首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 137 毫秒
1.
森林生物量、碳储量是评价森林生长状况的重要指标。通过野外样地调查及室内烘干称重等方法,研究了苏木山林场不同林龄华北落叶松人工林乔木层、灌木层、草本层生物量以及乔木层净生产力、碳储量积累特点和变化趋势。结果表明:幼龄林、中龄林、近熟林平均木的生物量分别为26.41 kg、32.70 kg、107.81 kg;林分生物量分别为43.66 t·hm^-2、79.88 t·hm^-2、125.83 t·hm^-2;灌木层和草本层生物量之和分别为1.44 t·hm^-2、1.19 t·hm^-2、0.95 t·hm^-2;乔木层净第一生产力分别为2.56 t·hm^-2·a^-1、3.07 t·hm^-2·a^-1、3.40 t·hm^-2·a^-1,碳储量分别为22.20 t·hm^-2、40.55 t·hm^-2、63.80 t·hm^-2。苏木山华北落叶松人工林生物量、碳储量随林龄增加而增大,各器官碳储量从大到小依次为干>根>枝>皮>叶。  相似文献   

2.
辽东山区不同林龄落叶松林分林木各器官生物量分配特征   总被引:1,自引:1,他引:0  
以辽东山区落叶松人工林为研究对象,采用样地调查和实测生物量等方法,测定落叶松幼龄林、中龄林和近熟林的生物量及其在一个年龄序列上的空间分配特征。结果表明:不同林龄落叶松林分生物量分布依次为中龄林(119.39t·hm~(-2))近熟林(94.69t·hm~(-2))幼龄林(31.44t·hm~(-2))。各器官生物量大小关系略有差异,中龄林和近熟林为树干树根树枝树叶;而幼龄林为树干树枝树根树皮树叶。落叶松人工林经营应定期采取抚育间伐,改善林木生长条件,提高落叶松人工林的生产力,以实现生态系统健康、稳定发展。  相似文献   

3.
为研究凤城市森林的碳储量,通过森林生物量—蓄积量回归模型,对森林资源变更数据按优势树种和不同林龄组的碳储量和碳储密度进行分析。结果表明:凤城市森林碳储量最大的树种是柞树,不同林龄碳储量由大到小依次为中龄林、幼龄林、成熟林、近熟林和过熟林;碳储密度由大到小依次为近熟林、中龄林、过熟林、成熟林和幼龄林。  相似文献   

4.
不同林龄麻栎林地上生物量及碳储量的分布特征   总被引:1,自引:0,他引:1  
在江苏句容选取样木构建了麻栎地上部分各器官的生物量回归模型,探讨了麻栎林地上部分不同林龄麻栎单株、林分、灌草层和枯枝落叶层的生物量及碳储量的分布特征.结果表明:随着林龄的增大,麻栎地上部分各器官生物量呈增长趋势,树干所占比例最大;灌草层和枯枝落叶层生物量随林龄增加而增大,幼龄林、中龄林、近熟林和成熟林的林分地上生物量分别为30.01、110.86、179.48和226.73t/hm2.麻栎林各组分含碳率随林龄增大总体呈增加趋势,但差异不大;幼龄林、中龄林、近熟林和成熟林的地上碳储量随着林龄的增加而增大,分别为13.25、48.97、80.60和107.28 t/hm2,乔木层是麻栎林地上碳储量的主体,乔木层各器官碳储量大小为:树干>树枝>树皮>树叶,树干是其碳储量的主要器官.  相似文献   

5.
盈江县主要森林类型碳汇功能及其固碳价值评价   总被引:3,自引:0,他引:3  
利用盈江县森林资源规划设计调查数据,依据不同森林类型生物量与蓄积量之间的回归方程,对盈江县几种主要森林类型的生物量和碳贮量进行了推算,分析了不同林龄结构的碳密度以及天然林与人工林的碳贮量,并对整个盈江县的森林经济价值进行估算。结果表明:盈江县主要森林类型的总碳贮量为1319.4万t,固碳价值为1583280万元。阔叶树的碳汇能力最强,其次是栎类;不同龄组碳密度高低排序的基本规律是:过熟林〉成熟林〉近熟林〉中龄林〉幼龄林;而中龄林的碳贮量最多,过熟林碳贮量最少。  相似文献   

