首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Wood quality attributes were examined in six stands of slash pine (Pinus elliottii Engelm. var. elliottii) and loblolly pine (P. taeda L.) in the lower Coastal Plain of Georgia and Florida. Several plots comprised each stand, and each plot was divided so that it received three fertilizer treatments: a control treatment with herbaceous weed control at planting and brush control at mid-rotation only (control); 45 kg ha−1 N + 56 kg ha−1 P + herbaceous weed control at planting and 224 kg ha−1 N + 45 kg ha−1 P + brush control at mid-rotation (fertilizer with N at planting); and 56 kg ha−1 P + herbaceous weed control at planting and 224 kg ha−1 N + 45 kg ha−1 P + brush control at mid-rotation (fertilizer without N at planting). Ring width, ring earlywood specific gravity (SG), ring latewood SG, whole ring SG, and ring percent latewood were measured on each of seven trees. Of these measurements, this study focused mainly on the properties related to SG. Examination of the rings showed that latewood SG was significantly lower in trees treated with fertilizers with and without N at planting in the two to three years following fertilization, but that latewood SG gradually returned to a level similar to the control. Fertilizer without N at planting may also have had a brief negative effect on earlywood SG following mid-rotation fertilization, but it was not as clear or lasting as the effect on latewood SG. Additionally, although slash and loblolly pine appear to differ in the developmental patterns of these SG properties, there were no significant differences in how these patterns interacted with treatment. This study demonstrated that fertilization treatments have similar short-term effects on the SG of slash and loblolly pines, particularly in latewood, but the trees will return to a SG pattern consistent with unfertilized trees within two or three years.  相似文献   

2.
Recently, breeding programs have attempted to produce high growth rates for shorter rotation cycles in plantation trees. In these trees, the ratio of juvenile wood increases; thus, the juvenile wood properties should be improved for structural use. To this end, it is important to understand the influences on juvenile wood properties precisely. In this study, we report on the indole acetic acid (IAA) amounts of juvenile sugi (Cryptomeria japonica) trees in September and compare the IAA amounts to those in mature trees. The IAA amounts at the lower trunks in juvenile trees were significantly larger than those in mature trees and the IAA amounts decreased with tree height. In each stand, except a mature tree stand, there is no significant effect of IAA amounts on latewood width and MFA. However, put together all samples, the latewood width and MFA increased with IAA amounts in samples with IAA <200 ng/cm2. The samples at lower trunk in juvenile trees had significantly larger IAA amounts, larger MFA and larger latewood width than the samples in mature trees (p < 0.01). The very large IAA amounts may have a certain relation with juvenile wood properties.  相似文献   

3.
With emphasis on tree breeding for wood quality in Picea jezoensis, we aimed to evaluate radial and between-family variations in the microfibril angle (MFA) of the S2 layer in the latewood tracheids in 10 open-pollinated families of 43-year-old P. jezoensis trees. In addition, the relationships between MFA/wood density with the modulus of elasticity (MOE) or modulus of rupture (MOR) were investigated. Significant differences in MFA between families were found from the pith toward the bark. MFA showed higher values around the pith area, although some families showed relatively lower values than others around this area. In addition, due to a larger coefficient of variations of MFA near the pith, the potential for juvenile wood MFA improvement may be greater compared with mature wood. MOE was correlated with MFA in juvenile wood and with wood density in mature wood, whereas MOR was mainly correlated with wood density at radial positions in both woods. Therefore, to improve the MOE and MOR of P. jezoensis wood, both MFA and wood density would be factors to consider in both juvenile and mature woods. On the other hand, there are indications that, only wood density would be an important criterion for improving mature wood properties.  相似文献   

