首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 130 毫秒
1.
Soil nitrogen can alter storage and remobilization of carbon and nitrogen in forest trees and affect growth responses to elevated carbon dioxide concentration ([CO(2)]). We investigated these effects in oak saplings (Quercus robur L.) exposed for two years to ambient or twice ambient [CO(2)] in combination with low- (LN, 0.6 mmol N l(-1)) or high-nitrogen (HN, 6.1 mmol N l(-1)) fertilization. Autumn N retranslocation efficiency from senescing leaves was less in HN saplings than in LN saplings, but about 15% of sapling N was lost to the litter. During the dormant season, nonstructural carbohydrates made up 20 to 30% of the dry mass of perennial organs. Starch was stored mainly in large roots where it represented 35-46% of dry mass. Accumulation of starch increased in large roots in response to LN but was unaffected by elevated [CO(2)]. The HN treatment resulted in high concentrations of N-soluble compounds, and this effect was reduced by elevated [CO(2)], which decreased soluble protein N (-17%) and amino acid N (-37%) concentrations in the HN saplings. Carbon and N reserves were labeled with (13)C and (15)N, respectively, at the end of the first year. In the second year, about 20% of labeled C and 50% of labeled N was remobilized for spring growth in all treatments. At the end of leaf expansion, 50-60% of C in HN saplings originated from assimilation versus only 10-20% in LN saplings. In HN saplings only, N uptake occurred, and some newly assimilated N was allocated to new shoots. Through effects on the C and N content of perennial organs, elevated [CO(2)] and HN increased remobilization capacity, thereby supporting multiple shoot flushes, which increased leaf area and subsequent C acquisition in a positive feedback loop.  相似文献   

2.
Nonstructural carbon(NSC),which represents the relationship between the carbon source and carbon sink,is an important factor that reflects the functions and performance of a tree.However,little is known regarding the timeseries responses of NSC storage in evergreen species to different nitrogen(N) fertilization regimes.This study,which was based on a pot experiment,examined the response of the NSC(soluble sugars and starch) storage to different N addition intensities [light N addition(LN):6.5 g N m~(-2) a~(-1);moderate N addition(MN):13.0 g N m~(-2) a~(-1);and heavy N addition(HN):26.0 g N m~(-2) a~(-1))] in saplings of the evergreen species Podocarpus macrophyllus.Our results showed that the net photosynthetic rate(P_n) under MN was significantly higher than that under LN,but was comparable to that under HN.Moreover,saplings subject to MN had a significant higher leaf biomass than that to LN and HN.These results indicated that the C supply via photosynthesis under MN was greater than that under LN and HN.The NSCs reserve under MN was considerable with that under LN,which suggested that saplings in MN group consumed higher and stored lower properties of NSCs than those in LN group.However,saplings under HN stored higher properties of NSCs than those under MN considering that no difference in NSCs pools was found between the two treatments.The leaf N concentrations were found in the increasing sequence of LN MN HN,whilst the leaf chlorophyll concentration under HN was obviously lower than that under MN.The growth rate under MN was higher than that under LN and HN.We concluded that the NSCs allocation between consumption and reserve in P.macrophyllus saplings depended on soil N availability,and an excessive N addition to soil favors the storage rather than the consumption of NSCs by plants.  相似文献   

3.
常绿和落叶阔叶树叶中N和P的变化及转移   总被引:3,自引:0,他引:3       下载免费PDF全文
薛立  罗山 《林业科学研究》2003,16(2):166-170
从叶完全展开到生长季结束对常绿阔叶树种铁冬青、红楠和海桐及落叶阔叶树种日本朴、银杏和木叶的N和P浓度进行了定期测定。结果表明,常绿阔叶树种新叶的N和P浓度从5—7月急剧下降,然后小幅波动,而老叶的N和P浓度变化缓慢。落叶阔叶树种的N和P浓度随着季节的推移而明显下降。大多数树种的P转移率大于N转移率。常绿阔叶树种的N和P的转移率大于落叶阔叶树种。  相似文献   

