首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以吉林省东部山地林区长白落叶松为对象,研究地上生物量异速生长模型,利用生物量与蓄积量关系,估算不同林龄长白落叶松林碳储量与碳密度,结果表明:长白落叶松林地上总平均生物量为215.021 kg;树干生物量占地上总生物量67.15%;枝、叶、皮分别占17.09%、6.00%、9.76%。树干生物量异速生长方程为Y=0.059DBH1.32.171H0.420;树皮、活枝、针叶和地上总生物量可以通过Y=a DBH1.3b进行预测。生物量与蓄积相关方程分别为:树干y=448.68 x+4.433 1;活枝y=105.21 x+3.944 9;针叶y=32.89 x+2.639 8;树皮y=57.39 x+3.099 7,相关系数均大于0.9。长白落叶松不同林分生物量、碳储量、碳密度范围分别为2.38×106~7.52×106t、1.19×107~3.76×107t和38.89~69.37 t·hm-2。  相似文献   

2.
在六盘山香水河小流域选择了一个水平长398.2 m和生长33年生华北落叶松人工林的典型坡面,调查分析了华北落叶松胸径与树高的坡位差异及随坡面水平长度变化的空间尺度效应。结果表明:(1)林分的胸径和树高都存在明显的坡位差异,从坡顶向下均表现为先增加后减小的变化趋势。(2)林分平均胸径、平均树高、优势木平均高均存在坡面尺度效应,即平均胸径的坡面滑动平均值在离开坡顶的0~200 m和200~398 m的水平距离范围内每增加100 m时增大0.33 cm和减少0.21 cm;平均树高的滑动平均值在0~67、67~305、305~398 m的水平距离范围内每增加100 m时分别减少1.12 m、增大0.31 m、减少0.10 m;优势木平均高的坡面滑动平均值在0~250 m、250~398 m的水平距离范围内每增加100 m时增大0.42 m和0.07 m。(3)各样地的平均胸径、平均树高、优势木平均高与坡面加权平均值的比值(Y_1、Y_2、Y_3,小数)随离开坡顶相对水平坡长(X,小数)变化的数量关系为:Y1=-0.312 8X2+0.239 1X+0.986 4(R~2=0.56)、Y_2=-0.483 4X3+0.304 3X2+0.125 0X+0.959 2(R~2=0.43)、Y_3=-0.177 5X~2+0.230 8X+0.941 6(R~2=0.26),藉此可由特定坡位的样地调查值推算整个坡面平均值,实现树木生长指标从样地到坡面的尺度转换。  相似文献   

3.
[目的]土壤密度是最基本的森林土壤水文物理性质参数,为了定量描述土壤密度随坡位的变化和影响因素,研究不同坡面土壤密度的空间异质性。[方法]在宁夏六盘山半湿润区香水河小流域,选择华北落叶松人工林和天然灌丛2个典型坡面,按坡位从上到下设置连续样地。2014年进行了森林土壤调查,在样地内掘土壤剖面,采用环刀法,分层测定土壤密度。[结果]在1 m深土层内,土壤密度(Y,g.cm-3)随土层(X,cm)加深呈线性增大,拟合关系式:华北落叶松坡面为Y1=0.755 5+0.007 7X(R2=0.99),天然灌丛坡面为Y2=0.919 5+0.004 7X(R2=0.98),其原因包括植被根系活动、土壤生物活动、砾石含量等的土层差异;在2个坡面上,0 100 cm土层平均土壤密度均有明显坡位差异,且2个坡面的沿坡整体变化趋势不相同,华北落叶松坡面从坡顶到坡脚是先逐渐增大,后趋于稳定;天然灌丛坡面从坡顶到坡脚是"增大-减小-增大"的趋势,不同土层土壤密度的坡面变化也各不相同。在华北落叶松林坡面引起土壤密度坡位差异的主要原因是海拔,而在天然灌丛坡面是植物生长状况;2个坡面的土壤密度平均值均出现在相对坡长的0.4 0.5处。坡面上各样地的平均土壤密度和坡面平均值的差值(Z,g.cm-3)随相对水平坡长(样地离开坡顶水平距离和整个坡面水平坡长的比)(X,m)变化的回归关系式分别为:华北落叶松坡面Z1=-0.139X2+0.25X-0.080 1(R2=0.93),天然灌丛坡面Z2=0.494 4X3-0.767 2X2+0.340 3X-0.040 5(R2=0.95)。[结论]华北落叶松林坡面和天然灌丛坡面的土壤密度都存在明显的坡位变化,但变化格局和主要影响因素不同。基于土壤密度坡面变化的拟合关系,可实现从特定坡位测定值推算坡面平均值的尺度转换。  相似文献   

