首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The growing demand for renewable energy sources in Sweden has resulted in an increased use of forest biomass that now includes logging residues. However, concern has been raised that the moderate increase in biomass removal associated with whole-tree harvesting results in a significant increase in nutrient removal, which in turn has a negative effect on future forest growth. Productivity over 31 years in planted Norway spruce (Picea abies (L.) Karst) in northern Sweden following three different harvest intensities is reported from a field experiment with exceptionally large growth reductions following whole-tree harvest. The three harvest intensities were applied in a randomized block design with four blocks: (i) conventional stem-wood harvest up to a top diameter of 5 cm (CH); (ii) whole-tree harvest of all above-stump biomass (WTH); (iii) branch and stem harvest with needles left on site (BSH). Recovery rate of biomass was almost 100% and the logging residues left were evenly spread over the 25- by 25-m experimental plots. Stand growth was negatively affected by WTH: basal area after 31 years was significantly lower following WTH (10.5 m2 ha−1) as compared to CH (14.0 m2 ha−1, p = 0.005) and BSH (14.2 m2 ha−1p = 0.003). Annual height growth of a sub-sample of trees (10 undamaged trees per plot, or 40 per treatment) was used to estimate and compare long-term effects on site productivity. This showed that stand growth loss resulted from a significant but temporary reduction in site productivity on WTH plots over a 5-year period (years 8-12, 1984-1988). Nitrogen is the major growth-limiting nutrient in boreal Swedish forests, and the N-content of needles during that period suggests that the temporal reduction in site productivity (i.e., stand growth) was primarily due to increased nitrogen loss with WTH.  相似文献   

2.
The aim of this study was to determine the effect of whole-tree harvesting (WTH) on the growth of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) as compared to conventional stem harvesting (CH) over 10 and 20 years. Compensatory (WTH + CoF) and normal nitrogen-based (CH + F or WTH + F) fertilisation were also studied. A series of 22 field experiments were established during 1977-1987, representing a range of site types and climatic conditions in Finland, Norway and Sweden. The treatments were performed at the time of establishment and were repeated after 10-13 years at 11 experimental sites. Seven experiments were followed for 25 years.Volume increment was on average significantly lower after WTH than after CH in both 10-year periods in the spruce stands. In the pine stands thinned only once, the WTH induced growth reduction was significant during the second 10-year period, indicating a long-term response.Volume increment of pine stands was 4 and 8% and that of spruce stands 5 and 13% lower on the WTH plots than on CH during the first and the second 10-year period, respectively. For the second 10-year period the relative volume increment of the whole-tree harvested plots tended to be negatively correlated with the amount of logging residue. Accordingly, the relative volume increment decreased more, the more logging residue was harvested, stressing the importance of developing methods for leaving the nutrient-rich needles on site.If nutrient (N, P, K) losses with the removed logging residues were compensated with fertiliser (WTH + CoF), the volume increment was equal to that in the CH plots. Nitrogen (150-180 kg ha−1) or N + P fertilisation increased tree growth in all experiments except in one very productive spruce stand. Pine stands fertilised only once had a normal positive growth response during the first 10-year period, on average 13 m3 ha−1, followed by a negative response of 5 m3 ha−1 during the second 10-year period. The fertilisation effect of WTH + F and WTH + CoF on basal area increment was both smaller and shorter than with CH + F.  相似文献   

3.
The carryover effects of N fertilization on five coastal Pacific Northwest Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco) plantations were studied. “Carryover” is defined as the long-term impact of N fertilizer added to a previous stand on the growth of a subsequent stand. Average height and diameter at 1.3 m above-ground (DBH) of 7–9-year-old Douglas-fir trees and biomass and N-content of understory vegetation were assessed on paired control (untreated) and urea-N-fertilized plots that had received cumulative additions of 810–1120 kg N ha−1 to a previous stand. Overall productivity was significantly greater in the fertilized stands compared to the controls. In 2006, the last growth measurement year, mean seedling height was 15% greater (p = 0.06) and mean DBH was 29% greater (p = 0.04) on previously fertilized plots compared to control plots. Understory vegetation biomass of fertilized plots was 73% greater (p = 0.005), and N-content was 97% greater (p = 0.004) compared to control plots. These results show that past N fertilization markedly increased seedling growth in these plantations as well as biomass and N-content of understory vegetation in a subsequent rotation. These findings suggest that N fertilization could potentially increase site productivity of young Douglas-fir stands found on low quality sites in the Pacific Northwest 15–22 years after application by a carryover effect. These plantations have not yet reached the age where marketable materials can be harvested from them, and the growth of trees should be monitored over a longer time period before potential impacts on older stands, if any, can be determined.  相似文献   

