首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 125 毫秒
1.
 本研究以苹果‘寒富’品种及其亲本为试材,研究其自交亲和性并鉴定其S基因型。田间授粉试验结果显示,‘寒富’品种表现为自花结实,其母本‘东光’品种亦自花结实;而父本‘富士’品种自花授粉结实率极低,初步推断‘寒富’品种的自花结实性可能遗传自其母本‘东光’。利用PCR技术鉴定'寒富'品种S基因型为S1S9。由于‘东光’品种存在同名异物问题,本研究除日本‘东光’品种外,对辽宁省果树研究所、吉林省果树研究所、沈阳农业大学等单位保存的中国'东光'品种的S基因型进行了鉴定,发现除辽宁省果树研究所保存的'东光'品种S基因型为S2S19,与‘寒富’品种无亲缘关系外,其它两个单位保存的'东光'品种中均存在S9基因型,可能为'寒富'杂交育种时的原始母本。  相似文献   

2.
利用特异引物对秋子梨品种‘龙香'的基因组DNA进行PCR扩增.通过对扩增片段的回收、克隆和测序,获得2条大小分别为469 bp和653 bp的DNA序列,将其推导氨基酸序列与GenBank中已登录的梨S基因的序列进行比对.结果表明:469 bp序列与已登录梨的S16-RNase基因完全一致,确定‘龙香'的1个等位基因为梨S16基因;653 bp序列与梨S基因的相似性在75%~90%之间,且在高变区存在6个以上氨基酸的差异,近一步分析确定为1条新的梨S基因,命名为S42-RNase基因,该基因在GenBank的登录号为:EF088497.确定秋子梨品种‘龙香'的S基因型为S16S42.  相似文献   

3.
梨20个品种S基因型的鉴定及新S-RNases基因克隆   总被引:3,自引:0,他引:3  
 为了鉴定我国梨品种和一些野生类型个体的S基因型,应用S-RNase特异PCR扩增、克隆和测序,对其S-RNases基因核苷酸序列进行分析,鉴定了20个梨品种和野生类型个体的S基因型。起源于我国的'奥连'(SpS32)、'吊蛋'(SdSe)、'沙疙瘩'(S36Sd)品种和杏叶梨的一个类型(S22Sc)个体中存在西洋梨的S-RNase基因,证明S-RNase基因分化是在东方梨种群和西方梨种群的各个种形成之前。在秋子梨的'麦梨'、'内蒙古山梨'中发现了2个新S-RNases基因,命名为S40-、S41-RNase(DQ903313、DQ988687)。S40-和S41-RNase基因推导的部分氨基酸序列分别与苹果属S11-和S6-RNase的同源性为100%和94.4%,这表明S-RNase的存在可能在梨属和苹果属形成之前。  相似文献   

4.
八月酥等14个梨品种自交不亲和基因(S基因)型的鉴定   总被引:3,自引:2,他引:3  
多数梨品种自花授粉不结实,生产上要合理配置授粉品种才能获得应有的产量。鉴定梨品种的S基因型,能为梨园合理配置授粉品种提供依据。以我国育成的梨品种为试材,利用特异引物PCR产物的聚丙烯酰胺凝胶电泳分离及DNA序列分析,鉴定出了14个梨品种的自交不亲和基因型(S基因型),并通过统计部分品种的田间人工授粉的坐果率以及应用荧光显微镜观察异花授粉后花柱内的花粉管生长情况来验证鉴定出的梨品种S基因型的可靠性。这些品种的S基因型为:八月酥S3S16、绿云S3S29、谢花甜S29S34、香茌S1S21、脆绿S3S4、新雅S4S34、雅青S4S34、伊犁红句句S22S28、猪嘴酥S19S22、假直把子S5S19、青魁S1S3、德胜香S3S29、张掖长把S3S29、金坠梨S21S34。  相似文献   

5.
张妤艳  吴俊  衡伟  张绍铃 《园艺学报》2006,33(3):496-500
 根据梨S基因高度保守区C1和C3区, 设计1对引物P1和P2, 对梨品种的基因组DNA进行S基因特异扩增、克隆、测序, 并在GenBank中BLAST比较, 确定S 基因特异性片段, 对京白梨等6个供试自交不亲和品种的S基因型比对结果为: 白梨中的‘库尔勒香梨’为S21 S28 , ‘苹果梨’为S17S19 ; 砂梨中的‘台湾蜜梨’为S11 S22 ; 西洋梨中的‘葫芦梨’为Sa Sb; 秋子梨中的‘京白’为S16 S30 , ‘早梨18’为S4 S28。其中S28和S30为首次登录的新S 基因, 在GenBank的登录号分别为AY562394 (库尔勒香梨) 和AY876945 (京白) 。  相似文献   