6.
湖北省太子山森林植被碳密度及碳储量研究   总被引:1,自引:0,他引:1  
以湖北省太子山林场管理局2009年森林二类清查数据资料为基础,运用生物量转换因子连续函数法,从森林类型、林龄和林分起源角度,对该区域森林植被碳储量和碳密度进行估测.研究表明:湖北省太子山林管局森林植被碳储量为233855.66 t,平均植被碳密度为39.31 t·hm^-2.人工林碳储量高于天然林4.02倍,该区域森林植被碳储量主要由人工林提供.按森林类型划分,不同森林类型碳储量和碳密度均表现为针叶林>阔叶林>针阔混交林;按林龄划分森林碳储量,幼龄林>成熟林>中龄林>近熟林>过熟林,各林龄碳密度随林龄的增加表现为先增加后降低的趋势,中幼林森林面积和碳储量所占比例较大,该区域森林植被碳储量潜力巨大.  相似文献   

7.
以闽江入海口沿岸上游林区为研究对象,采用生物量推算法对调查资料进行处理,从森林植被类型和林龄两方面分析林区主要森林类型的碳储量和碳密度的分布情况。结果表明:除西部高山区外,碳密度分布从东往西逐渐升高,在人类活动区域碳密度变化范围主要为20~40t/hm2。不同林龄碳储量从小到大排序为中龄林(82 171.91t)幼龄林(43 692.93t)近熟林(18 851.71t)成熟林(5 789.81t),碳密度在针叶林、阔叶林与针阔混交林各林龄分布中均表现为成熟林近熟林中龄林幼龄林。随着龄级的增大,碳密度增大,随着森林的增长,固碳能力逐渐增大。  相似文献   

8.
西江流域桉树生态系统碳贮量   总被引:3,自引:0,他引:3  
对广东省西江流域不同林龄桉树人工林生态系统碳贮量开展研究,分析桉树人工林的生长周期及人工经营对生态系统的乔木、林下植物、凋落物和土壤碳贮量及其分配格局的影响,并对桉树碳汇能力及经济价值进行评估。结果表明:(1)1年生桉树林土壤0~25cm和25~50cm层有机碳密度分别为68.69t·hm^-2和40.85t·hm^-2,3年生分别为69.84t·hm^-2和40.18t·hm^-2,同一土层不同林龄间土壤有机碳密度差异不显著(P〉0.05),在垂直分布上均表现出随土壤深度增加而极显著降低的趋势。(2)1年生桉树生态系统碳储量为107.33t·hm^-2,空间分配序列为土壤层(95.94t·hm^-2,89.39%)〉地表凋落物层(4.52t·hm^-2,4.21%)〉乔木层(3.84t·hm^-2,3.58%)〉林下植被层(3.03t·hm^-2,2.82%);3年生桉树人工林生态系统的碳储量为128.72t·hm^-2,空间分配序列为土壤层(99.28t·hm^-2,77.13%)〉乔木层(23.38t·hm^-2,18.16%)〉地表凋落物层(3.62t·hm^-2,2.81%)〉林下植被层(2.44t·hm^-2,1.90%),二者均是土壤层贡献率最大。(3)1年生桉树人工林生态系统碳汇总价值为45728.26元/hm^2,固定CO2的经济效益可达到167822.141元/hm^2。3年生桉树人工林生态系统碳汇总价值55601.65元/hm^2,固定CO2的经济效益可达到204058.04元/hm^2。  相似文献   