4.
The long-term success of forest management depends primarily on the sustainability of timber production. In this study we analyse the population structure, tree age and wood increment of Malouetia tamaquarina (Aubl.) (Apocynaceae) to define a species-specific minimum logging diameter (MLD) and felling cycle by modelling volume growth. Contrary to other timber species in the nutrient-rich white-water floodplains forests (várzea), M. tamaquarina grows in the subcanopy of old-growth várzea forests. The wood of this species is utilized by local inhabitants in the floodplains for handicraft. In 35 plots of 25 m × 50 m we measured diameter at breast height (DBH) and tree height of all trees taller than 150 cm height. From 37 individuals with DBH > 15 cm we sampled two cores by increment borers to determine the wood density, tree age and diameter increment rates. In the management area of a várzea settlement with about 150 ha recently harvested trees of M. tamaquarina have been recorded and DBH was measured. The species presents an inverse J-shaped diameter distribution indicating that the species is obviously regenerating in the old-growth forests. Tree-ring analysis indicates a mean age of 74.5 years for a DBH of 22.7 cm for a studied population comprising 37 trees with maximum ages of up to 141 years for an individual with a DBH of 45.7 cm. The tree species has low annual diameter increment rates (3.16 ± 0.6 mm) despite a low wood density (0.36 ± 0.05 g cm−3). The volume growth model indicates a MLD of 25 cm and a felling cycle of 32.4 years. In the management area 35 trees with a mean DBH of 24 cm were recorded, similar to the defined MLD. The abundance of trees above the MLD is 2.7 trees ha−1, or 405 trees, when extrapolated to the whole management area. Considering a felling cycle of 32.4 years (annual production unit of 4.63 ha) this results in total of 12.5 harvestable trees, almost three times less than actually harvested. The actual practice of harvesting M. tamaquarina risks the overexploitation of this slow-growing species.  相似文献   

5.
Understanding long-term changes in forest ecosystem carbon stocks under forest management practices such as timber harvesting is important for assessing the contribution of forests to the global carbon cycle. Harvesting effects are complicated by the amount, type, and condition of residue left on-site, the decomposition rate of this residue, the incorporation of residue into soil organic matter and the rate of new detritus input to the forest floor from regrowing vegetation. In an attempt to address these complexities, the forest succession model LINKAGES was used to assess the production of aboveground biomass, detritus, and soil carbon stocks in native Eucalyptus forests as influenced by five harvest management practices in New South Wales, Australia. The original decomposition sub-routines of LINKAGES were modified by adding components of the Rothamsted (RothC) soil organic matter turnover model. Simulation results using the new model were compared to data from long-term forest inventory plots. Good agreement was observed between simulated and measured above-ground biomass, but mixed results were obtained for basal area. Harvesting operations examined included removing trees for quota sawlogs (QSL, DBH >80 cm), integrated sawlogs (ISL, DBH >20 cm) and whole-tree harvesting in integrated sawlogs (WTH). We also examined the impact of different cutting cycles (20, 50 or 80 years) and intensities (removing 20, 50 or 80 m3). Generally medium and high intensities of shorter cutting cycles in sawlog harvesting systems produced considerably higher soil carbon values compared to no harvesting. On average, soil carbon was 2–9% lower in whole-tree harvest simulations whereas in sawlog harvest simulations soil carbon was 5–17% higher than in no harvesting.  相似文献   

