首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 46 毫秒
1.
木聚糖相对分子质量分布对里氏木霉合成木聚糖酶的影响   总被引:1,自引:2,他引:1  
以里氏木霉(Trichoderma reesei)Rut C-30为产酶茵,研究了相对分子质量(Mw)分布不同的木聚糖对木聚糖酶合成的影响。通过SephadexG一100凝胶过滤色谱分级分离发现木聚糖A中低Mw组分较多,木聚糖B中低Mw组分较少,木聚糖C中低Mw组分最少。分别以这3种木聚糖为碳源合成木聚糖酶,最高木聚糖酶活力分别为153.64、120.84和110.84IU/mL,产酶时间分别为60、72和96h。用这3种碳源合成的木聚糖酶酶解粗木聚糖,酶解2h时,产物中低聚木糖分别占总糖的80.70%、68.56%和66.92%。这表明低Mw组分较多的木聚糖不仅有利于促进木聚糖酶的诱导合成,而且有利于促进内切-1,4-木聚糖酶的合成。  相似文献   

2.
培养温度对里氏木霉合成木聚糖酶和纤维素酶的影响   总被引:3,自引:3,他引:3  
以里氏木霉(Trichoderma reesei)Rut C-30为产酶菌,研究了不同培养温度对木聚糖酶和纤维素酶合成的影响。培养温度(25-26℃)较低时有利于木聚糖酶和纤维素酶的合成,但产酶时间较长;培养温度(35-36℃)较高时产酶时间缩短,但木聚糖酶的合成受到一定的影响,且严重抑制纤维素酶的合成。采用变温培养,前期(24h)培养温度为35-36℃,中后期培养温度为25-26℃,能有效地促进木聚糖酶的合成,而抑制纤维素酶的合成,致使木聚糖酶与纤维素酶活的比值提高,从而有利于选择性合成木聚糖酶,木聚糖酶活和纤维素酶活力在72h达到最高值,分别为161.69和0.359IU/mL。  相似文献   

3.
纸浆漂白用木聚糖酶的选择性合成   总被引:3,自引:2,他引:3  
以里氏木霉(Trichoderma reesei) Rut C-30为产酶菌,研究了碳源、培养温度、初始pH值、碳氮比对木聚糖酶和纤维素酶合成的影响.结果表明,粗木聚糖和亚硫酸盐纸浆混合作为碳源有利于木聚糖酶和纤维素酶的合成;低温有利于木聚糖酶和纤维素酶的合成,但产酶时间较长,高温对木聚糖酶的合成有一定的影响,对纤维素酶的合成能有效地抑制,且产酶时间较短;初始pH值低有利于纤维素酶的合成,初始pH值高则延长了木聚糖酶的合成时间,且强烈抑制纤维素酶的合成;低碳氮比有利于纤维素酶的合成,高碳氮比使得木聚糖酶的合成滞后,能够有效抑制纤维素酶的合成.以粗木聚糖和亚硫酸盐纸浆混合作为碳源,调控培养温度、初始pH值和碳氮比能有效地促进木聚糖酶的合成,抑制纤维素酶的合成,致使木聚糖酶活与纤维素酶活的比值提高,从而有利于选择性合成纸浆漂白用木聚糖酶,调控培养方式为:提高碳氮比(7.2)和初始pH值(6.0),在培养初期(1 d)培养温度为35~36 ℃,中后期培养温度25~26 ℃,调控6 d后,木聚糖酶酶活和纤维素酶酶活分别为186.93和0.156 IU/mL,酶活比为1 198.  相似文献   

4.
木聚糖酶水解制取低聚木糖的研究   总被引:19,自引:0,他引:19  
比较了木聚糖酶和纤维素酶水解木聚糖制备低聚木糖的效果,并在10L酶解罐中研究了搅拌速率和酶解时间等因素对木聚糖酶水解的影响。优化了酶解工艺条件,当木聚糖质量浓度为30g/L,木聚糖酶体积用量为1%,搅拌速率180r/min时,酶解2h低聚糖得率可达35.2%。总糖得率为41.9%。产品酶解液中25.9%固形物是聚合度2-5的低聚木糖。  相似文献   

5.
碳氮比对里氏木霉合成木聚糖酶的影响   总被引:6,自引:2,他引:6  
以里氏木霉(Trichoderma reesei)Rut C-30为产酶菌,研究了不同碳氮比对木聚糖酶合成的影响。结果表明,低碳氮比有利于促进内切-β-木聚糖酶的合成,抑制外切-β-木糖苷酶的合成,有利于选择性合成低外切-β-木糖苷酶活的内切-β-木聚糖酶。高碳氮比使得木聚糖酶的合成滞后,能够有效地抑制纤维素酶的合成,提高木聚糖酶活与纤维素酶活的比值,有利于选择性合成低纤维素酶活的木聚糖酶。  相似文献   