9.
以华北落叶松人工林为研究对象,选择18a、22a、38a等3个不同林龄的林分,每个林龄林分设置15块样地。通过样地调查,对华北落叶松人工林的林分生物量、林下植被层生物量、林分净生产力进行研究,以揭示其生物生产力。结果表明:华北落叶松人工林林分生物量随着林龄的增加而增加,18a、22a、38a的林分生物量分别为94.58t/hm2、101.19t/hm2、216.25t/hm2。各器官的生物量分配,以干材所占的比例最大,达到51.36%以上;华北落叶松人工林林下植被层中凋落物层与灌木、草本层的生物量也随着林龄的增加而不断积累;华北落叶松森林净生产力表现为乔木层的净第一生产力、不同林龄阶段的华北落叶松人工林植被净生产力均较高,达到4.60t/(hm2·a)以上,其中干材的净生产力积累最快,为2.36~3.20t/(hm2·a)。  相似文献   

10.
马尾松人工林生产与碳素动态   总被引:7,自引:0,他引:7  
对广西中部丘陵区不同年龄阶段(8年生、14年生、23年生、38年生)的马尾松人工林生物量和净生产量进行了研究,探讨了该人工林生产与碳素动态.结果表明马尾松林的生物量和碳贮量随着年龄的增长而增加,马尾松幼龄林(8年生)、中龄林(14年生)、近熟林(23年生)、成熟林(38年生)生物量分别为32.0、108.0、186.6、197.4 t@hm-2,相应地其碳贮量分别为15.896、53.788、94.357、98.708 t@hm-2;不同年龄阶段马尾松林的凋落物现存量和碳贮量大小顺序为近熟林>中龄林>幼龄林>成熟林;土壤-植物系统的碳贮量空间分布序列为土壤层>乔木层>凋落物层;马尾松幼龄、中龄林、近熟林、成熟林等不同年龄阶段年净生产力分别为8.59、17.63、19.55和9.57t@hm-2a-1,年碳固定量分别为4.404、9.072、9.997和4.912t@hm-2a-1;适度间伐后,林分的生物量和碳贮量明显增加.  相似文献   

11.
以吉林省西部地区2010年森林资源面积、蓄积量及生长量、消耗量为基础数据,按IPCC清单法测算了该区域森林植被生物量、碳储量和年固碳量。结果表明:吉林西部森林植被生物量为3 015.91万t,单位面积生物量为55.65 t·hm^-2;森林植被碳储量为1 494.67万t,森林植被碳密度为27.58 t·hm^-2,森林植被年固碳量为26.89万t·a^-1。  相似文献   

12.
对比分析了5个林龄尾巨桉人工林地土壤物理性质及贮水能力的变化规律。结果表明:各林龄尾巨桉人工林地各层土壤容重均呈现随林龄增加先增大后减小的趋势,孔隙度随林龄增加有所增大,饱和持水量和田间持水量呈现随林龄增加先下降后增加的趋势。各林龄尾巨桉人工林地0~100cm土层的土壤最大贮水力排序为:7年生(585.39 t·hm-2)>3年生(582.93 t·hm-2)>5年生(580.41 t·hm-2)>1.5年生(570.99 t·hm-2)>1年生(570.63t·hm-2),土壤有效贮水力排序为:1.5年生(59.50 t·hm-2)>7年生(46.96 t·hm-2)>1年生(22.47 t·hm-2)>5年生(22.46 t·hm-2)>3年生(13.82 t·hm-2)。  相似文献   

13.
利用标准样方法研究了孝顺竹林生态系统碳含量、碳储量及其空其间分配格局。结果表明:孝顺竹林乔木层各器官碳含量介于0.4893 g.g-1~0.5222 g.g-1之间,从高到低排序依次为竹秆(0.5222 g.g-1)竹根(0.5177 g.g-1)竹蔸(0.5041 g.g-1)竹叶(0.4967 g.g-1)竹枝(0.4893 g.g-1);土壤层碳含量随深度增加而降低,0~20 cm为0.0104 g.g-1,20 cm~40 cm为0.0046 g.g-1;生态系统各组分碳含量表现为乔木层(0.5148 g.g-1)枯落物层(0.4837 g.g-1)土壤层(0.0076 g.g-1);孝顺竹林生态系统碳储量为44.8599 t.hm-2,空间分布序列为土壤层(41.2518 t.hm-2)乔木层(3.5965 t.hm-2)枯落物层(0.0116 t.hm-2),分别占91.95%,8.02%和0.03%。  相似文献   