4.
The objectives of this study were to determine the influence of site, fertilisation and age on fibre length and develop predictive models of fibre length from a comprehensive set of climatic, edaphic and stand variables. Data were collected from a nationwide set of 22 site quality plots where Pinus radiata D. Don was established at high stand densities (40 000 stems ha−1) and grown over a period of 4 years. The main environmental drivers of fibre length were identified by assessing the strength of bivariate correlations and use of multiple regression. Path analysis was used as an extension to multiple regression to separate cause from effect and quantify the direct influence of variables significantly related to fibre length.  相似文献   

5.
Growth and wood properties of 20-year-old Scots pine (Pinus sylvestris L.) trees were studied for 6 years in 16 closed chambers providing a factorial combination of two temperature regimes (ambient and elevated) and two carbon dioxide concentrations ([CO2]) (ambient and twice ambient). The elevation of temperature corresponded to the predicted effect at the site of a doubling in atmospheric [CO2]. Annual height and radial growth and wood properties were analyzed during 1997-2002. Physical wood properties analyzed included early- and latewood widths and their proportions, intra-ring wood densities, early- and latewood density and mean fiber length. Chemical wood properties analyzed included concentrations of acetone-soluble extractives, lignin, cellulose and hemicellulose. There were no significant treatment effects on height growth during the 6-year study. Elevated [CO2] increased ring width by 66 and 47% at ambient and elevated temperatures, respectively. At ambient [CO2], elevated temperature increased ring width by 19%. Increased ring width in response to elevated [CO2] resulted from increases in both early- and latewood width; however, there was no effect of the treatments on early- and latewood proportions. Mean wood density, earlywood density and fiber length increased in response to elevated temperature. The chemical composition of wood was affected by elevated [CO2], which reduced the cellulose concentration, and by elevated temperature, which reduced the concentration of acetone-soluble extractives. Thus, over the 6-year period, radial growth was significantly increased by elevated [CO2], and some wood properties were significantly affected by elevated temperature or elevated [CO2], or both, indicating that climate change may affect the material properties of wood.  相似文献   

6.
To investigate the relations between growth and the wood properties of Japanese larch (Larix kaempferi), six sample trees of varied ages and radial growth were felled and the ring width, ring density, percentage of latewood, and some other factors were determined. There were significant differences in ring density and percentage of latewood between sample trees with vigorous growth and those with poor growth. In corewood the ring density decreased with increasing ring width for all sample trees, whereas in outerwood this trend did not appear. Moreover, the latewood width increased with the increment of ring width only in outerwood, whereas there was almost no change in the corewood. The variation in patterns of ring width, ring density, and percentage of latewood in the radial direction and the relation with height was also studied.Part of this report was presented at the 47th annual meeting of the Japan Wood Research Society, Kochi, April 1997  相似文献   

7.
Reduction in the rotation ages of softwood saw-log plantations in South Africa is causing increased proportions of low stiffness sawn lumber at final harvest. It has been shown for some species that the microfibril angle (MFA) of the S2 layer of tracheids is strongly related to the modulus of elasticity (MOE) of wood, even more so than wood density, especially in wood formed during juvenile growth. The objectives of this study were to describe the variation in MFA in young Pinus patula trees and to determine the relationship between MFA and the dynamic MOE of sawn P. patula lumber. Thirty 16- to 20-year-old trees from six compartments from the Mpumalanga escarpment were processed into discs and lumber. The MFA, density and ring width were measured at two height levels using Silviscan 3. The average annual ring MFA varied between 7° and 29°; the pattern of variation depended mainly on height level and the ring number from the pith. The MFA in P. patula followed the same within-tree variation trends as in New Zealand-grown Pinus radiata but the average MFA was lower in absolute terms and differences between height levels were less pronounced. The MFA and density exhibited highly significant Pearson correlations of 0.73 and 0.70, respectively, with board dynamic MOE. A multiple regression model, which included MFA, density and ring width, explained 71% of the variation in the dynamic MOE of boards. A sensitivity analysis on the model showed that MFA and density had approximately similar influences on predicting the dynamic MOE of Pinus patula boards.  相似文献   