4.
Early season leaf growth depends largely on nitrogen (N) provided by remobilization from storage, and many studies have tested the effect of N availability to roots on the amount of N provided for new leaf development by remobilization. Although it is well known that the light regime experienced by a leaf influences the amount of N per unit leaf area (LA), the effect of the local light regime on the amount of N derived either directly from root uptake or from remobilization for early season leaf growth has never been tested at an intra- canopy scale. The objective of this study was to quantify the relative importance of (1) N availability to roots, (2) local light regime experienced by the foliage (at the shoot scale) and (3) leaf rank along the shoot, on the total amount of N allocated to leaves and on the proportions of N provided by remobilization and root uptake. To quantify the importance of N uptake and remobilization as sources of leaf N, potted hybrid walnut trees (Juglans nigra L. x regia L.) were grown outdoors in sand and fed with a labeled ((15)N) nutrient solution. By removing the apical bud, the trees were manipulated to produce only two shoots. The experimental design had two factors: (1) high (HN; 8 mol N m(-3)) and low (LN; 2 mol N m(-3)) N availability; and (2) high (HL; 90% of incident photosynthetically active photon flux (PPF)) and low (LL; 10% of incident PPF) light. Total leaf N per tree was unaffected by either N availability or irradiance. The HN treatment increased the amount of leaf N derived from root uptake at the whole-tree scale (typically around 8 and 2% in the HN and LN treatments, respectively). Nitrogen allocation within foliage of individual trees was controlled by the local light regime, which strongly affected individual leaf characteristics as leaf mass per unit LA and area- based amount of leaf (N(a)). Decreasing the light availability to a branch decreased the amount of N allocated to it, benefiting the less shaded branches. In contrast, shading of the lower branch did not affect the fraction of total leaf N remobilized for either the lower, shaded branch or the upper, unshaded branch. The relevance of these findings for tree growth modeling is discussed.  相似文献   

5.
Saur E  Nambiar EK  Fife DN 《Tree physiology》2000,20(16):1105-1112
We measured patterns of change in concentrations and contents of nitrogen, phosphorus, potassium, magnesium and calcium in fully expanded leaves of young Eucalyptus globulus (Labill.) trees growing in a plantation in southeastern Australia, over a 12-month period beginning at the onset of spring. There was significant net retranslocation of mobile nutrients on a seasonal basis from green leaves, coinciding with continued growth and production of foliage. There was a close positive relationship between initial nutrient content (N, P and K) of the leaf and amount retranslocated, and a tight coupling between N and P retranslocated from leaves. Net retranslocation was significantly correlated with basal area growth increments. Artificial shading of leaves resulted in senescence and reduction in leaf mass. It also induced retranslocation of N, P and K from leaves of different ages and from different position in the canopy. Although the mechanisms underlying the effects of shading intensity on these changes were not elucidated, shading provided an experimental tool for studying retranslocation. Comparison of the results with published data for Pinus radiata (D. Don) grown in the same environment indicated a similarity between the species in patterns of change in foliar nutrient contents and in factors governing foliar nutrient retranslocation, giving rise to unifying principles.  相似文献   

6.
One-year-old Norway spruce (Picea abies (L.) Karst.) seedlings were grown hydroponically in a growth chamber to investigate the effects of low and high nutrient availability (LN; 0.25 mM N and HN; 2.50 mM N) on growth, biomass allocation and chemical composition of needles, stem and roots during the second growing season. Climatic conditions in the growth chamber simulated the mean growing season from May to early October in Flakaliden, northern Sweden. In the latter half of the growing season, biomass allocation changed in response to nutrient availability: increased root growth and decreased shoot growth led to higher root/shoot ratios in LN seedlings than in HN seedlings. At high nutrient availability, total biomass, especially stem biomass, increased, as did total nonstructural carbohydrate and nitrogen contents per seedling. Responses of stem chemistry to nutrient addition differed from those of adult trees of the same provenance. In HN seedlings, concentrations of alpha-cellulose, hemicellulose and lignin decreased in the secondary xylem. Our results illustrate the significance of retranslocation of stored nutrients to support new growth early in the season when root growth and nutrient uptake are still low. We conclude that nutrient availability alters allocation patterns, thereby influencing the success of 2-year-old Norway spruce seedlings at forest planting sites.  相似文献   

7.
Carbon isotope composition (delta13C) of branchlet tissue at nine canopy positions, and nitrogen concentration (N(mass)) at four canopy positions, were assessed in 8-year-old hoop pine (Araucaria cunninghamii Ait. ex D. Don) trees from 23 half-sib families, grown in six blocks of a progeny test in southeastern Queensland, Australia. There was considerable variation among sampling positions, families and blocks in both delta13C and N(mass). The delta13C was positively related to N(mass) only for samples from the upper outer crown (P < 0.005). Phenotypic correlations existed between tree growth and canopy delta13C. Branchlet delta13C of the inner and lower outer crown was positively related (P < 0.037) to tree height, but delta13C in branchlets of the upper outer crown was not related to tree height, or was related negatively (P < 0.045). There were significant differences in delta13C between hoop pine families for six canopy positions (upper canopy positions as well as lower canopy positions on the northern side), with heritabilities greater than 0.40. The significance of these findings is discussed in relation to water and light competition within the tree canopy of hoop pine.  相似文献   

