原基分化期、雌蕊原基分化期;雄花芽分化分为5个时期,即雄花序分化期、雄花原基分化期、萼片原基分化期、雄蕊原基分化期、花药分化期,但雄花芽分化5个阶段明显短于雌花芽分化;雌花芽完成整个分化过程需历经1年左右的时间,各时期分化时间长短不同,雌蕊原基分化期最短,只需3周左右,花被原基分化期最长,需历经33周左右跨年才能完成;雄花芽分化各阶段时间较短,一般1~4周即可完成,但花药分化需至次年3月下旬完成;雌、雄花芽相邻各分化阶段都有交叉重叠现象,雌花芽分化重叠期最短1周,最长7周左右,雄花芽分化重叠期较雌花芽短,都在1周左右。  相似文献   

7.
为探究异型花柱连翘(长花柱和短花柱)花芽分化与生长发育差异及其传粉习性,利用石蜡切片技术观察连翘花芽分化及发育过程,并进行了授粉试验。5月中旬连翘新梢萌发时,分别取长为1、2、3、4、5和6 mm的异型花柱连翘花芽并制作石蜡切片,对连翘植株的花芽结构进行观察和拍照。连翘花期进行自交、同型与异型杂交授粉试验。结果表明:连翘花芽分化及花器官生长发育过程包括花芽分化期、休眠期、花芽萌动与膨大期、鳞片脱落期、现蕾期、露冠期、开花期;其中花芽分化期可划分为分化初期、萼片原基分化期、花冠原基分化期、雄蕊和雌蕊原基分化期、雌雄蕊形成期、花粉粒形成期。开花前1年异型花柱连翘的花芽分化及发育无明显区别;开花当年花芽外层鳞片脱落后,观察到长花柱伸长并明显超过其雄蕊高度,花丝开始发育,而短花柱发育基本完成,花丝快速伸长并超过其花柱。授粉试验结果表明,连翘异型杂交坐果率大于50%,同型杂交坐果率略大于20%,自交坐果率在5%左右,具有自交不亲和的特性。  相似文献   

8.
(一)山楂花序为多个伞房花序簇生于果枝顶端,每花序有花15~40余朵,最多达50朵左右。结果后花序梗干枯,其下的顶部数个侧芽,在条件良好时,仍能形成花芽,连续结果。 (二)山楂花芽形态分化,可分为六个时期。即花序原基分化期、花蕾期、萼片期、花瓣期、雄蕊期和雌蕊期。昌黎地区山楂花序原基于9月上旬出现,9月下旬出现花蕾原基,10月下旬到11月上旬出现萼片原基,大部分花芽以单花原基状态进入休眠期。但在休眠过程中仍缓慢进行分化,翌年早春3月上旬出现花瓣原基,3月下旬开始出现雄蕊原基,雌蕊原基出现在4月上旬以后,全部花芽分化所需时间达8个月左右。 (三)不同枝条花芽分化的开始时间不同。一般短枝顶芽分化早,长枝较晚,但到分化后期(雄蕊及雌蕊分化期),各类枝条间差异不大,基本上在同一时期分化结束。 (四)山楂花芽前期分化持续时间长,后期分化持续时间短。如花蕾原基最早于9月下旬出现,最晚为3月上旬,持续达160天,而雄蕊及雌蕊原基最早出现到最晚出现仅持续10天左右的时间。 (五)山楂花芽是在枝条停止生长3~4个月后开始分化花序原基,此时果实已接近成熟,枝条积累有机营养物质较多,加之抑花内源激素减少,促花激素增多,有利于形成大量花芽。根据山楂花芽分化开始晚,冬季休眠期中进行缓慢分化,雄蕊及雌蕊均在早春花芽萌动过程中形成的特点,应在8月中旬到采收前后增施氮、磷、钾肥料。肥水条件差的地方,早春萌动时追施速效性肥料,有利于提高花序质量,增加座果率。 (六)山楂花芽的鳞片平均数为16.1个,叶片平均数为9.5个,总节数平均为25.6节。不同年份、不同管理条件下山楂花芽分化的临界节数有一定幅度的变化,不同枝类间以长枝花芽的临界节数多,短枝及结果枝上花芽的临界节数较少。  相似文献   

9.
卡特兰的花芽形态分化   总被引:5,自引:0,他引:5  
郑宝强  王雁  彭镇华  李莉 《园艺学报》2008,35(12):1825-1830
采用石蜡切片法观察了卡特兰‘Green World’花芽的形态发生和结构发育过程。研究表明:在北方温室环境条件下,卡特兰花芽分化从7月初花序原基分化开始至9月下旬合蕊柱及花粉块形成历时约3个月。其过程可分为6个时期:未分化期、花序原基分化期、花蕾原基分化期、萼片原基分化期、花瓣原基分化期、合蕊柱及花粉块分化期。其中,花蕾原基分化期、合蕊柱及花粉块分化期历时长,分化较慢,其它时期历时短,分化较快。自萼片原基分化期开始,新生植株生长已基本停止。  相似文献   

