首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
根据湖南会同生态站10a的定位实测数据,对第二代杉木人工林的生物量进行了研究.结果表明:第二代10年生杉木林的生物量为63.83t·hm-2,年净生产力为10.91t·hm-2,干和根的增长幅度大体持平;生态系统生物量分配为乔木层>草本层>灌木层>死地被物层.该项研究可为杉木连栽造成的影响提供基础数据.  相似文献   

2.
湖南会同第2代杉木人工林乔木层生物量的分布格局   总被引:10,自引:0,他引:10  
根据湖南会同生态站14年的定位实测数据,对第2代杉木人工林乔木层的生物量分配进行了研究。结果表明:第2代14年生杉木人工林乔木层的生物量为127.55t/hm2,干和根的增幅大体持平。生态系统生物量的分配比率大小顺序为:干>枝>根>叶>皮。第1、2代14年生杉木人工林乔木层生物量的差异明显,第2代杉木林的树干生物量仅占林分总生物量的61.8%,比第1代杉木人工林下降了17.46%,杉木连栽会使林木的经济系数下降。  相似文献   

3.
对广西南丹县23年生秃杉(Taiwania flousiana)林和连栽杉木(Cunninghamia lanceolata)林生物量和生产力进行研究。结果表明:23年生秃杉林和连栽杉木林各器官生物量分配存在差异,秃杉林为干材树根树枝树叶树皮,连栽杉木林为干材树根树枝树皮树叶;23年生秃杉林和连栽杉木林乔木层生物量分别为195.21、136.32t/hm~2,其中干材生物量分别为118.32、87.91 t/hm~2;2种林分乔木层年净生产力分别为8.49、5.95 t/(hm~2·a),其中干材净生产力分别为5.14、3.82 t/(hm~2·a)。因此,秃杉林比连栽杉木林具有较高的生物量积累能力,可以作为杉木人工林采伐迹地更新的替代树种。  相似文献   

4.
采用测定植株全部生物量的方法对红豆树人工林的生产力进行研究。用分层切割法测定10株样木地上部分各器官生物量,壕沟法测定地下部分根系生物量;用“相对变比生长”模型估得23年生红豆树林分生物量为121.488吨/公顷,其中乔木层为118.612吨/公顷;平均净生物量为5.282吨/公顷·年,乔木层为5.157吨/公顷·年;乔木层中树干(包括树皮)、枝、叶和根系的生物量分别为59.923、25.020、4.623和29.046吨/公顷。林分叶面积指数为5.68,叶的净同化率为303.13±30.46克/米~2·年。第23年生时树干年均净生产量与年间生产量曲线尚未相交,该林分仍属生产性生态系统。  相似文献   

5.
云杉天然林分生物量和生产力的研究   总被引:2,自引:0,他引:2  
本文对四川西部高山林区云杉天然林分的生物量和生产力进行了测定与研究。按平均标准木法和样方收获法分别调查了乔木层、幼树下木层、草本地被物层和枯枝落叶层的生物量。据调查数据,按“相对生长法则”建立了估测乔木层单株木各器官生物量的回归方程,方程均具较高的精度。文中还研究了不同自然分布区和不同林型对于云杉林分生产力的影响,以及不同密度的林分中产量结构的变化。结果表明:云杉天然林分平均总生物量为285.906吨/公顷;净生产量为6284公斤/公顷·年林分中乔木层、幼树下木层、草本地被物层和枯枝落叶层生物量的平均比例是:74.4%∶4%∶11.6%和10%。乔木层生物量为212.773吨/公顷、净生产量是4676公斤/公顷·年。乔木层各器官(干、皮、技、叶、根)生物量的比例是:54.9%∶5.2%∶12.5%∶7.1%∶20.3%。发现云杉林分的生产力在针叶树种中是比较高的。另外云杉在高山峡谷区比在丘状高原区其生产力要高出77.1%,可达6536公斤/公顷·年。调查的云杉四种林型中,生产力最高的是灌木—云杉和箭竹—云杉林型,其净生产量可达6422和9246公斤/公顷·年,其次是禾草—云杉林型,为5975公斤/公顷·年,最差的是苔藓—云杉林型,只有3095公斤/公顷·年。林分密度对林木的产量结构有显著影响。林分内各  相似文献   