8.
Distribution of leaf nitrogen with respect to leaf mass per unit area (M(a)), nitrogen per unit mass (N(m)) and nitrogen per unit area (N(a)) within peach (Prunus persica L.) tree canopies was studied in two field experiments. In one experiment, leaf light exposure and M(a) were measured on leaves from different canopy positions of peach trees subjected to five nitrogen (N) fertilization treatments. Leaf light exposure and M(a) were linearly related and the relationship was independent of N fertilization. In a subsequent experiment, N fertilizer was applied to previously unfertilized trees in midsummer, after shoot growth had terminated. Application of N fertilizer did not affect mean canopy M(a). Fertilization increased N(m) of all leaves throughout the canopy compared with non-fertilized trees. No significant relationship between N(m) and M(a) was found in either fertilized or control trees. There was a linear relationship between N(a) and M(a) and the slope of the relationship was increased by N fertilizer application. We conclude that distribution of N(a) in peach tree canopies is primarily a function of M(a) partitioning with light and N(m), which is related to soil N availability.  相似文献   

9.
Seasonal changes in the N and P content of foliage in a young forest of Fagus sylvatica were measured. Leaves from branches of the upper and lower crown of dominant trees and from suppressed trees were compared. Nutrient retranslocation rates during senescence differed considerably between trees. This variation appeared not to be related to any differences in environmental factors or tree vigour, and was probably genetically induced. In dominant trees the most efficient retranslocation of N was recorded in the upper crown and probably resulted from higher leaf temperatures and a longer senescent period in the sun leaves than in the shade leaves. Phosphorus retranslocation efficiency was higher in suppressed trees than in dominant ones, but no such tendency was observed with N. The most obvious difference between leaves at different crown levels concerned the time at which P translocation began; an outflow of P from leaves in the lower crown began in June, while in the upper crown this outflow did not begin until September/October.  相似文献   

10.
Huang Z  Xu Z  Blumfield TJ  Bubb K 《Tree physiology》2008,28(10):1535-1543
Weed control may improve the growth of forest plantations by influencing soil water and nutrient availability, but our knowledge of leaf-level physiological responses to weed control at different within-canopy positions is limited for tropical and subtropical plantations. Foliar carbon (delta(13)C) and oxygen (delta(18)O) isotope compositions, gas exchange, and nitrogen (N(mass)) and phosphorus (P(mass)) concentrations at four canopy positions were assessed in a young spotted gum (Corymbia citriodora subsp. Variegata (F. Muell.) A.R. Bean & M.W. McDonald) plantation subjected to either weed control or no weed control treatment, to test if leaves at different positions within the tree canopy had the same physiological responses to the weed control treatment. Weed control increased foliar delta(13)C but lowered delta(18)O in the upper-outer and upper-inner canopy, indicating that weed control resulted in a higher foliar photosynthetic capacity at upper-canopy positions, a conclusion confirmed by gas exchange measurements. The increased photosynthetic capacity resulting from weed control can be explained by an increase in foliar N(mass). In the lower-outer canopy, weed control reduced foliar delta(13)C while lowering delta(18)O even more than in the upper-canopy, suggesting strong enhancement of the partial pressure of CO(2) in the leaf intercellular spaces and of foliar stomatal conductance in lower-canopy foliage. This conclusion was supported by gas exchange measurements. Foliar photosynthesis in the lower-inner canopy showed no significant response to weed control. The finding that leaves at different canopy positions differ in their physiological responses to weed control highlights the need to consider the canopy position effect when examining competition for soil nutrient and water resources between weeds and trees.  相似文献   