10.
石榴花芽分化研究初报   总被引:2,自引:0,他引:2  
石榴花芽分化对叶原基的数量无绝对要求,即使无一片叶原基也能成花,但以具有4片叶原基的芽形成的花芽数最多,次为具有2片与6片叶原基的芽.花芽分化延续时期长,自7月下旬开始分化直至萌芽前绝大多数的芽仍处在分化始期,整个休眠期近于停顿状态,直至芽萌动(3月中下旬)方始进入萼片分化期。花瓣、雌蕊、雄蕊分化期短而集中,且雌蕊早于或与雄蕊原基同时分化。性器官的分化与发育正处于叶面积迅速扩展与短梢旺长期,养分不足是形成不完全花的主要原因之一。秋施有机肥配以速效氮、磷、钾肥,提高了贮藏营养水平可增加第一茬花中的完全花率。  相似文献   

11.
日本矮紫薇花芽由中上部侧枝和主枝顶芽发育而成,花芽分化从4月末开始至5月末结束,历时30d,包括花序分化和小花分化两个过程,分为形态分化前、开始分化期、花序原基分化期、花蕾分化期、小花花萼分化期、花瓣分化期、雄蕊分化期、雌蕊分化期8个时期,花序和小花分化的顺序分别是离心和向心的.花芽分化与春梢生长有一定的相关性.  相似文献   

12.
树莓花芽分化的观察   总被引:1,自引:0,他引:1  
1991~1992年,对树莓花芽分化时期的形态特征及发育进程进行了定期观察。结果表明,树莓花芽分化始期为8月末,9月中下旬进入高峰期,约60~70d。形态特征是雏梢生长点向上隆起成半球状。10月上旬至翌年4月中旬,随初生髓部的伸展,半球状生长点(顶花序原基)向前推进,随后形成腋花序原基,即为花序原基分化期。随同冬芽萌发展叶,依次进入花蕾、萼片、花瓣、雄、雌蕊原基的芽外分化阶段,各期约7~15d。至5月中旬出现花药和胚珠原始体。此期距结果新梢的花序显露还有2~3d。基生枝下部花芽分化始期比中上部迟一个月,分化数量也有较大下降。  相似文献   

13.
 采用石蜡切片法、扫描电镜以及立体解剖镜观察了红球姜(Zingiber zerurnbet)花芽的形态发生和结构发育过程。研究表明:红球姜花芽分化从4月底开始分化苞片原基至6月中旬心皮原基形成历时约1个多月。其过程可分为9个时期:花序原基分化期、苞片原基分化期、花蕾原基分化期、苞叶原基分化期、花萼原基分化期、花瓣原基分化期、雄蕊原基分化期、雌蕊原基分化期、花药和胚珠分化期。球果状花序分化从最下部的小花开始依次向上进行。  相似文献   

14.
为解决设施葡萄促早栽培的“隔年结果”问题,以4年生‘贝达’嫁接的不耐弱光的‘夏黑’和耐弱光的‘京蜜’为试材,通过石蜡切片法观察新梢2 ~ 7节各节位冬芽的花芽分化状况,绘制各节位冬芽群体的花芽分化进程图,研究设施促早栽培条件下耐弱光能力不同的葡萄品种冬芽的花芽分化规律。结果表明:(1)花序主轴的出现是成花起始的标志。(2)冬芽雏梢发育到含有两个叶原基至始原始体开始形成这一阶段是诱导设施葡萄成花的关键时期(生理分化期),始原始体分化期和始原始体分裂成二分枝之后是设施葡萄成花调节的两个关键时期。(3)始原始体出现之后,冬芽雏梢生长点和始原始体发育同步是成花良好的保证,冬芽雏梢生长点营养生长过旺是抑制成花,造成“隔年结果”的重要原因。(4)‘京蜜’葡萄对设施促早栽培环境具有极佳的适应性,新梢各节位冬芽花芽分化的各阶段持续时间短且重叠阶段少,均具有良好成花能力,节位优势不明显,花芽分化从新梢基部冬芽向上依次进行,高节位冬芽花芽分化稍迟,但速度较快;冬剪采取中短梢修剪即可实现连年丰产;‘夏黑’葡萄对设施促早栽培环境的适应性差,新梢各节位冬芽花芽分化的各阶段持续时间长且多阶段相互重叠,虽然从新梢基部向上成花数量逐渐增加,成花质量逐渐改善,但不能满足生产要求,存在严重的隔年结果现象,必须采取更新修剪等相应措施方能实现连年丰产。  相似文献   