6.
分批和分批补料培养合成低纤维素酶酶活力的木聚糖酶   总被引:1,自引:0,他引:1  
研究了里氏木霉RutC30在分批培养和分批补料培养模式下合成低纤维素酶酶活力的木聚糖酶及其在生物漂白上的应用。底物质量浓度为15g/L的木聚糖分批培养合成木聚糖酶,酶活力为152.09IU/mL、酶产率为2112.4IU/(L·h)、酶得率为10139.3IU(以每克木聚糖计,下同)。底物质量浓度为17g/L的木聚糖分批补料合成木聚糖酶,酶活力为252.14IU/mL、酶产率为3501.9IU/(L·h)、酶得率为14831.8IU,产酶效果远优于分批培养模式。该木聚糖酶用于草浆预漂白,在相同有效氯用量下,与对照浆相比可使白度提高2%~5%,SBD;在达到相同白度条件下,木聚糖酶预处理的纸浆后续漂白有效氯用量可降低43%。  相似文献   

7.
分别研究了粗木聚糖酶和纯化的木聚糖酶在超滤膜反应器(UMR)和常规反应器(CSBR)中的酶解特性。粗木聚糖酶或纯木聚糖酶在UMR中酶解木聚糖时,反应进行了525 m in时所得产品中低聚木糖各组分的质量分数(木二糖~木五糖)均在20%左右,木糖质量分数约为9.5%。在UMR中粗木聚糖酶降解木聚糖时的低聚木糖得率、低聚木糖占总糖的比例和低聚木糖生产能力比纯木聚糖酶在CSBR中分别高19.1%、14.8%和13.5%;而木糖的得率却低55.2%。粗木聚糖酶在UMR中酶解木聚糖时,所得低聚木糖产品中木二糖~木五糖组分含量基本相等;纯木聚糖酶在CSBR中酶解木聚糖时,所得低聚木糖产品中木二糖含量较高。同纯木聚糖酶在CSBR中酶解特性相比,粗木聚糖酶在UMR中酶解木聚糖可以制得高质量低聚木糖。  相似文献   

8.
纤维素和木聚糖复合诱导合成木聚糖酶的研究   总被引:4,自引:0,他引:4  
以里氏木霉(Rrichoderma reesei)为产酶菌,分别对纤维素、纤维素和木聚糖诱导产酶的功能进行了研究。研究发现,纤维素具有诱导木聚糖酶合成的功能;纤维素和木聚糖混合对木聚糖酶合成具有促进作用,可大幅度提高木聚酶活力。与纯木聚糖(5g/L)产酶相比,纯木聚糖(4g/L)和纸浆(1g/L)混合产酶木聚糖酶活可以提高45%。研究成果为采用富含木聚糖的植物纤维料作碳源制备木聚糖酶提供了理论依据。  相似文献   

9.
研究了重组木聚糖酶C0602生产低聚木糖的制备工艺,考察了不同类型底物、底物浓度和酶用量对酶解效率和低聚木糖产率的影响.实验结果表明,低聚木糖生产原料以抽提木聚糖为宜.桦木木聚糖质量浓度30g/L,重组木聚糖酶用量20 IU/g条件下水解4 h,酶解率可达56.05%,低聚木糖产率(C2~C6)为29.76%,产品平均...  相似文献   

10.
内切木聚糖酶的选择性纯化及酶解制备低聚木糖的研究   总被引:2,自引:3,他引:2  
研究了超滤分离除去里氏木霉木聚糖酶中的外切-β-木糖苷酶,以及酶解制备低聚木糖。研究结果表明:用超滤的方法能完全除去外切-β-木糖苷酶,透过液经十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)鉴定为单带,酶解产物全部是低聚木糖,当酶解时间从2 h延长到10 h时,低聚木糖的得率从26.83%增加到54.22%;而用粗木聚糖酶酶解制备低聚木糖时,当酶解时间从2 h延长到10 h时,低聚木糖得率从17.97%下降到11.12%。因此,采用该技术可以大幅度增加总糖中低聚木糖所占的比例,显著提高木聚糖原料的有效利用率。  相似文献   

11.
高温预处理对木聚糖酶水解制备低聚木糖的促进作用   总被引:1,自引:0,他引:1  
采用160~180℃的高温对木聚糖酶解残渣中残余木聚糖进行预处理,并将预处理液酶水解。最优反应条件为180℃预处理30 m in,残余木聚糖的42.54%被有效降解,上清液中低聚木糖(XOS)的含量占上清液总糖的32.13%。上清液经木聚糖酶酶解后,低聚木糖的含量可达到上清液总糖的84.93%。  相似文献   

12.
以纤维素酶水解胡芦巴半乳甘露聚糖所得产物 1为原料;用普鲁兰酶水解产物1侧链的α -1,6糖苷键,以还原糖得率为指标,通过 L 9(34)正交试验优化了制备低相对分子质量胡芦巴半乳甘露聚糖(产物2)的工艺,并对产物进行了表征.试验结果表明,普鲁兰酶的最佳工艺条件为:酶用量为2000ASPU/g,酶解时间2h,pH值5.2,酶解温度60℃,此时还原糖得率为43.8%.用黏度法测得水解产物2的黏均相对分子质量( M V)为5.10×104.红外光谱结果表明,1595cm-1的-OH吸收峰和1402cm-1处C-H的变角振动吸收峰变强,由此说明胡芦巴半乳甘露聚糖的糖苷键断裂,羟基的数量增加.X射线衍射图谱结果表明,胡芦巴半乳甘露聚糖的结晶区只受轻微破坏,由此说明酶解反应主要发生在胡芦巴半乳甘露聚糖的非结晶区.  相似文献   