8.
The effect of nitrogen addition and weed management on fibre properties of wood from 6.5-year-old Eucalyptus grandis and E. tereticornis from intensively managed short-rotation plantations were investigated. Trees for analyses were sampled from plots with zero nitrogen input (n = 4), plots with high level (187 kg N ha?1) nitrogen input (n = 4), plots from which weed growth was not removed throughout the rotation (n = 4) and plots from which weeds were removed periodically (n = 4). Fibre characteristics were evaluated on wood samples collected from base, breast height, 50, 75 and 100 % of merchantable bole height of trees. Though N input and weed management improved tree growth significantly irrespective of species, the treatment effects did not cause any significant change in fibre characteristics such as fibre length, fibre diameter, lumen width and wall thickness. Longest and widest fibres were observed at the outer most radial portion of wood in all cases. In general, within tree fibre length varied significantly along the radial direction of wood. Fibre diameter, lumen width and wall thickness lacked any specific pattern between species and treatments. Runkel ratio and felting and flexibility coefficients values showed high pulping quality of wood irrespective of species and treatments. The study concluded that the fibre properties that influence pulpwood quality of Eucalyptus have not been affected by silvicultural practices, like fertilizer input and weed management, aimed at improving productivity of short-rotation eucalypt plantations.  相似文献   

9.
Impacts of elevated temperature and carbon dioxide concentration ([CO2]) on wood properties of 15-year-old Scots pines (Pinus sylvestris L.) grown under conditions of low nitrogen supply were investigated in open-top chambers. The treatments consisted of (i) ambient temperature and ambient [CO2] (AT+AC), (ii) ambient temperature and elevated [CO2] (AT+EC), (iii) elevated temperature and ambient [CO2] (ET+AC) and (iv) elevated temperature and elevated [CO2] (ET+EC). Wood properties analyzed for the years 1992-1994 included ring width, early- and latewood width and their proportions, intra-ring wood density (minimum, maximum and mean, as well as early- and latewood densities), mean fiber length and chemical composition of the wood (cellulose, hemicellulose, lignin and acetone extractive concentration). Absolute radial growth over the 3-year period was 54% greater in AT+EC trees and 30 and 25% greater in ET+AC and ET+EC trees, respectively, than in AT+AC trees. Neither elevated temperature nor elevated [CO2] had a statistically significant effect on ring width, early- and latewood widths or their proportions. Both latewood density and maximum intra-ring density were increased by elevated [CO2], whereas fiber length was increased by elevated temperature. Hemicellulose concentration decreased and lignin concentration increased significantly in response to elevated temperature. There were no statistically significant interaction effects of elevated temperature and elevated [CO2] on the wood properties, except on earlywood density.  相似文献   

10.
Summary Based on 15-year-old black spruce (Picea mariana) trees from 40 half-sib families sampled from 9 blocks of a family test in New Brunswick, this study examined intertree and intratree variation in various wood density and ring width characteristics. Of various variance components of the intertree variation, a remarkable variance component due to family was found in wood density characteristics (viz. average wood density, average earlywood density and latewood density of the tree), and these characteristics are thus under strong genetic control (h i 2 ranging from 0.60 to 0.86, and h f 2 from 0.56 to 0.68). It, to a lesser extent, applies to ring width characteristics at the tree level (viz. average ring width, and average earlywood width, latewood width and latewood percent of the tree) that show a lower heritability (h? from 0.18 to 0.28, and h f 2 from 0.22 to 0.36). Both block and block × family interaction contribute little to the total intertree variation encountered in 40 families from 9 blocks, while tree-to-tree variation within the family accounts for most (over 3/4) of the total intertree variation.Compared to the intertree variation (tree-to-tree variation within the family), the intratree variation in various wood characteristics studied is considerably larger in this species. It appears that most intraring wood density characteristics show a relatively smaller intertree variation but a relatively larger intratree variation as compared to ring width characteristics (except latewood width and latewood percent). Latewood width and latewood percent show the smallest intertree variation and the largest intratree variation. Between the two sources of the radial intratree variation, cambial age explains much more variation in most intraring wood density characteristics, while ring width accounts for more variation in earlywood width, latewood width and intraring density variation. This indicates that wood density of growth rings in this species is dependent more on cambial age than ring width (growth rate). Among various wood density and ring width characteristics studies, maximum (latewood) density shows the strongest response to calendar year. This characteristics is thus a useful dendroclimatic parameter in this species.I would like to thank Dr. E.K. Morgenstern and Mr. D. Simpson for their involvement in the planning of this study. Thanks are also due to G. Chauret, T. Keenam, R. Ploure, V. Steel and C. Reitlingshoefer for their technical assistance  相似文献   