6.
In the climate change discussion, the possibility of carbon sequestration of forests plays an important role. Therefore, research on the effects of environmental changes on net primary productivity is interesting. In this study we investigated the influence of changing temperature, precipitation and deposition of sulphur and nitrogen compounds on forest growth. The database consisted of 654 plots of the European intensive monitoring program (Level II plots) with 5-year growth data for the period 1994–1999. Among these 654 plots only 382 plots in 18 European countries met the requirements necessary to be used in our analysis. Our analysis was done for common beech (Fagus sylvatica), oak (Quercus petraea and Q. robur), Scots pine (Pinus sylvestris) and Norway spruce (Picea abies). We developed an individual tree growth model with measured basal area increment of each individual tree as responding growth factor and tree size (diameter at breast height), tree competition (basal area of larger trees and stand density index), site factors (soil C/N ratio, temperature), and environmental factors (temperature change compared to long-term average, nitrogen and sulphur deposition) as influencing parameters. Using a mixed model approach, all models for the tree species show a high goodness of fit with Pseudo-R2 between 0.33 and 0.44. Diameter at breast height and basal area of larger trees were highly influential variables in all models. Increasing temperature shows a positive effect on growth for all species except Norway spruce. Nitrogen deposition shows a positive impact on growth for all four species. This influence was significant with p < 0.05 for all species except common beech. For beech the effect was nearly significant (p = 0.077). An increase of 1 kg N ha−1 yr−1 corresponds to an increase in basal area increment between 1.20% and 1.49% depending on species. Considering an average total carbon uptake for European forests near 1730 kg per hectare and year, this implies an estimated sequestration of approximately 21–26 kg carbon per kg nitrogen deposition.  相似文献   

7.
Pentadesma butyracea Sabine (Clusiaceae) is a multi-purpose tree that provides non-timber forest products (NTFPs). In particular, fruit almonds can be transformed into butter for cooking and cosmetics. During the present study, the following hypotheses were tested: (i) diameter structure of P. butyracea populations is independent of its fruit gathering intensity; (ii) P. butyracea seedling and sapling density and origin are independent of its fruit gathering intensity; (iii) P. butyracea fruit gathering and processing of its almonds are profitable activities and (iv) P. butyracea fruit collectors and almond transformers are receiving the lowest marketing margins in the commercial channel. The class distribution in the low-intensity harvesting sites showed a typical inverse J-shaped curve whereas the high-intensity harvesting ones showed an almost bell curve (G2 = 23.93, p = 0.0008). After data analysis, all hypotheses turned out to be wrong except the hypothesis (iii). In order to assess the effects of fruit harvesting on natural regeneration of P. butyracea, we compared seedling and sapling density of regeneration originating from seeds and roots suckers in plots that had been differentiated according to fruit harvesting intensity. These plots were laid out in riparian forests, which are the natural habitats for the species in Benin. Observed seedling and sapling density was high (13,872 ± 7886 seedlings and saplings/ha) in low-intensity harvesting sites but very low (4200 ± 3810 seedlings and saplings/ha) in high-intensity harvesting sites (F = 17.16; p = 0.0006). However, there was no significant difference between root sucker density in either type of harvesting site (F = 0.79; p = 0.3861). Collection of P. butyracea fruits and subsequent processing of its almonds into butter is an important source of income for women involved in these activities. Commercial margin analysis showed that these women involved in almonds and butter trade, far from being exploited by traders, recuperate between 49% and 80% of the price paid by the consumer, depending on the quality of the product and the length of commercial channel used.  相似文献   