13.
木聚糖酶解反应与膜分离技术研究   总被引:2,自引:1,他引:2  
过程耦合是应用技术领域研究的热点之一 ,膜及膜分离技术的开发促进了过程耦合技术的发展。如膜超滤、膜萃取、膜蒸馏、渗透蒸发。在超滤膜反应器中木聚糖酶解制备低聚木糖的条件 :酶体积用量1 0 % ,木聚糖质量浓度 3 0 .0 g/L ,稀释率 1h-1,pH值 5 .0 ,反应温度 48℃ ,酶解时间 1 3 5min。在该条件下 ,低聚木糖得率、木糖得率、低聚木糖生产能力及低聚木糖与总糖之比分别为 2 8.5 % ,4.1 % ,3 .80g/ (L·h)和0 .87,并比较了分批加料、浓缩酶、常规反应器中酶解反应效果 ,浓缩木聚糖酶酶解结果表明 :木糖得率很低(0 .2 % ) ,低聚木糖得率为 3 5 .9%。  相似文献   

14.
研究了生产低聚木糖(XOS)所得的废渣对里氏木霉纤维素酶合成的诱导作用和纤维素酶水解特性.废渣对里氏木霉合成纤维素酶的诱导作用较差,而纤维素酶水解性能优异.里氏木霉以含纤维素15 g/L的废渣为碳源合成纤维素酶,滤纸酶活为0.48 FPIU/mL,酶产率为6.67 FPIU/(L·h),酶得率为每克纤维素32.00 FPIU,而在相同条件下以玉米芯为碳源时滤纸酶活为3.20 FPIU/mL、酶产率19.00 FPIU/(L·h)和酶得率每克纤维素213.33 FPIU.质量浓度为20 g/L的废渣在酶用量为每克纤维素10 FPIU条件下水解24 h,水解得率达92.8 %;底物废渣质量浓度为100 g/L时,48 h纤维素酶水解得率达到80.6 %.  相似文献   

15.
以木聚糖为底物、木聚糖酶为催化剂,在木聚糖质量浓度为30.0g/L,操作压力16kPa,进料速度400mL/min,时间12h,pH值5.0,温度为48摄氏度的条件下研究了超滤膜反应器中木聚糖的酶水解反应。结果表明,木聚糖的酶水解总糖得率为60.10%,未水解木聚糖聚合度为10左右,碱溶对聚合度没有影响,未水解木聚糖重新水解,总糖得率为7.50%。  相似文献   

16.
木质生物资源的水解   总被引:14,自引:3,他引:14  
水解是利用木质生物资源以生物转化法制取乙醇的重要步骤,水解技术主要包括稀酸水解、浓酸水解和酶水解。酶水解的特点是具有选择性,降解产物少,葡萄糖得率高,能耗较低,不要求反应器具有高耐腐蚀性,被视为最有潜力降低乙醇生产成本的突破口。目前,利用木质生物资源制取乙醇还没有进入工业化生产。其原因在于成本高于利用淀粉和糖料,原料的预处理成本高、纤维素酶的生产成本高、酶活力低、纤维素的酶水解效率低、酶用量大、对半纤维素的有效利用不够。因此,需要研发有效的预处理工艺,提高纤维素底物的生物酶可及度;筛选高效纤维素酶、优化酶水解工艺,提高纤维素的水解率;利用基因重组的发酵性微生物,把戊糖发酵成乙醇,提高乙醇的产量,降低生产成本。  相似文献   

17.
采用物理破碎油茶籽细胞和酶降解相结合的方法提取油茶籽油,对油茶籽原材料的预处理时间和温度,酶解方法进行了研究,探索蛋白酶在水性条件下酶解油茶籽的提油工艺及其影响因素,结果表明:油茶籽原材料预处理的适宜加热温度为90℃、加热时间为2 h,适宜的酶解温度为38℃、pH值为8、水解酶用量为0.25%(占油料的质量比重)、酶解时间为4 h。  相似文献   

18.
酸催化的蒸汽爆破预处理强度对麦草酶水解影响的研究   总被引:7,自引:0,他引:7  
以蒸汽爆破法对0.5 %的稀硫酸浸渍的麦草进行预处理,研究了不同处理强度对麦草浆得率、半纤维素回收率、纤维素回收率、纤维素酶水解得率产生的影响.实验结果表明,在蒸汽爆破预处理过程中,麦草纤维组分发生分离.随着处理强度的提高,粗浆得率降低,细浆得率上升,纤维素的降解程度和半纤维素的去除程度提高,酶水解得率相应提高.在处理强度为4.14的预处理条件下,半纤维素的水解程度最大,而细浆得率和纤维素的酶解得率最高,分别为62.0 %和73.4 %;最佳的处理强度为3.55,此条件下,汽爆麦草原料细浆中的葡萄糖得率和滤出液中总糖的得率最高,分别为20.0 %和13.0%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号