4.
甘肃黑河流域上游森林地上生物量的多光谱遥感估测   总被引:4,自引:0,他引:4  
[目的]以黑河流域上游祁连山森林保护区为研究区,利用133个森林样地调查数据、Landsat-5 TM影像和ASTER GDEM产品为数据源,探讨地形对该流域森林地上生物量(above-ground biomass,AGB)估测的影响,以及选择合适的遥感估测方法反演该流域的森林AGB.[方法]首先利用青海云杉特殊的生境范围和绿色植被对比值植被指数(ratio vegetation index,RVI)的灵敏程度,及不同地物对纹理特征的不同响应,制定相应的决策树分类器,将研究区的土地覆盖类型分为两大类:森林(青海云杉)-非森林,并利用133个森林样地调查数据和Google Earth 高分辨率影像的12 722个采样点对分类结果进行验证(总体分类精度达到90.39%,Kappa系数为0.81);然后运用多元线性逐步回归估测法,以及结合随机森林算法(random forest,RF)优化后的k最近邻分类法(k-nearest neighbors,k-NN)进行森林AGB的遥感估测,对比SCS+C地形校正前后青海云杉森林AGB的估测结果,同时比较2种不同估测方法的反演效果;最后利用得到的最优估测方法反演整个研究区的森林AGB,生成黑河流域上游祁连山森林保护区的森林AGB的等级分布图.[结果]SCS+C地形校正前多元线性逐步回归的估测精度为R2=0.31,RMSE =34.41 t·hm-2,地形校正后多元线性逐步回归的估测精度为R2 =0.46,RMSE =30.51 t·hm-2;而基于SCS+C地形校正后的k-NN的交叉验证精度不仅明显高于地形校正前的精度,且显著优于多元线性逐步回归的估测结果,达到R2=0.54,RMSE=26.62 t·hm-2;另外基于最优的k-NN估测模型(窗口为7×7,采用马氏距离,k=3)反演的该流域青海云杉在2009年总的森林地上生物量为8.4×107t,平均森林地上生物量为96.20 t·hm-2.[结论]在地形复杂地区,运用SCS+C模型对地形进行适当校正,能够有效地消除太阳入射角变化引起的地表反射亮度的差异,使影像能够更准确地反映地表信息,提高森林AGB的遥感估测精度;在样本有限的情况下,相对于以大数定律作为理论基础的多元线性逐步回归估测法,k-NN能够避免发生过学习现象和样本不平衡问题,更适于该研究区青海云杉的森林AGB的估测.  相似文献   

5.
采用多元线性回归和—元曲线方式拟合苦竹形态因子、苦竹器官生物量与单株生物量模型,进而对洪雅县华西雨屏区退耕还林地苦竹生物量、碳储量进行了研究.结果表明:(2)研究区苦竹平均高为7.50 m,平均胸径为3.48 cm,平均生物量为2.09 kg·株-1,总生物量为90.02 t·hm-2;(2)在相关性分析基础上,以复相关系数和判定系数为标准,筛选出器官生物量-形态因子最佳模型为Y=-1.245 +0.135D +0.147H +0.236 d;总生物量-形态因子最佳模型为Y=e(2.200-5.085/0);总生物量-器官生物量最佳模型为Y =0.109+1.069x1+2.526x2+1.059x3;(3)苦竹各器官碳含量在0.421 7g·g-1~0.551 1 g-g-1范围内,碳含量从高到低依次为:鞭>杆>蔸>根>枝>叶.(4)以实测碳含量计算得苦竹碳储量为44.55 t·hm-2,以0.45 g·g-1或0.5g·g-1计算所得碳储量与实测碳储量均存在一定误差,误差最大可达16.63%.  相似文献   