8.
The effects of conventional, bole only harvesting (CH) and whole-treeharvesting (WTH) on major inorganic nutrient concentrations(K, NO3-N, NH4-N, PO4-P and Ca) in soil water are describedfrom Beddgelert forest in North Wales. Monitoring of nutrientleaching losses, and the timing thereof, from brash throughthe soil and into streams draining the CH areas allowed assessmentsto be made of the value of brash as a nutrient source for secondrotation crops. Most of the K (around 100 kg ha–1) and one-third of theP (10 out of 30 kg ha–1) leached out of the brash lyingon the CH plots within one year of felling. A pulse of K passedthrough the soil profile, but less than half this K reachedthe streams. In contrast, the P was immobilized in the soil.The lack of brash resulted in the absence of K and P pulseson the WTH plots. On the CH plots, brash was a net sink forinorganic-N for 3 years after felling. However, in both CH andWTH, a pulse of nitrate was observed in the soil and also instreams draining CH areas. The source of this nitrate may havebeen death of fine tree roots, followed by rapid mineralizationand nitrification. Calculation of a nutrient budget for a complete crop rotationindicates that P and Ca losses in harvested material are likelyto result in long-term depletion of these elements, and thatthe effects will be significantly more severe if WTH is practised.  相似文献   

9.
10.
Large tree species have a disproportional influence on the structure and functioning of tropical forests, but the forces affecting their long-term persistence in human-dominated landscapes remain poorly understood. Here we test the hypothesis that aging forest edges and small fragments (3.4–295.7 ha) are greatly impoverished in terms of species richness and abundance of large trees in comparison to core areas of forest interior. The study was conducted in a hyper-fragmented landscape of the Atlantic forest, northeast Brazil. Large tree species were quantified by recording all trees (DBH ≥ 10 cm) within fifty-eight 0.1-ha plots distributed in three forest habitats: small forest fragments (n = 28), forest edges (n = 10), and primary forest interior areas within an exceptional large forest remnant (n = 20). Large tree species and their stems ≥10 cm DBH were reduced by half in forest edges and fragments. Moreover, these edge-affected habitats almost lacked large-stemmed trees altogether (0.24 ± 0.27% of all stems sampled), and very tall trees were completely absent from forest edges. In contrast, large trees contributed to over 1.5% of the whole stand in forest interior plots (2.9 ± 2.8%). Habitats also differed in terms of tree architecture: relative to their DBH trees were on average 30% shorter in small fragments and forest edges. Finally, an indicator species analysis yielded an ecological group of 12 large tree species that were significantly associated with forest interior plots, but were completely missing from edge-affected habitats. Our results suggest a persistent and substantial impoverishment of the large-tree stand, including the structural collapse of forest emergent layer, in aging, hyper-fragmented landscapes.  相似文献   

11.
Forest harvesting disrupts the nitrogen cycle, which may affect stream water quality by increasing nitrate concentrations, reducing pH and acid neutralizing capacity, and mobilizing aluminum and base cations. We tested the application of wood chips derived from logging slash to increase immobilization of N after harvesting, which should reduce nitrate flux to streams. In August 2004, a stand of northern hardwoods was patch-clearcut in the Catskill Mountains, NY, and four replicates of three treatments were implemented in five 0.2-ha cut patches. Wood chips were applied to the soil surface at a rate equivalent to the amount of slash smaller than eight inches in diameter (1× treatment). A second treatment doubled that rate (2×), and a third treatment received no chips (0×). Additionally, three uncut reference plots were established in nearby forested areas. Ion exchange resin bags and soil KCl-extractions were used to monitor nitrate availability in the upper 5–10 cm of soil approximately every seven weeks, except in winter. Resin bags indicated that the wood chips retained 30% or 42% of the nitrate pulse, while for KCl extracts, the retention rate was 78% or 100% of the difference between 0× and uncut plots. During the fall following harvest, wood-chip treated plots had resin bag soil nitrate concentrations about 25% of those in 0× plots (p = 0.0001). In the first growing season after the cut, nitrate concentrations in wood-chip treated plots for KCl extracts were 13% of those in 0× treatments (p = 0.03) in May and about half those in 0× treatments (p = 0.01) in July for resin bags. During spring snowmelt, however, nitrate concentrations were high and indistinguishable among treatments, including the uncut reference plots for resin bags and below detection limit for KCl extracts. Wood chips incubated in litterbags had an initial C:N of 125:1, which then decreased to 70:1 after one year of field incubation. These changes in C:N values indicate that the wood-chip application can potentially immobilize between 19 and 38 kg N ha−1 in the first year after harvesting, depending on the rate of wood-chip application. Our results suggest that the application of wood chips following harvesting operations can contribute to the protection of water quality and warrant additional research as a new Best Management Practice following cutting in regions that receive elevated levels of atmospheric N deposition.  相似文献   