14.
根据2017年湖南省森林资源清查资料和野外实地调查实测数据,对湖南省阔叶林生态系统碳储量、碳密度的动态特征进行了研究。结果表明:湖南省阔叶林森林生态系统总碳贮量为505.17 TgC,其中乔木层、灌草层、枯落物和土壤层层分别为113.75 TgC、9.92 TgC、9.64 TgC和377.86 TgC,分别占阔叶林生态系统碳贮量的22.52%、1.96%、1.91%和73.61%;湖南省阔叶林森林生态系统碳密度为154.51 t·hm^2,各层碳密度的大小顺序为土壤层(113.74 t·hm-2)>乔木层(34.79 t·hm-2)>灌草层(3.03 t·hm-2)>枯落物层(2.95 t·hm-2)。在3种类型阔叶林中,乡土阔叶林生态系统碳贮量为485.56 TgC,所占全省阔叶林生态系统碳贮量的96.12%;乡土阔叶林生态系统碳密度最大,为154.72 t·hm-2,杨树林生态系统碳密度最小,为149.59 t·hm-2。在阔叶林各龄组中,中、幼龄林约占湖南省阔叶林生态系统碳贮量的67.13%,是阔叶林的主要碳库且固碳潜力巨大;湖南省阔叶林碳密度幼龄林、中龄林、近熟林和成过熟林的碳密度分别介于24.60~55.51 t·hm-2之间,具体表现为成过熟林(55.51 t·hm-2)>近熟林(47.51 t·hm-2)>中龄林(44.68 t·hm-2)>幼龄林(24.60 t·hm-2)。全省阔叶林生态系统空间分布表现为碳贮量呈现明显的湘西、湘南,湘中较低特征,而碳密度整体表现出洞庭湖流域地区大于其他地区的趋势。  相似文献   

15.
本文用多样性指数(Shannon—Wiener指数、Simpson指数)、均度指数(Pielou指数)、丰富度指数(Margalef指数、Menhinick指数)对绵阳官司河流域5种不同的人工林进行生物多样性分析,结果表明:经过植被恢复,各林分类型生物多样性都有所提高,同时水土保持效益也明显提高,土壤侵蚀量减少了42%;在5种植被类型中,乔木层中以针阔混交林的生物多样性最高,灌木层以松柏混交林和麻栎林的生物多样性最高,草本层以松柏混交林的生物多样性最高;5种植被类型中,灌木层地上部分生物量以针阔混交林最大为1849.37kg·hm^-2,马尾松纯林最小为747.37kg·hm^-2,其大小顺序为:针阔混交林〉柏木纯林〉栎类林〉松柏混交林〉马尾松纯林;草本层植物地上部分部总生物量大小顺序为:松柏混交林〉柏木纯林〉栎类林〉针阔混交林〉马尾松纯林。  相似文献   