6.
为了探究华北落叶松的生物量最优生长模型,以承德围场县北沟营林区华北落叶松人工林为研究对象,通过设置标准地,对其17~43a生林分进行详细调查,利用Spass曲线估计方法,最终确定其生物量估算模型。结果表明:二次函数为生物量最优模型,地上总生物量W总=-53.846-0.486 D+0.558 D2,树干生物量W干=-65.067+2.648 D+0.312 D2,树枝生物量W枝=-0.701+0.024 DH-4.868×10-6(DH)2,树叶生物量W叶=-2.205-0.479 D+0.066 73 D2,树皮生物量W皮=-3.536+0.004 D2 H-7.998×10-8(D2 H)2。  相似文献   

7.
通过野外调查测定,研究了六盘山林区天然次生林(杂灌林、山杨和辽东栎林)、农田、草地和人工林(13、18和25年生华北落叶松)植被活体生物量的C贮量.结果表明,天然次生林植被地上生物量C贮量为14.93~25.92 t·hm-2,根系为6.50~7.55 t·hm-2;人工林地上为11.97~45.39 t·hm-2,根系为6.48~7.64 t·hm-2;农田和草地地上分别为0.83和1.09 t·hm-2,根系分别为0.49和1.61 t·hm-2.植被活体生物量C年均积累量,天然次生林地上为2.97~5.15 t·hm-2·a-1,根系为1.67~2.86 t·hm-2·a-1;人工林地上为5.07~6.49 t·hm-2·a-1,根系为1.90~2.10 t·hm-2·a-1;农田与草地地上分别为0.83和1.09 t·hm-2·a-1,根系分别为1.38 和1.03 t·hm-2·a-1.在生长季,草本地上部分C积累呈逐步增长趋势,最高峰在9-10月,10月后下降.细根生物量C的积累量,天然次生林在5、6、9月较高,草地在8月份较低,农田在7和9月较高,人工林在5、9和10月较高.  相似文献   

8.
【目的】森林是陆地生态系统的重要组成部分,精确估测森林地上生物量对森林资源的经营管理具有指示作用,对研究全球碳循环具有重要意义。为了改善单一来源遥感数据估测森林地上生物量的不足,探讨了联合高分三号(Gaofen-3,GF-3)全极化(Polarimetric synthetic aperture radar,PolSAR)数据极化分解参数和Landsat-8 OLI数据估测森林地上生物量的可行性,并针对多源遥感数据的冗余问题优化特征组合。【方法】以广西南宁市高峰林场为研究区,结合森林样地调查数据,提取GF-3 PolSAR数据的后向散射系数、极化分解参数和Landsat-8 OLI数据的光谱信息、植被指数、纹理,使用基于序列前向特征选择的K最近邻法(K-nearest neighbor based on sequence forward feature selection,KNN-SFS)估测研究区的森林地上生物量,以留一法交叉验证得到的森林地上生物量预测值和实测值之间的均方根误差(Root mean square error,RMSE)最小为原则,对比验证使用多源遥感数据和单一来源遥感数据时的估测结果,寻求估测森林地上生物量的最优特征组合,基于最优特征组合绘制研究区的森林地上生物量空间分布图。【结果】结合GF-3 PolSAR数据和Landsat-8 OLI数据估测研究区森林地上生物量的精度为RMSE=21.05 t·hm~(-2),R~2=0.75,优于仅使用GF-3 PolSAR数据估测的精度(RMSE=28.38 t·hm~(-2),R~2=0.47)和仅使用Landsat-8 OLI数据估测的精度(RMSE=29.52 t·hm~(-2),R~2=0.42)。【结论】多源数据协同反演森林地上生物量可以提高估测的精度,基于KNN-SFS方法联合GF-3 PolSAR数据与Landsat-8 OLI数据可以较好地估测森林地上生物量。  相似文献   