12.
Tropical montane cloud forest has been undergoing a drastic reduction because of its widespread conversion to pastures. Once these forests have been cleared exotic grasses are deliberately introduced for forage production. Exotic grass species commonly form monodominant stands and produce more biomass than native grass species, resulting in the inhibition of secondary succession and tree regeneration. The purpose of this study was to assess the effect of native vs. exotic grass species on the early establishment of two native tree seedlings (Mexican alder, Alnus acuminata and Jalapa oak, Quercus xalapensis) on an abandoned farm in central Veracruz, Mexico. Seedling survival and growth were monitored (over 46 weeks) in relation to grass cover and height, and available photosynthetic active radiation (PAR). More seedlings survived in the presence of the native grass Panicum glutinosum than those growing with the exotic grass Cynodon plectostachyus (92% vs. 48%). The causes of seedling mortality varied between species; Q. xalapensis was affected by herbivory by voles but mainly in the exotic grass-dominated stands, whereas A. acuminata seedlings died due to competition with the exotic grass. A. acuminata seedlings increased more in height in the exotic grass-dominated stands (102 ± 7.8 cm) compared to native grass-dominated stands (51 ± 4.7 cm). Grass layer height, cover and available PAR were correlated (Pearson; p < 0.05). In the exotic grass dominated plots, grass layer height was correlated with the relative height growth rates of Q. xalapensis (Pearson; p < 0.05). These results indicate that the exotic grass may be affecting tree regeneration directly (grass competition) and indirectly (higher herbivory). Passive restoration may occur once P. glutinosum dominated pastures are abandoned. However, when C. plectostachyus dominates, introduction of early and mid successional tree seedlings protected against vole damage is needed.  相似文献   

13.
Quantitative information on the relationships between site quality and plantation productivity (dominated by the exotic species Pinus radiata) is required to achieve goals for sustainable forest production. Soil quality is a key component of site quality. A nationwide study of soil quality measurements is reported for 35 representative forest sites, covering a wide range of climatic and edaphic conditions found throughout New Zealand's plantation forest estate, representing most of the soils used for plantation forestry in New Zealand. The objectives of the study were to find the most important soil properties that discriminated among eight New Zealand Soil Orders and determine relationships between Soil Orders and early tree growth rates for P. radiata and Cupressus lusitanica. Soil physical and chemical properties were measured to identify key soil indicators of soil quality related to tree productivity. Tree growth was measured after four years on small plots planted at very high stand density (40 000 stems ha−1). A factorial design was used to examine the influence of three factors on tree productivity: two species, P. radiata D. Don (ectomycorrhizal) and C. lusitanica Miller (endomycorrhizal); with and without fertilizer; and low or high disturbance (soil compaction and/or topsoil scalping by machinery). Carbon content, Phosphorus (P) retention, and soil physical properties that index the degree of soil compactness were strongly correlated to Soil Order. These properties are similar to soil quality factors that correlated with tree growth. Discriminant analyses of soil quality parameters by Soil Order clustered soils based on P retention (phosphate absorption capacity), subsoil Carbon (C), and subsoil air capacity (volume % of voids at 10 kPa matric potential). Allophanic Soils and Podzols clustered (from plots of first versus second canonical variates) separately from the other Soil Orders, which were somewhat clustered on the second variate within a broad clustering on the first variate. Soil Orders were ranked for tree growth rates for both species: pumice Andisols > Inceptisols > tephric Andisols > Entisols > Ultisols > Spodosols (NZ classification: for P. radiata is Pumice > Brown > Pallic > Allophanic > Recent > Raw > Ultic > Podzol and for C. lusitanica Pumice > Pallic > Allophanic > Brown > Raw > Ultic > Recent > Podzol).  相似文献   