16.
中亚热带天然林改造成人工林后土壤呼吸的变化特征   总被引:1,自引:0,他引:1  
【目的】研究中亚热带常绿阔叶林(天然林)改造成人工林后土壤碳排放量的变化及主要影响因子,为评估森林类型转换对土壤碳排放的影响提供科学依据。【方法】在福建农林大学西芹教学林场的常绿阔叶林及由其改造而来的38年生闽楠人工林与35年生杉木人工林中分别设置4块20 m×20 m样地,利用Li-8100土壤碳通量观测系统于2014年9月—2016年9月进行定点观测,并同期观测土壤温度、含水量、有机碳含量(SOC)、微生物生物量碳含量(MBC)、可溶性有机碳含量(DOC)、0~20 cm土层细根生物量和年凋落物量及凋落物碳氮比(C/N)。【结果】常绿阔叶林改造成闽楠(38年后)和杉木人工林(35年后),年均土壤碳排放通量由16. 22显著降为12. 71和4. 83 tC·hm-2a-1,分别减少21. 60%和70. 20%;各林分类型的土壤呼吸温度敏感性Q10值表现为常绿阔叶林(1. 97)<闽楠人工林(2. 03)<杉木人工林(2. 91),转换为杉木人工林后,Q10值显著升高(P<0. 05);土壤温度能分别解释常绿阔叶林、闽楠人工林与杉木人工林土壤呼吸速率变化的89. 70%、88. 50%和87. 90%,土壤呼吸速率和土壤含水量相关不显著(P>0. 05);土壤呼吸速率和SOC、MBC、DOC、年凋落物量及0~20 cm土层细根生物量均极显著正相关(P<0. 01);土壤呼吸温度敏感性指数Q10值和凋落物C/N极显著正相关(P<0. 01),而与年均土壤呼吸速率及MBC极显著负相关(P<0. 01);进一步分析发现土壤MBC和SOC含量是影响土壤呼吸速率的2个最重要因子,而凋落物C/N在影响土壤呼吸温度敏感性中的贡献最大。【结论】中亚热带地区常绿阔叶林改造成闽楠(38年)或杉木(35年)人工林后,土壤碳排放通量显著降低。林分类型转换后树种组成和林分结构发生改变,凋落物数量、质量及细根生物量显著降低,土壤SOC和MBC含量显著下降可共同导致土壤呼吸通量的下降。土壤温度是3种林分类型土壤呼吸季节变化的主导因素,而土壤总有机碳库和土壤微生物量碳库的差异是不同林分之间土壤呼吸差异的主导因素,凋落物C/N对土壤呼吸的Q10影响最大。为提高模型预测森林类型转换影响土壤碳排放的精度,应综合考虑土壤有机碳库、易变性有机碳库及底物质量的变化。  相似文献   

17.
嘉陵江上游低山暴雨区3种林分凋落物量及其N、P归还   总被引:1,自引:0,他引:1  
通过对广元低山暴雨区湿地松(Pinus eliottii Engelm)纯林、刺槐(Robinia pseudoacacia)纯林、湿地松与刺槐混交林(mixed stands of Pinus eliottii and Robinia pseudoacacia)3种人工林凋落物量与养分归还的研究表明,3种林分的年凋落量范围在3609.6kg·hm^-2·a^-1到4917.6kg·hm^-2·a^-1,除刺槐林外,湿地松林和混交林均以叶的凋落量占优势,分刺占各自总凋落量的87.45%、55%。湿地松纯林凋落量1a中出现3次峰值(5月、7月、11月或12月)。刺槐纯林出现两次峰值(7月、11月或12月),混交林与刺槐纯林相似。3种林分N、P的年归还量均以刺槐林最大,湿地松纯林最小,这与凋落物总量的大小排序相反。通过凋落物各组分的养分归还中,落叶的归还量占主体。3种林分相比,湿地松林和混交林的凋落总量明显高于刺槐林,但养分归还量却有所不同,刺槐林和混交林明显高于湿地松林,这说明阔叶林有良好维持地力的能力,针阔混交比针叶纯林更能改善土壤肥力。  相似文献   

18.
对福建省沙县官庄国有林场10年生杉木纯林,通过间伐人工诱导营建杉木苦竹混交林的林分生产力进行研究。结果表明:杉木苦竹混交林林分结构合理,层次明显,呈复层林分。混交林中杉木平均木树干生物量分别是高密度杉木纯林(2500株.hm-2)、低密度杉木纯林(1125株.hm-2)的122.7%、107.9%,净生产量分别是高密度杉木纯林、低密度杉木纯林的122.6%、104.0%;叶对树干的净同化率为5.75 kg.kg-1.a-1,比低密度杉木纯林提高5.7%。混交林中苦竹立竹数6000株.hm-2,现存生物量9.43 t.hm-2,年平均净生产量为1.2 t.hm-2.a-1;8 a间伐竹材和竹笋年平均产量分别达到9.608 t.hm-2和7.587 t.hm-2,取得了一定收益,达到了长短结合,以短养长的目的,是较好的经营模式。人工诱导构建杉木苦竹混交林具有较高生产力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号