9.
对云南丽江拉市海汇水区面山上6种不同森林群落的枯落物储量和持水性能进行了测定,结果表明:不同森林群落的枯落物储量和持水性差别较大,其枯落物储量从最大的黄背栎林(22.45 t·hm-2)到最小的云南松林(6.54 t·hm-2),均是半分解与分解层的储量大于未分解层的储量;6种森林枯落物的最大持水量,除滇杨林外均是半分解与分解层的大于未分解层的,其最大总持水量排序为黄背栎林(60.77 t·hm-2)丽江云杉林(36.42 t·hm-2)云南松+黄背栎+杜鹃混交林(33.18 t·hm-2)川滇高山栎林(29.23 t·hm-2)滇杨林(18.82 t·hm-2)云南松林(13.72 t·hm-2)。各层枯落物的吸水速率均随浸水时间的延长而逐渐降低,在2 4 h后明显减缓,最终趋于零;且半分解与分解层的吸水速率均大于未分解层。6种森林枯落物的拦蓄水量也表现出半分解与分解层大于未分解层的规律,从大到小依次为黄背栎林(66.94 t·hm-2)丽江云杉林(41.24 t·hm-2)云南松+黄背栎+杜鹃混交林(36.80 t·hm-2)川滇高山栎林(32.99 t·hm-2)滇杨林(21.18 t·hm-2)云南松林(16.59 t·hm-2),降雨拦蓄量深分别为6.70、4.12、3.68、3.30、2.12、1.66 mm。  相似文献   

10.
六盘山南部华北落叶松人工林土壤有机碳含量   总被引:2,自引:0,他引:2  
研究造林措施和林龄对宁夏六盘山南部不同坡向华北落叶松人工林土壤有机碳的影响。结果表明:造林后,各坡向的土壤有机碳含量均呈现先下降、后上升的变化过程,其对造林干扰的敏感程度随土层加深而减弱;在阳坡半阳坡,造林10年后的幼龄林0~45cm土层土壤有机碳密度(96.33t·hm-2)仍低于灌丛(122.12t·hm-2),造林20年后的中龄林(189.27t·hm-2)已高于灌丛,说明土壤碳库已得到恢复;在阴坡半阴坡,幼龄林和中龄林的土壤碳密度分别为192.37和222.03t·hm-2,均低于天然次生林(256.64t·hm-2),说明造林20年后土壤碳库仍未恢复;阳坡半阳坡林地在造林后第8年0~45cm土层有机碳含量降至最低,相对阳坡灌丛(32.13g·kg-1)的降幅为3.72g·kg-1,需在造林后第16年才能恢复到造林前的灌丛水平;阴坡半阴坡林地在造林后第16年降至最低,相对阴坡次生林(66.30g·kg-1)的降幅为22.77g·kg-1,需在造林后第32年才能恢复到造林前次生林水平;阴坡造林后,其土壤有机碳比阳坡损失量大,损失期长,恢复较慢,但阴坡土壤碳库的绝对值在任何林龄阶段都高于阳坡,说明阴坡森林土壤的碳储存能力高于阳坡;在阳坡半阳坡灌丛采用扰动较弱的稀植造林时,造林后第10年0~45cm土层有机碳含量平均为31.05g·kg-1,虽仍低于灌丛(35.55g·kg-1),但却远高于扰动较强的全面整地后常规密度造林(23.17g·kg-1)。  相似文献   

11.
湖南会同4种退耕还林模式幼林生物量的研究   总被引:2,自引:0,他引:2  
比较研究了湖南会同4种退耕还林模式植被恢复初期幼林的生物量积累、产量分配特征及生产力的差异。结果表明:(1)主要造林树种的单株生物量均以地上部分占绝对的优势,占全株生物量的66%以上,各器官生物量的大小排序基本上为:树干树根树叶树枝树皮,造林树种的单株生物量存在一定的差异。(2)杜英×樟树混交林分生物量最高,为3.916 t.hm-2;樟树纯林的生物量最低,为1.213 t.hm-2。(3)4种退耕还林模式幼林各组分生物量相对分配百分率的大小均表现为:树干(带皮)占林木生物量的比例最大,为32.64%以上;树枝生物量所占的比例最小,仅在12.65%~17.98%之间。(4)杜英×樟树混交林的平均净生产力最高,为0.468 0 t.hm-2a-1,樟树林为其次,杜英×乐昌含笑混交林最低,仅为0.075 4 t.hm-2a-1,最高与最低相差0.392 6 t.hm-2a-1。  相似文献   