11.
Development of optimal ways to predict juvenile wood stiffness, strength, and stability using wood properties that can be measured with relative ease and low cost is a priority for tree breeding and silviculture. Wood static modulus of elasticity (MOE), modulus of rupture (MOR), radial, tangential, and longitudinal shrinkage (RS, TS, LS), wood density (DEN), sound wave velocity (SWV), spiral grain (SLG), and microfibril angle (MFA) were measured on juvenile wood samples from lower stem sections in two radiata pine test plantations. Variation between inner (rings 1–2 from pith) and outer (rings 3–6 from pith) rings was generally larger than that among trees. MOE and MOR were lower (50%) in inner-rings than in outer-rings. RS and TS were higher (30–50%) for outer-rings than inner-rings, but LS decreased rapidly (>200%) from inner-rings to outer-rings. DEN had a higher correlation with MOR than with MOE, while MFA had a higher correlation with dry wood MOE than with MOR. SLG had higher significant correlation with MOE than with MOR. DEN and MOE had a weak, significant linear relationship with RS and TS, while MOE had a strong negative non-linear relationship with LS. Multiple regressions had a good potential as a method for predicting billet stiffness (R 2 > 0.42), but had only a weak potential to predict wood strength and shrinkage (R 2 < 0.22). For wood stiffness acoustic velocity measurements seemed to be the most practical, and for wood strength and stability acoustic velocity plus core density seemed to be the most practical measurements for predicting lower stem average in young trees.  相似文献   

12.
The relationships between bending properties, compressive strength, tracheid length, microfibril angle, and ring characteristics of 20-year-old Taiwania (Taiwania cryptomerioides Hay.) trees were examined. The trees came from different thinning and pruning treatments, but the practices showed no significant effect on the investigated properties. The results showed that based on comparison with the literature, plantation-grown immature Taiwania have noticeably lower average strength properties than mature trees of the same species. Wood density and bending and compressive strengths were not related to either tracheid length or microfibril angle in young Taiwania. There were positive relationships between bending strength and compressive strength. The wood density, ring width, earlywood width, earlywood density, and latewood percentage were the most important predictors of strength by simple linear regressions. The wood density and ring width/earlywood width may be considered as indicators for assessing the bending strength, while wood density and latewood percentage were the best predictors of compressive strength by multiple linear regressions.  相似文献   

13.
Genetic- and environmental variation and correlation patterns were characterized for modulus of elasticity (MOE), modulus of rupture (MOR) and related wood traits: latewood proportion, wood density, spiral grain, microfibril angle and lignin content in five full-sib families of Norway spruce. The families were evaluated on the basis of clearwood specimens from the juvenile -mature wood transition zone of 93 sampled trees at age 30 year from seed. Family-means varied significantly (p < 0.05) for all wood traits studied except lignin content. MOE varied between 7.9–14.1 GPa among trees and 9.4–11.0 GPa among families. MOR varied between 47–87 MPa among trees and 61–71 MPa among families. Families remained significantly different in an analysis of specific MOE (MOE/density) and MOR (MOR/density). Hence, solely relying on wood density as a wood quality trait in tree breeding would not fully yield the potential genetic gain for MOE and MOR. Correlations between wood structural traits and specific MOE and MOR are presented and discussed.  相似文献   

14.
Models for predicting microfibril angle variation in Scots pine   总被引:1,自引:0,他引:1  

Context

Microfibril angle (MFA) is one of the key determinants of solid timber performance due to its strong influence on the stiffness, strength, shrinkage properties and dimensional stability of wood.