14.
Above- and belowground biomass in a Brazilian Cerrado   总被引:1,自引:0,他引:1  
Cerrado is a biome that occupies about 25% of the Brazilian territory and is characterized by a gradient of grassland to savanna and forest formations and by high species richness. It has been severely affected by degradation and deforestation and has been heavily fragmented over the past 4-5 decades. Despite the recognized overall ecological importance of the Cerrado, there are only few studies focusing on the quantification of biomass in this biome. We conducted such a case study in the South-East of Brazil in a cerrado sensu stricto (cerrado s.s.) with the goal to produce estimates of above- and belowground biomass and to develop allometric equations. A number of 120 trees from 18 species were destructively sampled and partitioned into the components: leaves, branches and bole. Five models with DBH (D), height (H), D2H and wood density (WD) as independent variables were tested for the development of allometric models for individual tree aboveground biomass (leaves + branches + bole). One model based on basal area (BA) as a stand parameter was also tested as an alternative approach for predicting aboveground biomass in the stand level. Belowground biomass was estimated by subsampling on 10 sample plots. Mean aboveground tree biomass (bole, branches and leaves) was estimated to be 62,965.5 kg ha−1(SE = 14.6%) and belowground biomass accounted for 37,501.8 kg ha−1 (SE = 23%). The best-fit equation for the estimation of individual tree aboveground biomass include DBH and wood density as explanatory variables (R2 = 0.898; SEE = 0.371) and is applicable for the diameter range of this study (5.0-27.6 cm) and in environments with similar conditions of the cerrado s.s. sampled. In the stand level, the model tested presented a higher goodness of fit than the single tree models (R2 = 0.934; SEE = 0.224). Our estimates of aboveground biomass are higher than reported by other studies developed in the same physiognomy, but the estimates of belowground biomass are within the range of values reported in other studies from sites in cerrado s.s. Both biomass estimates, however, exhibit relatively large standard errors. The root-to-shoot ratio of the sample trees is in the magnitude of reported values for savanna ecosystems, but smaller than estimated from other studies in the cerrado s.s.  相似文献   

15.
Tropical plantation forests are meeting an increasing proportion of global wood demand and comprehensive studies assessing the impact of silvicultural practices on tree and soil functioning are required to achieve sustainable yields. The objectives of our study were: (1) to quantify the effects of contrasting organic residue (OR) retention methods on tree growth and soil nutrient pools over a full Eucalyptus rotation and (2) to assess the potential of soil analyses to predict yields of fast-growing plantations established on tropical sandy soils. An experiment was set up in the Congo at the harvesting of the first rotation after afforestation of a native herbaceous savanna. Six treatments were set up in 0.26 ha plots and replicated in 4 blocks, with OR mass at planting ranging from 0 to 46.5 Mg ha−1. Tree growth over the whole rotation was highly dependent on OR management at planting. Over-bark trunk volume 7 years after planting ranged from 96 m3 ha−1 in the treatment with forest floor and harvest residue removal at planting to 164 m3 ha−1 in the treatment with the largest amount of OR. A comparison of nutrient stocks within the ecosystem at planting and at the end of the rotation suggested that nutrient contents in OR were largely involved in the different response observed between treatments. OR management treatments did not significantly modify most of the nutrient concentrations in the upper layers of the mineral soil. Conventional soil analyses performed before planting and at ages 1 and 3 years were unable to detect differences between treatments despite large differences in tree growth. In contrast, linear regressions between stand aboveground biomass at harvesting and OR mass at planting (independent variable) showed that OR mass was an excellent predictor of stand yield (R2 = 0.99). A large share of soil fertility comes from organic material above the mineral soil in highly weathered sandy soils and OR mass at planting might be used in conjunction with soil analyses to assess the potential of these soils to support forest plantations.  相似文献   