12.
采用样地调查法,对海南沿海木麻黄人工林林下植被进行调查、并测定其生物量。结果表明:木麻黄人工林林下灌木层地上部分生物量大于地下部分生物量,草本层地下部分生物量大于地上部分生物量;灌木层各器官的生物量分配规律为干(3.41 t·hm-2)根(3.19 t·hm-2)叶(2.10 t·hm-2)枝(1.41 t·hm-2),干和根的生物量比例较大;灌木层、草本层生物量与总生物量均呈正相关关系,灌木层生物量与草本层生物量则呈负相关关系,说明灌木层与草本层存在竞争。  相似文献   

13.
生物量受坡面环境条件变化影响而有坡面变化与尺度效应。本文在六盘山半湿润区的香水河小流域选择了33 a生华北落叶松人工林的一个斜坡长480 m,水平长398 m的典型坡面,在整个坡面上建立了宽30 m的调查样带,均匀分为空间连续的16个样地,在2014年生长季中期调查不同坡位的样地生物量,分析其坡面变化规律。结果表明:生物量存在明显的坡位差异。坡面生物量t·hm-2平均值为118.59,其变化范围为96.19 139.18,变幅为42.99,变异系数为0.12;随着离坡顶距离的增加,生物量总体上呈现先升高后降低的变化趋势,在坡面的中上部(水平坡长为87.71 m)达到最大。生物量存在坡面空间尺度效应,即随着相对坡长(X1)的增加,生物量的顺坡滑动平均值(Y1)先增大后减小,其回归关系式为:Y1=23.004X13-60.834X12+31.786X1+123.43(R2=0.84),坡面尺度效应表现为每100 m水平坡长生物量变化的数值为6.12 t·hm-2;各样地生物量与整个坡面平均值的比值(Y2,小数)随相对坡长有很好的非线性关系,基本上呈先增加后下降、后趋于稳定的变化趋势,其关系式为Y2=1.722 6X13-2.844 5X12+1.033 8X1+1.000 1(R2=0.57),可基于此将特定坡位样地的生物量换算成整个坡面的估算值。造成生物量坡面变化的主要原因是太阳辐射和光照时间随海拔的变化等多种因素造成的。  相似文献   

14.
在广西忻城县喀斯特石山区对三种不同植被恢复模式 (任豆间种竹子模式、金银花模式、竹子模式 )地上部分生物量进行测定 .结果表明 :① 3种不同植被恢复模式的净生物量 ,显示出金银花(1 19t·hm-2 ·a-1) >竹子 (1 0 4t·hm-2 ·a-1) >任豆间种竹子 (1 0 1t·hm-2 ·a-1) ;②各种模式地上部分生物量的主要营养 (N ,P ,K)含量 ,显示出任豆间种竹子 (75 0 9kg·hm-2 ) >竹子 (33 4 0kg·hm-2 ) >金银花(2 2 95kg·hm-2 ) ;③各种模式地上部分生物量的主要营养含量的分配 ,均显示出N >K >P的规律。  相似文献   