Aims

The aim of this study was to develop a model for predicting MFA variation in plantation-grown Scots pine (Pinus sylvestris L). A specific objective was to quantify the additional influence of growth rate on the radial variation in MFA.

Methods

Twenty-three trees were sampled from four mature Scots pine stands in Scotland, UK. Pith-to-bark MFA profiles were obtained on 69 radial samples using scanning X-ray diffractometry. A nonlinear mixed-effects model based on a modified Michaelis–Menten equation was developed using cambial age and annual ring width as explanatory variables.

Results

The largest source of variation in MFA (>90 %) was within trees, while between-tree variation represented just 7 % of the total. Microfibril angle decreased rapidly near the pith before reaching stable values in later annual rings. The effect of ring width on MFA was greater at higher cambial ages.

Conclusion

A large proportion of the variation in MFA was explained by the fixed effects of cambial age and annual ring width. The final model is intended for integration into growth, yield and wood quality simulation systems.  相似文献   

15.
对两个地区不同种植密度的湿地松、火炬松进行了微密度分析,研究了种植密度对木材密度径向变异模式的影响。主要结果是:种植密度对湿地松和火炬松各密度特征值径向变异模式的影响,主要表现在变异曲线平均水平高低的变动,而对变异曲线形状的影响并不显著。种植密度对湿地松和火炬松各年轮宽特征值径向变异模式的影响,主要表现在年轮宽度RW和早材宽度EW变异曲线平均水平高低的变动和RW、EW与晚材宽度LW变异曲线形状的变动。种植密度对年轮密度RD的影响从年轮内宽度和年轮密度变异曲线平均水平高低两个方面起作用,出现较复杂的情况,并非所有情况下都是单调的正相关。  相似文献   

16.
  • ? Environmental determinants of wood properties variation were examined in Eucalyptus globulus, a globally important hardwood plantation species, in southern Tasmania, Australia.
  • ? Radial variation in wood properties, measured with the SilviScan system, were re-scaled from distance to time abscissa using stem radial growth data measured with dendrometers. With this re-scaled data it was possible to evaluate how water availability and temperature affected wood density, microfibril angle (MFA) and fibre and vessel transverse dimensions in irrigated and non-irrigated trees.
  • ? Wood density, fibre radial diameter and MFA were sensitive to water availability. Wood density increased and fibre radial diameter decreased in response to reduced water availability. When high water availability was maintained, wood density was negatively correlated with temperature. Together, temperature and soil matric potential explained about 60% of temporal variation in wood density variation. In contrast MFA was not related to temperature but decreased with increasing water stress. Slower growing trees also had lower MFA than faster growing trees. Slower growing trees had a larger number of vessels per unit area of wood than faster growing trees within this even aged stand. However, vessel radius to the 4th power was significantly higher in faster growing trees than in slower growing trees.
  • ? Overall, E. globulus wood properties were sensitive to temporal changes in environmental conditions (particularly water availability) and associated growth rates. The data provided support for the hypothesis that growth rates are hydraulically mediated.
  •   相似文献   