16.
The increasing commercial interest and advancing exploitation of new remote territories of the boreal forest require deeper knowledge of the productivity of these ecosystems. Canadian boreal forests are commonly assumed to be evenly aged, but recent studies show that frequent small-scale disturbances can lead to uneven-aged class distributions. However, how age distribution affects tree growth and stand productivity at high latitudes remains an unanswered question. Dynamics of tree growth in even- and uneven-aged stands at the limit of the closed black spruce (Picea mariana) forest in Quebec (Canada) were assessed on 18 plots with ages ranging from 77 to 340 years. Height, diameter and age of all trees were measured. Stem analysis was performed on the 10 dominant trees of each plot by measuring tree-ring widths on discs collected each meter from the stem, and the growth dynamics in height, diameter and volume were estimated according to tree age. Although growth followed a sigmoid pattern with similar shapes and asymptotes in even- and uneven-aged stands, trees in the latter showed curves more flattened and with increases delayed in time. Growth rates in even-aged plots were at least twice those of uneven-aged plots. The vigorous growth rates occurred earlier in trees of even-aged plots with a culmination of the mean annual increment in height, diameter and volume estimated at 40–80 years, 90–110 years earlier than in uneven-aged plots. Stand volume ranged between 30 and 238 m3 ha−1 with 75% of stands showing values lower than 120 m3 ha−1 and higher volumes occurring at greater dominant heights and stand densities. Results demonstrated the different growth dynamics of black spruce in single- and multi-cohort stands and suggested the need for information on the stand structure when estimating the effective or potential growth performance for forest management of this species.  相似文献   

17.
Removal of logging residues causes significant nutrient losses from the harvesting site. Furthermore, collection of residues into piles could lead to small-scale differences in establishment conditions for seedlings. We studied the effects of stem-only (SOH) and aboveground whole-tree harvesting (WTH) on Norway spruce (Picea abies) seedling growth and pine weevil (Hylobius abietis) damage at two sites (SE and W Norway). We also compared two planting environments within the WTH plots (WTH-0: areas with no residues, WTH-1: areas where residue piles had been placed and removed before planting). In practice, one-third of the residues were left on site after WTH. After three growing seasons there were no differences for height or diameter increment between SOH and WTH (WTH-1 and WTH-0 combined) treatments. However, relative diameter increment was largest for WTH-1 seedlings and lowest for WTH-0 seedlings. Few seedlings sustained pine weevil attacks at the W Norway site, with no differences among treatments. At the SE Norway site, the percent of seedlings damaged by pine weevils and average debarked area were significantly higher after WTH (82% and 3.3?cm2) compared to SOH (62% and 1.7?cm2). We conclude that WTH may lead to spatial differences in establishment conditions.  相似文献   

18.
Forest dynamics after timber harvesting is a major issue for tropical forest managers and communities. Timber harvesting provides income to communities and governments and resources to industry but it has also been identified as a potential contributor to deforestation and degradation of tropical forests. In Papua New Guinea (PNG) harvesting is primarily occurring in accessible primary forests however, the fate of these forests under current harvesting practices is poorly understood.In this study we investigated the impacts of selective harvesting on stand structure, growth and dynamics, recovery and degradation, and species diversity. We also assessed the impacts of forest fire after the 1997-98 El Nino on basal area (BA) growth and mortality rates of natural tropical forests in PNG. For this study we used data from 118 (105 in selectively harvested and 13 in un-harvested forest), one-hectare permanent sample plots distributed across the country and measured for over 15 years by the PNG Forest Research Institute (PNGFRI). We analysed data from 84 of these plots in harvested forest to examine temporal trends in stand condition following harvesting. Mortality rates were investigated in 10 of the 21 plots in harvested forest that were burned during the 1997-98 El Nino drought with sufficient data for analyses. We tested a model developed in Queensland tropical forests to determine whether or not a critical threshold residual BA existed for the recovery of harvested tropical forests in PNG. Results from a logarithmic regression analysis of the relationship between starting BA (BA at first census) and stand BA increment after selective harvesting showed a positive increase in BA growth (r2 = 0.74, p < 0.05). However, there was no critical threshold in residual BA that determined whether a harvested forest was likely to degrade or recover BA growth after harvesting. Our analyses suggested that the response to harvesting was variable, with the majority of un-burned plots (75%) showing an increase in BA and remainder a decrease. Average BA of selectively-harvested tropical forests was about 17 m2 ha−1 ± 4.17 (SD). Average annual increment in BA across the 84 un-burned plots was 0.17 m2 ha−1 year−1 ± 0.62 (SD). Thus these forests generally show capacity to recover after selective harvesting even when the residual BA is low. A proportion of the BA increment is made up of non-commercial pioneer species that originate in significant gaps after harvesting. On burned plots, BA is affected by high mortality rates. The fate of these forests will depend on the degree of future harvesting, potential conversion to agriculture and the impact of fire and other disturbances.  相似文献   