6.
为鉴定8个中国梨品种的S基因型,使用梨自交不亲和基因(S-RNase)特异引物"FTQQYQ"和"anti-ⅡWP-NV",对8个梨品种的基因组DNA进行特异扩增,并对扩增片段进行回收、克隆、测序。使用生物信息学软件对各序列分析和经同源性搜索分析后,确定了各品种的S基因型。结果分别是:兰州花长把为S19S22,青面为S1S18,黄面为S1S12,早蜜为S19S29,大面黄为S1S19,无子黄为S28S16,大青皮为S34S19及金锤子为S16S19。  相似文献   

7.
以秋子梨品种及后代为母本,其它栽培梨系统品种为父本组配17个组合,1175株杂种苗为试材,采用田间观察方法,调查了17个组合F1始果年龄及不同树龄开花单株数,研究了不同秋子梨及后代品种与其它栽培梨系统品种组配对杂种F1早果性的影响。结果表明:15个组合始果年龄在6~8年,八年生时还有"寒香梨"×"金香水"、"大慈梨"×"鄂梨1号"2个组合未开花;开花组合中,不同母本组合存在差异,以"大慈梨"为母本的组合开花株率最高,为12.14%;"寒香梨"其次,为9.42%;"金香水"最低,为6.43%;母本相同父本不同、母本不同父本相同组合中,后代群体开花株数存在明显差异,表明父母本对杂种后代群体始果年龄早晚有显著影响;秋子梨与其它栽培系统梨品种组配,F1始果年龄差异较大,但秋子梨作为父、母本组配的后代群体开花单株均较低,其中秋子梨×秋子梨组配为0。可见秋子梨种性对后代始果年龄早晚影响很大,仅通过亲本选择选配缩短秋子梨育种周期可能性不大。  相似文献   

8.
12个梨品种S基因型的鉴定   总被引:5,自引:0,他引:5  
应用PCR扩增技术, 根据目的S基因与GenBank中已知S 基因同源性100%原理鉴定了我国育成的12个梨品种的S基因型, 分别是: ‘红酥脆’为S4S36 , ‘新梨7号’为S28Sd , ‘金水3号’为S5S29 , ‘八月酥’为S3S16 , ‘金水1号’为S3S29 , ‘龙泉酥’为S3S22 , ‘雪花’为S4S16 , ‘雪芳’为S4S16 ,‘雅青’为S4S34 , ‘新雅’为S4S34 , ‘德胜香’为S3S29 , ‘富源黄’为S16S33。通过对S基因的DNA序列分析, 确认S16、S31为同一S基因。本研究结果丰富了我国梨品种的S基因型信息, 为田间合理配置授粉品种提供了依据。  相似文献   

9.
【目的】鉴定‘黄密’、‘贵妃’、‘早红’和‘软条白沙’4个枇杷品种的S基因型,为其生产栽培合理选择授粉树及杂交育种亲本选择提供科学依据。【方法】以苹果S基因高度保守区设计兼并引物对4个品种的基因组DNA进行PCR扩增,片段回收、克隆及测序,分别采用Blast软件和Bioedit软件进行同源性检索和结构分析。【结果】从参试的4个品种中共分离了4个S等位基因,分别为S2、S5、S6和S31,其中S31-RNase为新分离的枇杷S-RNase基因,Gen Bank登录号为:KC131133。所克隆获得的4个枇杷S-RNase基因均克隆到4个保守区(C2、C3、RC4和C5)和1个高变区(HV),具有与苹果S基因相同的氨基酸序列结构。【结论】确定了参试4个枇杷品种S基因型分别为:‘贵妃’S2-S6、‘黄密’S2-S5、‘早红’S5-S6、‘软条白沙’S6-S31。  相似文献   

10.
江南  谭晓风  张琳  邓靖 《园艺学报》2014,41(10):1983
根据东方梨中已鉴定的46个S基因序列和S基因的结构特点,设计了86条寡核苷酸探针并制备成S基因寡核苷酸检测芯片,采用Cy3荧光修饰引物标记被检测品种的PCR产物并与芯片杂交,以检测不同品种的S基因型。结果表明:利用芯片与华梨2号、秀玉和德胜香等已知S基因型的品种杂交,杂交信号显示与各品种已知基因型相符合。利用芯片鉴定了丽江黄酸梨等27个未知S基因型的梨品种,获得了各品种的S基因型,随机选取部分品种进行DNA测序和序列分析,结果与芯片杂交结果完全一致,证明利用S基因寡核苷酸芯片鉴定梨品种S基因型结果准确可靠。  相似文献   