15.
四川香椿人工林生物量与碳储量研究   总被引:1,自引:0,他引:1  
探讨了不同发育阶段香椿人工林生物量和碳储量的变化规律。对四川省香椿人工林生物量和碳储量进行了调查。研究表明:3 a~24 a生香椿乔木层生物量的变异范围为1.38 t·hm~(-2)~130.89 t·hm~(-2),碳储量的变异范围为0.68 t·hm~(-2)~64.62 t·hm~(-2),1 a~20 a生香椿生物量和碳储量动态变化波动较大,20 a之后呈快速增长趋势,香椿生物量和碳储量均在香椿成熟期达到最大;模拟构建了香椿的树高、胸径和单株立木生物量模型(X表示年龄):H=-0.26X2+1.4338X+0.80936,D=0.01057X2+1.5977X-0.06318,W=0.00315X2-0.03525X+0.09871,其拟合相关系数分别为0.8313、0.9788、0.9971。香椿生物量和碳储量动态变化过程划分了3个阶段,1 a~10 a为香椿幼龄林生物量和碳储量缓慢上升期,11 a~20 a为香椿中龄林生物量和碳储量中速上升期,21 a~30a为为香椿成熟林生物量和碳储量快速上升期;本文还为香椿人工林碳汇功能提出了合理的林分密度,香椿幼龄期按照初植密度1 666株·hm~(-2)种植,香椿速生期抚育间伐密度保存在405株·hm~(-2),香椿成熟期抚育间伐密度保存在240株·hm~(-2)为宜。该研究为香椿人工林群落碳汇功能与林分经营管理提供基础资料。  相似文献   

16.
马尾松人工林生态系统养分特性的研究   总被引:11,自引:0,他引:11  
马尾松在不同坡位生长差异显著 ,坡上部生物量为 6 6 8t.hm-2 ,坡中、下部分别是上部的 2 5、3 0倍 ;坡上部养分积累量N、P、K、Ca、Mg分别为 119 4、10 2、90 3、6 6 6、2 2 5kg hm-2 ,坡中、下部分别是上部的 2 4~ 2 8倍和 3 0~ 3 5倍 ;植被的生物量为 6~ 2 7t .hm-2 ,占马尾松地上部生物量的 11%~ 17% ,植被的各养分积累量占地上部 (马尾松地上部 +植被 )积累量的比例分别为 ,N :34%~ 41% ,P :2 8%~ 33% ,K :2 7%~ 30 % ,Ca :13%~ 38% ,Mg :9%~ 16 % ;在坡面上 0~5 0cm土层内各养分积累量分别为 ,N :386 1~ 6 713kg·hm-2 ,P :6 17~ 6 83kg·hm-2 、交换性K :5 49~ 6 2 3kg·hm-2 、交换性Ca:916~ 96 9kg·hm-2 、交换性Mg :5 3~ 6 0kg·hm-2 ;A0 层的生物量为 9 3~ 9 5t·hm-2 ,A0 层N为 10 4~ 117kg·hm-2 ,P为 7~8kg·hm-2 ,K为 6~ 11kg·hm-2 ,Ca为 46~ 73kg·hm-2 ,Mg为 5~ 8kg·hm-2 ;1年的凋落量为 3 70~ 5 91t .hm-2 ,叶 >枝 >皮 >球果 ,养分积累量N为 2 3 8~ 43 6kg·hm-2 ·a-1,P为 1 5~ 2 8kg·hm-2 ·a-1,K为 7~ 11 5kg·hm-2 ·a-1,Ca为 14 5~ 2 1 8kg·hm-2 ·a-1,Mg为 4 7~ 7 4kg·hm-2 ·a-1,不同坡位养分的归还量明显不同。  相似文献   

17.
为了解大兴安岭林区南部和北部落叶松与白桦幼中龄林碳密度差异,准确估算该地区碳储量,本文结合南北部两个典型林业局抚育伐样地调查及森林资源统计资料,分析了南北部落叶松和白桦幼中龄林林分特征及生物量差异,利用生物量转换因子连续函数法建立了生物量(B)与蓄积量(V)的线性关系。结果显示,南部落叶松和南北部白桦直径分布均为右偏山状曲线,北部落叶松为左偏山状。样地生物量密度分布近似于正态曲线,南部各样地之间分布相对均匀,北部各样地分布相差较大。落叶松和白桦生物量与蓄积量线性关系分别为B=0.6726*V+0.5592和B=0.7317*V-0.2932。南部地区落叶松和白桦幼中龄林碳密度分别为30.54 t·hm-2和30.06 t·hm-2,北部地区分别为24.19 t·hm-2和26.77 t·hm-2。整个内蒙古大兴安岭地区落叶松和白桦幼中龄林碳储量分别为8 546.4万t和2 798.9万t,碳密度分别为26.08 t·hm-2和25.01 t·hm-2。由于幼中龄林具有较高的碳增长潜力,合理地经营大兴安岭地区落叶松和白桦幼中龄林,将有利于提高该区森林碳汇潜力。  相似文献   