6.
浙江省杉木生态公益林碳储量效益分析   总被引:3,自引:1,他引:2  
研究浙江省3个年龄级杉木优势林和含杉木混交林的生物量及其分布和碳储量。结果表明:杉木优势林依靠高密度种植和人工管理,在前10年乔木层生物量达到47t·hm-2以上,在中龄林(11~20年)及成熟林(21~30年)阶段杉木优势林乔木层生物量增加很少,且都低于同龄级的含杉木混交林;含杉木混交林乔木层的生物量随着林龄增加明显增加,中龄林比幼龄林增长了147%,成熟林比中龄林增长了28.1%;若杉木优势林改造为含杉木的混交林,碳储量至少增加0.84t·hm-2a-1;若不改良,碳储量至多增加0.21t·hm-2a-1。  相似文献   

7.
为了研究杉木人工林地下细根的碳分配及其随年龄变化规律,于2014年4月用土壤钻法对湖南省会同县杉木人工林三个不同林龄(7年生、17年生和25年生)细根生物量变化、垂直分布进行了研究。结果表明:杉木人工林0~60 cm土层内杉木细根生物量随着年龄的增加表现出先增加后减少的趋势,7、17、25年生杉木林细根生物量分别为239.79 g·m-2、271.90 g·m-2和191.60 g·m-2,占杉木细根总生物量的68.45%、56.39%和68.64%。而林下植被层地下细根生物量随杉木林年龄的增大而减少,7年、17年和25年生杉木人工林林下植被层细根生物量为别为207.20 g·m-2,54.87 g·m-2和39.54 g·m-2。不同林龄杉木林细根生物量随土层深度的增加而减少,其中7年生杉木人工林细根分布主要在表层;利用渐进累积方程分析表明,25年生杉木人工林向土层深处生长比较明显。不同林龄活细根比根长和比表面积呈现随年龄增长而降低的趋势,组织密度则呈增大趋势。  相似文献   

8.
长沙市4种人工林林下植被生物量及分布格局研究   总被引:1,自引:0,他引:1  
以长沙市城乡交错带4种人工林为研究对象,对各林分林下植被生物量的分布特征进行了分析。结果表明:4种林分林下活地被物生物量均表现为地上部分>地下部分;枯落物层生物量的变化趋势一致:已分解>半分解>未分解,且在不同林分中,枯落物的生物量占林下地被物生物量的比例均为最大,在50%~76%之间,除杉木人工林外,其余3种林分草本层所占比例最小;总生物量差异较为显著,湿地松林为28.75 t/hm2,显著大于其它3种林分;活地被物生物量以湿地松林为最大,达8.46 t/hm2;幼树层生物量的大小为湿地松林>枫香林>杉木林>樟树林;灌木层生物量的排列顺序为枫香林>湿地松林>樟树林>杉木林;草本层为杉木林>湿地松林>枫香林>樟树林;凋落物生物量的变化规律同草本层。  相似文献   

9.
根据湖南会同生态定位站11a 定位实测数据,对二代杉木人工林生物量及其垂直分布进行了研究,结果表明:密度为2175株·hm~(-2)的第二代11a 生杉木林乔木层的生物量为74.76t·hm~(-2),净生产力为6.80t·hm~(-2)·a~(-1)。其生物量分布格局为树干>树叶>树枝>树皮;在林分产量方面6m 以下树干占其总产量的82%,叶、枝主要分布在5~9m,叶占其总量的78%,枝占其总量的74%,根生物量主要集中在地表土壤30cm 以内,占其总量的89%。  相似文献   

10.
福建柏和杉木人工林细根生产力、分布及周转的比较   总被引:20,自引:3,他引:20  
对福建三明福建柏和杉木人工林细根生产力、分布及周转进行了为期 3年的研究 ,结果表明 ,福建柏年均细根生物量达 389 7g·m- 2 ,是杉木林 (2 77 2g·m- 2 )的 1 4 1倍 ;活细根年均生物量达 2 16 3g·m- 2 ,是杉木林(14 8 4g·m- 2 )的 1 4 6倍 ;<0 5mm细根生物量 (2 4 2 2g·m- 2 )则是杉木林 (12 4 7g·m- 2 )的 1 94倍 ,其占总细根生物量比例 (6 1 2 % )比杉木林 (4 5 0 % )的高出 16 2 %。福建柏和杉木细根垂直分布在 0~ 10cm土层差异最大 ,该层福建柏总细根密度 (14 4 2g·m- 2 )是杉木 (70 2g·m- 2 )的 2 1倍。福建柏林活细根生物量 1年只出现 1次峰值 (3月 ) ,而杉木林活细根则出现 2次 (3月和 9月 )。福建柏不同径级细根第 1年分散速率及分解系数均低于杉木的。福建柏林细根年净生产量 (32 0 2g·m- 2 a- 1 )和细根年死亡量 (32 6 5g·m- 2 a- 1 ) ,分别是杉木林 (2 5 1 3和 2 4 9 2g·m- 2 a- 1 )的 1 2 7倍和 1 31倍。福建柏细根年均周转速率为 1 4 8a- 1 ,低于杉木林的 (1 6 9a- 1 )。福建柏和杉木细根生物量分别仅占其乔木层生物量的 1 70 %和 1 18% ,但细根净生产力却分别占其乔木层总净生产力的 19 84 %和19 2 1% ,细根年死亡量分别占地上部分凋落物量的 4 8 74 %和 5 1 0 0  相似文献   