11.
江南    谭晓风  张琳  张靖国  胡红菊 《园艺学报》2015,42(12):2341-2352
利用东方梨中已鉴定的52个S等位基因HV区cDNA序列作为靶基因序列设计探针,制备梨S基因cDNA检测芯片,每张芯片上含有240个位点55个cDNA探针,包含所有序列完善的S基因HV区特异的cDNA序列。以被检测品种雌蕊cDNA为模板,采用Cy3荧光修饰引物经S基因特异PCR扩增标记被检测品种的cDNA序列,并与芯片杂交以检测不同品种的S基因型。结果表明:利用cDNA检测芯片与‘丽江黄酸梨’、‘秀玉’、‘弥渡玉梨’、‘白面梨’和‘德胜香’等已知S基因型品种杂交,杂交结果显示与S基因寡核苷酸芯片检测信号一致,与各品种已知S基因型相符合。利用cDNA芯片和进一步完善的S基因寡核苷酸芯片并行检测鉴定了‘文山红梨’等24个未知S基因型的砂梨品种,获得各品种的S基因型。梨S基因cDNA芯片的构建进一步完善了梨S基因检测平台。  相似文献   

12.
13.
白梨新S基因的克隆   总被引:10,自引:4,他引:10  
 采用PCR - RFLP检测、DNA序列分析和田间杂交试验, 从白梨中分离鉴定了1个新的S-RNase基因。该S-RNase基因PCR扩增产物大小与S-RNase基因PCR产物相似, 为450 bp左右。但PCR -RFLP和DNA序列分析均表明, 它与S8-RNase基因存在较大差异, 该基因内含子为252 bp, 而S8-RNase的内含子为234 bp, 并在高变区中具有10个氨基酸出现替换, 有两个氨基酸出现缺失。而该S-RNase基因却与S12-RNase基因具有较高的相似性, 在HV区中只有1处碱基被替换, 周边区中有10处出现碱基替换或缺失。因此, 继梨S18-RNase基因, 将它命名为S19-RNase基因(AY250987) 。与S 基因型已确定的梨品种的杂交坐果率也说明了该基因是一个新的S-RNase基因。  相似文献   

14.
To obtain the basic information on fruit set regulation, effects of several RNases including S-RNase on pollen tube growth and RNA degradation in the tube were studied in the pear. Purified S-RNase from the Japanese pear ‘Kosui’ (S4S5) predominantly inhibited the growth of ‘Kosui’ pollen tubes (self) in vitro at 0.28 unit μL−1, but it inhibited ‘Chojuro’ (S2S3) pollen (cross) only slightly. The same unit of RNase T1 (EC 3.1.27.3) clearly inhibited the pollen tube growth, but the action was significantly weaker than that of the S-RNase against the self-pollen. Inhibitory effect of RNase T2 (EC 3.1.27.1) and RNase A (EC 3.1.27.5) was only slight. The proteins other than the S-RNase extracted from pear style did not have any inhibitory action, though they possessed RNase activity 3.8 times higher than S-RNase. Thus, RNases tested here could not substitute for the S-RNase in specific inhibition against the self-pollen tube growth. Total RNA degradation by each RNase occurred in the pollen tubes as following order; S-RNase (self) ≥T1 > T2 ≥ A > S-RNase (cross). Degradation degree of 28S and 18S rRNA was as follows; S-RNase (self) > A > T1 > T2 > S-RNase (cross). The degradation of 5.8S and 5S rRNA was; S-RNase (self) > S-RNase (cross) > A > T2 > T1. The degree of rRNA degradation was, thus, not always in parallel with the degree of pollen growth inhibition. The S-RNase may degrade not only rRNA but also mRNA essential for pollen tube growth, and may be specifically adapted to inhibit the growth of self-pollen tubes. Therefore, controlling S-RNase amount in the style will produce self-thinning cultivars efficiently, which are unnecessary not only for hand-pollination but fruit-thinning practices in the pear. Practically, cultivar with weak self-incompatibility and small amount of S-RNase, such as ‘Okusankichi’, may be an expecting candidate for breeding self-thinning cultivars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号