11.
We measured leaf respiration in 18 eastern deciduous forest tree species to determine if there were differences in temperature-respiration response functions among species or among canopy positions. Leaf respiration rates were measured in situ and on detached branches for Acer pensylvanicum L., A. rubrum L., Betula spp. (B. alleghaniensis Britt. and B. lenta L.), Carya glabra (Mill.) Sweet, Cornus florida L., Fraxinus spp. (primarily F. americana L.), Liriodendron tulipifera L., Magnolia fraseri Walt., Nyssa sylvatica Marsh., Oxydendrum arboreum L., Platanus occidentalis L., Quercus alba L., Q. coccinea Muenchh., Q. prinus L., Q. rubra L., Rhododendron maximum L., Robinia psuedoacacia L., and Tilia americana L. in the southern Appalachian Mountains, USA. Dark respiration was measured on fully expanded leaves at 10, 15, 20, 25, and 30 degrees C with an infrared gas analyzer equipped with a temperature-controlled cuvette. Temperature-respiration response functions were fit for each leaf. There were significant differences in response functions among species and by canopy position within species. These differences were observed when respiration was expressed on a mass, nitrogen, or area basis. Cumulative nighttime leaf respiration was calculated and averaged over ten randomly selected nights for each leaf. Differences in mean cumulative nighttime respiration were statistically significant among canopy positions and species. We conclude that effects of canopy position and species on temperature-respiration response functions may need to be considered when making estimates of whole-tree or canopy respiration.  相似文献   

12.
The atmospheric hydrocarbon budget is important for predicting ozone episodes and the effects of pollution mitigation strategies. Isoprene emission from plants is an important part of the atmospheric hydrocarbon budget. We measured isoprene emission capacity at the bottom, middle, and top of the canopies of a white oak (Quercus alba L.) tree and a red oak (Quercus rubra L.) tree growing adjacent to a tower in the Duke University Forest. Leaves at the top of the white oak tree canopy had a three- to fivefold greater capacity for emitting isoprene than leaves at the bottom of the tree canopy. Isoprene emission rate increased with increasing temperature up to about 42 degrees C. We conclude that leaves at the top of the white oak tree canopy had higher isoprene emission rates because they were exposed to more sunlight, reduced water availability, and higher temperature than leaves at the bottom of the canopy. Between 35 and 40 degrees C, white oak photosynthesis and stomatal conductance declined, whereas red oak (Quercus rubra) photosynthesis and stomatal conductance increased over this range. Red oak had lower rates of isoprene emission than white oak, perhaps reflecting the higher stomatal conductance that would keep leaves cool. The concentration of isoprene inside the leaf was estimated with a simplified form of the equation used to estimate CO(2) inside leaves.  相似文献   

13.
Irradiances within the crowns of saplings of two tropical tree species were simultaneously compared in primary rain forest in Costa Rica. The species examined, Minquartia guianensis Aubl., a relatively slow-growing, canopy species, and Pithecellobium pedicellare (DC) Benth., a less-tolerant, emergent species, have different crown and leaf display patterns. Crown light environments were assessed by placing arrays of quantum sensors among leaves and recording at 5-s intervals for seven days with microloggers. Median total daily quantum flux densities for saplings of both species were less than 2% of full sun and did not differ significantly. More than 90% of the measurements within the crowns of these saplings were less than 25 micromol m(-2) s(-1). Spatial variability of photon flux densities within sapling crowns was similar for the two species despite differences in leaf display patterns. In saplings of both species, photon flux densities varied significantly over the relatively short distances within crowns and from day to day. Height growth of both species was significantly correlated with total daily photon flux densities and with percentage of full sun. However, only the tolerant species, Minquartia, showed a significant correlation between diameter growth and crown light environment.  相似文献   

14.
Internal nutrient recycling through retranslocation (resorption) is important for meeting the nutrient demands of new tissue production in trees. We conducted a comparative study of nutrient retranslocation from leaves of five tree species from three genera grown in plantation forests for commercial or environmental purposes in southern Australia--Acacia mearnsii De Wild., Eucalyptus globulus Labill., E. fraxinoides H. Deane & Maiden, E. grandis W. Hill ex Maiden and Pinus radiata D. Don. Significant amounts of nitrogen, phosphorus and potassium were retranslocated during three phases of leaf life. In the first phase, retranslocation occurred from young leaves beginning 6 months after leaf initiation, even when leaves were physiologically most active. In the second phase, retranslocation occurred from mature green leaves during their second year, and in the third phase, retranslocation occurred during senescence before leaf fall. Nutrient retranslocation occurred mainly in response to new shoot production. The pattern of retranslocation was remarkably similar in the leaves of all study species (and in the phyllodes of Casuarina glauca Sieber ex Spreng.), despite their diverse genetics, leaf forms and growth rates. There was no net retranslocation of calcium in any of the species. The amounts of nutrients at the start of each pre-retranslocation phase had a strong positive relationship with the amounts subsequently retranslocated, and all species fitted a common relationship. The percentage reduction in concentration or content (retranslocation efficiency) at a particular growth phase is subject to many variables, even within a species, and is therefore not a meaningful measure of interspecific variation. It is proposed that the pattern of retranslocation and its governing factors are similar among species in the absence of interspecies competition for growth and crown structure which occurs in mixed species stands.  相似文献   