11.
毛竹、杉木人工林生态系统碳平衡估算   总被引:4,自引:0,他引:4  
采用CID-301PS光合测定仪,对湖南会同林区毛竹和杉木人工林土壤CO2排放动态进行观测,并结合现存生物量调查,对其生态系统碳平衡特征进行估算.结果表明:毛竹和杉木林生态系统碳贮量分别为144.3和152.52 t·hm-2,并且其碳贮量空间分布格局基本一致,土壤层是主要部分,其次为乔木层,凋落物层和林下植被层所占比例最小.毛竹林土壤层有机碳贮量占76.89%,乔木层占22.16%,凋落物和林下植被层分别占0.51%和0.41%;杉木林土壤层碳贮量占62.03%,乔木层占34.99%,凋落物和林下植被层分别占2.28%和0.70%.毛竹林和杉木林生态系统年固定CO2总量分别为38.87和26.95 t·hm-2a-1,但其每年以土壤异养呼吸和凋落物呼吸的形式排放CO2的量分别为24.35和15.75 t·hm-2a-1,毛竹林和杉木林生态系统年净固定CO2的量分别为14.52和11.21 t·hm-2a-1,折合成净碳量分别为3.96和3.07 t·hm-2a-1.  相似文献   

12.
本文对海拔930rn的17年生海南五针松(Pinus fenzeliana Hand—Mazz.)人工林分生物量和生产力进行了测定。按平均标准木法和样方收获法分别调查了乔木层、下木层、草本层和枯枝落叶。据凋查效据,建立了估测乔木层单株林木各器官生物量的回归方程。结果表明:林分总生物量平均为161.152吨/公顷,净生产量为10530.69公斤/公顷·年;其中,乔木层生物量为149.35吨/公顷,净生产量为8785.35公斤/公顷·年;叶面积为每公顷199248.7339m~2叶面积指数为19.9149公顷/公顷。从林分的产量结构上反映出下木层结构不合理,应予间伐。  相似文献   

13.
通过收集亚热带主要人工林:杉木林和马尾松的林分和试验地数据,采用通径分析法对亚热带杉木林和马尾松生物量的影响因子进行分析。结果表明:选取的7个因子(年降水量、年均温、海拔、林分密度、林龄、胸径、树高)对杉木林乔木层生物量决定程度较大,主要立地影响因子是海拔和年降水量,而对马尾松乔木层生物量决定程度较小,主要立地影响因子是年均温。此外,林分密度与两种林分乔木层生物量均为负相关关系。  相似文献   

14.
香叶树和杉木人工林生产力的比较研究   总被引:2,自引:0,他引:2  
通过对28年生香叶树与杉木人工林生长和生物量测定,进行香叶树和杉木人工林生产力的比较研究,结果表明:香叶树是一种生长迅速的阔叶树种,其人工林蓄积量为421.88m^3/hm^2,比杉木人工林高7.09%;香叶树人工林分生物量为305.43t/hm^2,是杉木人工林的1.59倍,其生物量乔木层是杉木林的1.68倍.  相似文献   

15.
根据7块不同林龄杉木人工林标准地调查的数据,对亚热带杉木人工林生物量和碳储量及其垂直分布进行研究。结果表明:杉木人工林林木和各器官生物量随着林龄的增大而增加,树干所占比重最大且逐渐增大,在林龄28年时,乔木层的生物量最大为167.86 t/hm2。杉木人工林碳储量垂直分布序列为乔木层凋落物层草本层,分别为50.28 t/hm2、4.32 t/hm2、1.50 t/hm2,平均年固碳量分别为2.44 t/hm2·a-1、0.19 t/hm2·a-1、0.14 t/hm2·a-1。杉木人工林总平均生物量、总平均碳储量和总平均年固碳量分别为119.05 t/hm2、56.10 t/hm2、2.77 t/hm2·a-1。因此,乔木层作为森林生态系统中主要的碳库层,对于森林的碳汇功能发挥着重要的作用。  相似文献   