    17.
    A total of 360 bark-to-bark-through-pith wood strips were sampled at breast height from 180 trees in 30 open-pollinated families from two rotation-aged genetic trials to study inheritance, age-age genetic correlation, and early selection efficiency for wood quality traits in radiata pine. Wood strips were evaluated by SilviScan® and annual pattern and genetic parameters for growth, wood density, microfibril angle (MFA), and stiffness (modulus of elasticity: MOE) for early to rotation ages were estimated. Annual ring growth was the largest between ages 2–5 years from pith, and decreased linearly to ages 9–10. Annual growth was similar and consistent at later ages. Wood density was the lowest near the pith, increased steadily to age 11–15 years, then was relatively stable after these ages. MFA was highest (35°) near the pith and reduced to about 10° at age 10–15 years. MFA was almost unchanged at later ages. MOE increased from about 2.5 GPa near the pith to about 20 GPa at ages 11–15 years. MOE was relatively unchanged at later ages. Wood density and MOE were inversely related to MFA. Heritability increased from zero near the pith and stabilised at ages 4 or 5 for all four growth and wood quality traits (DBH, density, MFA and MOE). Across age classes, heritability was the highest for area-weighted density and MFA, lowest for DBH, and intermediate for MOE. Age-age genetic correlations were high for the four traits studied. The genetic correlation reached 0.8 after age 7 for most traits. Early selection for density, MFA and MOE were very effective. Selection at age 7–8 has similar effectiveness as selection conducted at rotation age for MFA and MOE and at least 80% effective for wood density.  相似文献   

    18.
    The selection criteria for the first generations in the Portuguese Pinus pinaster improvement program have been the growth rate and form traits. In this work we study the consequences of this selection on wood quality traits. This study assesses genetic and phenotypic correlation between growth, wood density components, lignin content and mechanical traits (radial modulus of elasticity and radial modulus of rupture) of 46 half sib families from a progeny trail located in Leiria, Portugal, originated from seed collected in a clonal seed orchard. A total of 552 seventeen-years-old trees (about half of full rotation age) were sampled at 2 m height. Height measured at 12 years old presented a higher genetic control (h2 = 0.34) relatively to DBH, measured at 12 and 17 years old respectively (h2 = 0.17 and h2 = 0.15). The results of this study also showed that DBH growth is more dependent on latewood components than earlywood components and that higher growth in Mediterranean regions can be due to an increase of the period of latewood formation. Further, we can conclude genetic selection based on growth will not result in a decrease of wood density, will not affect the occurrence of spiral grain, and is possible to obtain an increase in the radial modulus of elasticity. The present study also showed that it is possible to select for increased growth with lower lignin proportion. Results also suggest that selection for growth at 12 years will probably not affect negatively the wood properties at 17 years.  相似文献   

    19.
    以微密度分析对19个种源杉木的木材密度径向变异模式进行了研究.不同种源间和种源内株间,年轮平均密度的径向变异曲线都存在一定的变异,但此变异主要表现在种源内株间.年轮平均密度的幼龄-成熟相关性从第3年起就极显著.由微密度分析得出的一系列密度和年轮宽特征值间的相关分析表明,在年龄影响下的变异过程中,年轮内密度变异曲线随年轮宽的变动导致晚材率变动的效应较为显著,年轮平均密度主要受晚材率影响;年轮平均密度与年轮宽呈特别显著的负相关.而在种源影响下的变异过程中分析,上述效应不明显,而不同种源间密度变异曲线的上下移动影响显著;年轮平均密度主要受早材平均密度影响;年轮平均密度与年轮宽的负相关远不如在年龄影响下的变异过程中显著.  相似文献   

    20.
    The radial variation of ring width and wood density was studied in cork oaks (Quercus suber) using microdensitometry. The observations were made in young never debarked cork oaks (30–40 years of age) and in mature trees under cork production (37–60 years of age). The cork oak wood is very dense (mean ring density 0.86 g.cm?3, between 0.79 g.cm?3 and 0.97 g.cm?3) with a small intra-ring variability (mean earlywood density 0.80 g.cm?3 and latewood density 0.90 g.cm?3). The density components decreased from pith to bark more rapidly until the 15th ring, and then only slightly. There were no significant differences in the mean density components between never debarked trees and trees under cork production but their outwards decrease was accentuated in the never debarked trees. The annual growth was high, with a ring width mean of 3.9 mm (4.2 mm in the first 30 years) and the latewood represented 57% of the annual growth.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号