15.
不完全甜柿‘禅寺丸’花性别分化形态学关键时期的研究   总被引:3,自引:0,他引:3  
以雌雄同株的‘禅寺丸’柿为材料,利用扫描电镜和石蜡切片法观察雌花和雄花芽发育进程,探究柿花性别分化的形态学关键时期。结果表明,‘禅寺丸’雌、雄花芽发育进程基本同步,均从6月持续到次年5月,可划分为11个阶段;花性别分化有两个形态学关键时期:一是6月中旬(阶段2)萼片原基发生期,此时雌花单生、雄花3朵合生的特点开始显现;二是次年4月中旬(阶段8)大小孢子发生期,此时雌花的雄蕊原基分化出花丝后停止发育,雄花的雌蕊原基在花柱和柱头结构产生后开始败育,从而产生单性花。  相似文献   

16.
周逸龄  王威  李秉玲  刘燕 《园艺学报》2011,38(11):2149-2156
 芍药生长发育的各个时期都存在花蕾败育现象,降低了成花率。以芍药品种‘巧玲’为材料,研究温室促成盆栽、室外盆栽和大田地栽方式下的花蕾败育情况,结果表明:不同栽培方式下芍药花蕾败育率明显不同,与各生长发育阶段蕾径大小相关。蕾径2 ~ 4 mm败育蕾发生率呈现温室促成栽培(67.9% ~ 86.6%)> 室外盆栽(44.9%)> 大田地栽(16.3%)的规律,此类败育蕾是由萌芽初期芽分化速度晚于同期正常芽的芽体发育而引起,蕾径达2 mm的败育蕾的雄蕊、雌蕊原基分化已完成;蕾径4 ~ 8 mm的败育蕾发生率呈现室外盆栽(29.6%)> 温室促成栽培(9.2% ~ 25.6%)> 大田地栽(11.8%)的规律,蕾径达5 mm的败育蕾处于胚珠原基分化阶段;蕾径8 ~ 17 mm的败育蕾在温室促成栽培条件下发生率为0 ~ 4.8%,但在室外盆栽及大田地栽环境中均没有发生,蕾径达10 mm的败育蕾其胚珠的珠心和珠柄已形成;蕾径17 ~ 27 mm的败育蕾在室外盆栽环境中发生率最高,为19.9%,其次为大田地栽,为9.2%,温室促成栽培最低,为0 ~ 1.4%,蕾径达18 mm的败育蕾可见胚珠的珠心、珠被、珠孔。3种栽培方式下败蕾率最高均出现在茎伸长期,即主要发生在2 ~ 4 mm大的花蕾,温室促成栽培中控制该阶段花蕾败育是降低败蕾率的关键,可以通过肥水管理,适当延长低温处理时间及保持后期栽培温度稳定来减少其发生,提高成花率。  相似文献   

17.
纬度和海拔对主要苹果品种花芽分化期的影响   总被引:1,自引:0,他引:1  
花芽分化调控是苹果优质高产高效栽培的关键环节之一,准确把握花芽分化时期是精准调控的前提和基础,为探究纬度和海拔对苹果花芽分化期的影响,在陕西省杨凌示范区、甘肃省静宁县和四川省茂县3个苹果产区,用摘叶和摘果的方法研究了茂县(海拔1 425、1 680和2 050 m)、静宁(海拔1 601 m)‘长富2号’苹果,杨凌地区(海拔525 m)‘长富2号’、‘烟富6号’、‘嘎拉’和‘秦冠’苹果的花芽分化差异。结果表明:在杨凌地区花芽生理分化的时间为‘长富2号’56 d,‘烟富6号’49 d,‘嘎拉’56 d,‘秦冠’42 d。在茂县不同海拔试验点,‘长富2号’花芽生理分化期持续的时间长短为低海拔高海拔(海拔1 425 m试验点为75 d,1 680 m为70 d,2 050 m为65 d)。‘长富2号’在不同地区,花芽分化持续时间的长短为低纬度高纬度[茂县(31o33′N)为70 d,杨凌(34o18′N)为56 d,静宁(35o41′N)为49 d]。枝条停长时间与花芽分化密切相关,枝条停长越晚越不易形成花芽。在高纬度和高海拔地区枝条停长晚,但是花芽分化持续时间相对短。‘嘎拉’和‘长富2号’花芽分化从6月初开始至10月底分为6个时期,每个时期有明显的特征,各个时期相互交叉重叠;‘长富2号’各分化时期比‘嘎拉’开始的早,结束的晚,并且持续时间长,相对分散,认为这可能与富士苹果成花难有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号