16.
采用相对生长测定法对28年生马尾松飞播林的林分生物量调查分析表明:28年生马尾松飞播林地上部分生物量为78.697吨/hm2,与我国的20年生杉木林地上部分生物量79.48吨/hm2相接近。马尾松飞播造林无疑是一种有效的造林方式。  相似文献   

17.
采用空间替代时间和定位观测相结合的方法,在黔东南以杉木不同龄级纯林及中龄期混交林为研究对象,研究其凋落物年产量、月动态及影响因素,结果表明:(1)幼龄(≤10年)、近熟龄(21-25年)、成熟龄(26-35年)和过熟龄(≥36年)杉木纯林的凋落物产量为0.61t/(hm~2·a)、3.38t/(hm~2·a)、4.21t/(hm~2·a)和5.75t/(hm~2·a),中龄期柳杉-杉木林、马尾松-檫木-杉木林、毛竹-杉木林和马尾松-杉木林的凋落物产量为7.55t/(hm~2·a)、4.23t/(hm~2·a)、3.72t/(hm~2·a)和3.25 t/(hm~2·a)。(2)杉木纯林中幼龄林和近熟林、成熟林及过熟林的凋落物月产量差异显著,中龄期混交林中柳杉-杉木林和马尾松-杉木林的凋落物月产量差异也显著。杉木林凋落物月产量动态曲线呈3峰型,峰值出现在2-4月、7-10月和12月间。杉木不同龄级纯林及中龄期不同混交林类型内凋落物月产量动态曲线的X2检验值差异显著,季节性分布格局不同。(3)杉木纯林凋落物年产量和草本层植物生物量及土壤A层pH值的直线相关显著,混交林凋落物年产量和灌木层植物平均地径及高度、土壤A层及B层全磷含量的直线相关也显著。中龄期马尾松-檫木-杉木混交林及成熟龄期杉木纯林凋落物月产量和温度及降雨量相关显著,表明凋落物产量受气候-土壤-植被系统部分要素的综合影响。  相似文献   

18.
速生阶段杉木人工林产量结构及生产力的代际效应   总被引:13,自引:0,他引:13  
通过定位观测取得的数据 ,对速生阶段第 2代杉木人工林生物量和生产力进行研究 ,并在时间和空间上与第 1代杉木林进行比较。结果表明 :第 1、2代杉木林单株和林分生物量分别为 37 5 4、34 74kg和 85 6、71 4 5t·hm- 2 ,第 2代比第 1代下降了 8.5 2 %和 16 5 3%。第 1代杉木林生态系统的生物量为 87 93t·hm- 2 ,第2代为 76 0 2t·hm- 2 ,比第 1代低 13 5 4 % ,乔木层所占比例也比第 1代小 ,而灌木、草本和死地被层的生物量约是第 1代的 2倍。第 1代杉木树干有较大的生物量积累优势 ,对地下养分空间的竞争力强 ,而第 2代对地上养分空间的竞争力强。各生长级林木生物量分布呈反J形 ,表明杉木林处于速生阶段时林木竞争才开始 ,分化不明显。第 1代杉木林的生产力是第 2代的 1 2倍 ,杉木连栽导致生产力下降。但第 2代杉木叶的光合生产率比较高 ,说明第 2代杉木林还有一定的生产潜力可挖掘  相似文献   

19.
二代杉木人工林生物量及其垂直分布研究   总被引:1,自引:0,他引:1  
根据湖南会同生态定位站11年的定位实测数据,对二代杉木人工林生物量及其垂直分布进行了研究。结果表明:密度为2175株.hm-2的第二代11年生杉木林乔木层的生物量为74.76 t.hm-2,净生产力为6.80 t.hm-2.a-1。其生物量分布格局为树干>树根>树叶>树枝>树皮;在林分产量方面6 m以下树干所占其总产量的82%;叶、枝主要分布在5 m~9 m,叶占其总量的78%,枝占其总量的74%,根生物量主要集中在地表30 cm以内,占其总量的89%。  相似文献   

20.
杉木林枯枝落叶层现存量的影响因素分析   总被引:1,自引:0,他引:1  
通过收集杉木林枯枝落叶层现存量数据,分析杉木林枯枝落叶层现存量与年平均温度、年降水量、林分年龄、枝叶生物量、凋落物量、林下植被生物量的相关关系。结果表明,杉木林枯枝落叶层现存量与林龄、林下植被生物量、凋落物量、枝叶生物量呈显著正相关,其中与林下植被生物量相关性最大,与年均温呈负相关,而与年降水量无显著相关。多元线性回归分析表明,林龄可单独解释枯枝落叶现存量变化的21.2%,而林龄、降水量、年均温、枝叶生物量可以解释枯枝落叶现存量变化的38.6%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号