19.
Many ecosystems are now dominated by introduced species, and because dominant species drive ecosystem properties, these changes lead to increased uncertainty in estimates of carbon storage and cycling. We examined aboveground biomass in forests dominated by the introduced tree Rhamnus cathartica (common buckthorn) relative to forests dominated by native species, and measured aboveground biomass increment over a three-year period (2005-2008). Three of the four lowest biomass levels occurred in R. cathartica-dominated forests, and biomass in these forest types was stored primarily in trees 10-20 cm DBH. By contrast, forests dominated by native trees (including those with R. cathartica understories) had the six highest biomass levels, and biomass was stored primarily in trees >50 cm DBH. On average, forests dominated by R. cathartica stored half as much aboveground biomass (14.6 ± 3.3 kg/m2) as forests dominated by native tree species (28.9 ± 8.3 kg/m2). R. cathartica-dominated forests also had half the aboveground biomass increment of native-dominated forests (0.28 vs. 0.60 kg/m2/year). Although known anecdotally as a fast-growing species, R. cathartica growth rates declined with increasing size. Between 2005 and 2008, R. cathartica individuals <10 cm DBH grew faster than native species; however, R. cathartica individuals >10 cm DBH grew consistently slower than native species. Overall, our findings indicate that intrinsic size limitations on R. cathartica will lead to lower biomass stocks in forests where it acts as a canopy dominant relative to forests dominated by native tree species.  相似文献   

20.
Long-term tree and seedling growth and survivorship data from permanent sample plots established in a neotropical dry forest in Jamaica from 1998 to 2008 were used to (1) model growth (periodic annual increment) and survivorship dynamics, (2) cluster structural and functional types, and (3) estimate the age of selected tropical dry forest tree species. A statistical comparison of parameter estimates derived from a generalized linear model (GLM) of each species to a reference species was used to group individuals based on size (DBH and height), and demographic dynamics (periodic annual increment and survivorship). We identified two groups of species based on structural types (canopy and sub-canopy species), three groups of species based on periodic annual increment (fast, intermediate, and slow growing) and four groups of species based on the probability of survivorship of seedlings and trees (very low probability of seedling survivorship but high tree survivorship (two groups); high survivorship throughout the DBH classes; very low survivorship, regardless of stem size). The composition of the groups was mixed, and included individuals of both structural types, and with different periodic annual increment and survival probabilities. The dichotomy of guilds found in tropical rainforests (pioneer and climax species) was not found in this forest. Individual and group GLMs incorporating empirical relationships between periodic annual increment and survivorship, across a spectrum of ontogenies and DBH’s, were also generated. The periodic annual increment models were then used to estimate the time taken by a newly germinated seedling to reach the largest recorded DBH. The fastest growing species was the hemi-cryptophyte Clusia flava which was estimated to take 74 years to reach its maximum recorded size (12.1 cm DBH), whereas the slowest growing species, Ziziphus sarcomphalus, was estimated to take 399 years to reach its maximum size (24.4 cm DBH). These dry forest trees were estimated to reach their maximum size (which was one-half or one-third of the largest DBH recorded for tropical rainforests) in a time similar to tropical rainforest trees. Some of the tree species are ubiquitous to other neotropical dry forests; therefore, our equations for periodic annual increment and survivorship can be applied elsewhere in the region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号