18.
以四川长宁县为研究对象,选取毛竹、硬头黄竹和苦竹为长宁县代表竹种,采用随机抽样方法布点,对毛竹、硬头黄竹和苦竹分年龄、径阶进行了生物量调查,分析了竹林各器官生物量在年龄上的分布并通过建立年龄、直径与生物量的关系模型以及模型的精度检验选取毛竹、硬头黄竹和苦竹的最优生物量模型。结果表明:竹各器官地上部分生物量大小排序为:竿枝叶,毛竹生物量在年龄上的分布为:3年龄2年龄1年龄;硬头黄竹各器官地上部分生物量大小排序为:竿枝叶,硬头黄竹生物量在年龄上的分布为:3年龄2年龄1年龄;苦竹各器官地上部分生物量大小排序为:竿枝叶,苦竹生物量在年龄上的分布为:3年龄2年龄1年龄。毛竹生物量模型:W=0.581×(A×D×D)0.617,硬头黄竹生物量模型:W=-5.548+2.032×D+0.544×A,苦竹生物量模型:W=-1.845+0.723×D+0.478×A。  相似文献   

19.
川西高原光果西南杨人工林生物量及生产力的研究   总被引:4,自引:0,他引:4  
采用标准木和回归分析法 (乔木层 )及样方收获法 (灌木、草本 )研究了川西高原丘陵宽谷地带光果西南场人工林的生产力生物量及其分配规律。1 根据各径阶标准木资料 ,对 4个回归模型 (a)Y =a +bX ,(b)Y =aXb,(c)Y =aebX,(d)Y =a +b1nX 的适应性进行评价、筛选 ,结果以 (b)的相关系数最高 ,精度符合要求。2 林分总生物量为 6 1 371t·hm-2 ,其中乔木层 5 8 391t·hm-2 (95 14 0 % ) ,灌木层 1 0 90t·hm-2 (1 780 % ) ,草本层 1 890t·hm-2 (3 0 8% ) ;乔木层净生产量为 9 342t·hm-2 ·a-1,约 38 5 14 %分配到树干。3 林分总生物量及树干生物量随高度分布呈金字塔型 ,枝、叶生物量主要集中分布在树冠中上部 ;根系生物量随土壤深度的增加逐渐减少 ,呈倒金字塔形 ,根生物量占林分总生物量的 2 8 84 % ,主要分布于 0~ 6 0cm的土层中。4 地上部分生物量和总生物量分别是树干生物量的 1 2 8倍和 1 8倍 ,和其它热带、亚热带森林分析的结果相似。  相似文献   

20.
20年生杉木人工林干物质积累及相对生长模型研究   总被引:1,自引:0,他引:1  
陈修官 《防护林科技》2007,(4):28-29,40
在闽侯县荆溪镇三块立地条件大体属好、中、差不同坡位的杉木人工林样地进行生物量调查,调查结果表明,20年生杉木人工林在不同立地条件下干物质积累量差异显著,下坡干物质积累量(生物量)为154.2 t.hm-2,其中干、枝、叶的生物量分别为128.9、13.0、12.3 t.hm-2,干材积年增长量为19.63 m3.hm-2;而上坡干物质积累量仅为62.6 t.hm-2,其中干、枝、叶的生物量分别为48.1、7.4、7.1 t.hm-2,干材积年增长量仅为5.64 m3.hm-2,干、枝、叶、林分总生物量及干材积年增长量分别是下坡的37.3%、56.9%、57.7%、40.6%、28.7%。干的生物量、干的去皮材积可分别用WS=0.034 20(D2H)0.881 4、VS=0.000 046 47(D2H)0.966 5生长模型预测,枝、叶生物量分别符合经验公式1/WB=1/(0.002 831×D2H)+1/14.9、1/WL=1/(0.002 747×D2H)+1/13.71。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号