15.
Nothofagus nitida (Phil.) Krasser, an emergent tree of the Chilean evergreen forest, regenerates under the canopy. Nonetheless, it is common to find older saplings in clear areas. We hypothesized that this transition from shade to sun during the early developmental stages is made possible by an ontogenetic increase in the light acclimation capacity of photosynthesis. To test our hypothesis, we studied photosynthetic performance and photoprotection in N. nitida saplings at different developmental stages corresponding with three different height classes (short: 16.2 cm; medium-height: 48.0 cm; and tall: 73.7 cm) grown under contrasting light conditions (photosynthetic photon flux (PPF) of 20, 300 or 600 micromol m(-2) s(-1)) until newly expanded leaves had developed. Light-saturated CO(2) assimilation rate and light compensation and saturation points increased with increasing PPF. Medium-height and tall saplings acclimated to high light had higher electron transport rates and higher proportions of open Photosystem II reaction centers than shorter plants acclimated to high light. Short saplings showed higher thermal dissipation and contents of xanthophylls than taller saplings. Only medium-height and tall saplings acclimated to high light recovered after photoinhibition. State transitions were higher in short plants growing in low light, and decreased with plant height and growth irradiance. Thus, during development, N. nitida changes the balance of light energy utilization and photoprotective mechanisms, supporting a phenotypic transition from shade to sun during its early ontogeny.  相似文献   

16.
The occurrence and localization of endophytic actinomycetes within diverse organs of host plants provide ecological information that can be used to evaluate the significance of their spatial habitats. The aim of this study was to isolate and characterize endophytic actinomycetes in different organs of Quercus serrata. For this purpose, actinomycete isolates were obtained from surface-sterilized tissues of both symptomless seedlings and aged trees of Q. serrata and rhizosphere soil of the sampled seedlings. Thirty-five isolates with the ability to sporulate, including 4 from leaves of the aged trees, 10, 6, and 15 from leaves, stems, and roots of the seedlings, respectively, and 8 soil-derived isolates, were selected and characterized. The 16S rDNA nucleotide sequence analyses revealed that all of them belonged to the genus Streptomyces. According to a neighbor-joining phylogenetic tree constructed based on the results, the isolates of plant origin were divided into three major clades with high bootstrap values of 98 or 99 %, whereas eight soil-derived isolates were located at different positions from those of the endophyte isolates. Moreover, two larger clades were formed, one of which contained isolates derived only from aboveground parts, while the other contained isolates from all of the organs. These results suggest that the endophytic streptomycetes in Q. serrata may differ in their habitat positions (i.e., either above- or belowground parts).  相似文献   

17.
We investigated the sapling leaf display in the shade among trees of various leaf lifespans co-occurring under the canopy of a warm-temperate conifer plantation. We measured leaf-area ratio (aLAR) and morphological traits of saplings of evergreen broadleaved tree species and a deciduous tree species. Although we found large interspecific and intraspecific differences in aLAR even among saplings of similar size in the homogeneous light environment, we did not find a consistent trend in aLAR with leaf lifespan among the species. While deciduous trees annually produced a large leaf area, some evergreen broadleaved trees retained their leaves across years and had aLAR values as high as those of deciduous trees. Among leaf-level, shoot-level, and individual-level morphological traits, aLAR was positively correlated with current-year shoots mass per aboveground biomass in deciduous trees, and with the area of old leaves per aboveground mass in evergreen broadleaved trees. Thus, tree-to-tree variation in the degrees of annual shoot production and the accumulation of old leaves were responsible for the interspecific and intraspecific variations in aLAR.  相似文献   

18.
Modification of foliage exposition and morphology by seasonal average integrated quantum flux density (Qint) was investigated in the canopies of the shade-tolerant late-successional deciduous tree species Fagus orientalis Lipsky and Fagus sylvatica L. Because the leaves were not entirely flat anywhere in the canopy, the leaf lamina was considered to be three-dimensional and characterized by the cross-sectional angle between the leaf halves (theta). Both branch and lamina inclination angles with respect to the horizontal scaled positively with irradiance in the canopy, allowing light to penetrate to deeper canopy horizons. Lamina cross-sectional angle varied from 170 degrees in the most shaded leaves to 90-100 degrees in leaves in the top of the canopy. Thus, the degree of leaf rolling increased with increasing Qint, further reducing the light-interception efficiency of the upper-canopy leaves. Simulations of the dependence of foliage light-interception efficiency on theta demonstrated that decreases in theta primarily reduce the interception efficiency of direct irradiance, but that diffuse irradiance was equally efficiently intercepted over the entire range of theta values in our study. Despite strong alteration in foliage light-harvesting capacity within the canopy and greater transmittance of the upper crown compared with the lower canopy, mean incident irradiances varied more than 20-fold within the canopy, indicating inherent limitations in light partitioning within the canopy. This extensive canopy light gradient was paralleled by plastic changes in foliar structure and chemistry. Leaf dry mass per unit area varied 3-4-fold between the canopy top and bottom, providing an important means of scaling foliage nitrogen contents and photosynthetic capacity per unit area with Qint. Although leaf structure versus light relationships were qualitatively similar in all cases, there were important tree-to-tree and species-to-species variations, as well as evidence of differences in investments in structural compounds within the leaf lamina, possibly in response to contrasting leaf water availability in different trees.  相似文献   

19.
The influence of the forest canopy on nutrient cycling   总被引:2,自引:0,他引:2  
Prescott CE 《Tree physiology》2002,22(15-16):1193-1200
Rates of key soil processes involved in recycling of nutrients in forests are governed by temperature and moisture conditions and by the chemical and physical nature of the litter. The forest canopy influences all of these factors and thus has a large influence on nutrient cycling. The increased availability of nutrients in soil in clearcuts illustrates how the canopy retains nutrients (especially N) on site, both by storing nutrients in foliage and through the steady input of available C in litter. The idea that faster decomposition is responsible for the flush of nitrate in clearcuts has not been supported by experimental evidence. Soil N availability increases in canopy gaps as small as 0.1 ha, so natural disturbances or partial harvesting practices that increase the complexity of the canopy by creating gaps will similarly increase the spatial variability in soil N cycling and availability within the forest. Canopy characteristics affect the amount and composition of leaf litter produced, which largely determines the amount of nutrients to be recycled and the resulting nutrient availability. Although effects of tree species on soil nutrient availability were thought to be brought about largely through differences in the decomposition rate of their foliar litter, recent studies indicate that the effect of tree species can be better predicted from the mass and nutrient content of litter produced, hence total nutrient return, than from litter decay rate. The greater canopy complexity in mixed species forests creates similar heterogeneity in nutritional characteristics of the forest floor. Site differences in slope position, parent material and soil texture lead to variation in species composition and productivity of forests, and thus in the nature and amount of litter produced. Through this positive feedback, the canopy accentuates inherent differences in site fertility.  相似文献   

20.
Spatial variation in tree-regeneration density is attributed to the specialization of tree species to light availability for germination and growth. Light availability,in turn, varies across the gap-understorey mosaic. Canopy gaps provide an important habitat for the regeneration of tree species that would otherwise be suppressed in the understory. In subtropical forests, there is still a knowledge-gap relating to how canopy disturbances influence tree-regeneration patterns at local scale, and if they disproportionately favor regeneration of certain species. We aim to analyze whether canopy gaps promote tree regeneration, and tree species are specialized to gaps or understory for germination and growth. We sampled vegetation in 128 plots(0.01 ha), equally distributed in gaps and below canopy, in two subtropical Shorea robusta Gaertn.(Sal) forests in Nepal, recording the number of tree seedlings and saplings in each plot. We compared the regeneration density of seedlings and saplings separately between gaps and the understorey. The mean densities of seedlings and saplings were higher in the gaps at both sites;although there was no difference in the seedling density of the majority of the species between the habitats. No species were confined to either gap or understorey at the seedling stage. We conclude that gaps are not critical for the germination of tree species in Sal forests but these are an important habitat for enabling seedlings to survive into saplings. The classification of trees into regeneration guilds mainly based on germination does not apply to the majority of tree species in subtropical Sal forests. Our results reaffirm that gap creation promotes tree regeneration by favouring seedling survival and growth and can influence forest management for conservation, as well as for plantations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号