首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 281 毫秒
1.
以江西大岗山5种林龄(6、15、25、32和50年生)杉木人工林为对象,对林地土壤有机碳和全氮含量及储量的变化特征进行了研究,并讨论了碳氮储量之间的关系。结果表明:在0~20 cm土层,随着林龄的增加,土壤有机碳和全氮含量变化一致,均呈先下降后上升的趋势;在20~40 cm土层,土壤有机碳含量仍呈先下降后上升的趋势;土壤全氮含量则先上升后下降。随着林龄的增加,有机碳和全氮储量均呈现先下降后上升的趋势,在幼龄林阶段碳氮储量最高。各林龄0~40 cm土层有机碳储量分别为:幼龄林85.38 t·hm-2,过熟林79.77 t·hm-2,成熟林71.62 t·hm-2,中龄林62.30 t·hm-2,近熟林60.97 t·hm-2。各林龄氮储量分别为:幼龄林5.83 t·hm-2,过熟林5.50 t·hm-2,成熟林5.47 t·hm-2,近熟林5.10 t·hm-2,中龄林4.62 t·hm-2。碳氮储量之间呈极显著正相关关系。本研究可为不同林龄杉木人工林的合理管理以及固碳能力的提升提供理论依据。  相似文献   

2.
杉木生态系统生物量与固碳能力的分析与评价   总被引:5,自引:0,他引:5  
杉木(Cunninghamia lanceolata)是我国特有的优良速生针叶树种,分布地域广阔,在碳循环及维护生态系统平衡等方面发挥着非常重要的作用。本文通过分析大量文献,讨论了立地条件、分布区域和经营方式等因素对杉木林生态系统生物量和生产力的影响。根据文献资料对杉木林生态系统生物量和固碳能力进行了初步估测。结果表明:①中国杉木林生态系统平均生物量约为36.516 t.hm-2,平均生产力约为8.412 t.hm-2.a-1。杉木林生产力的最大值在杉木中心分布区的中亚热带,尤以中亚热带南部亚地带的最高,其生产力平均达13.50 t.hm-2.a-1;中亚热带北部亚地带平均为11.95 t.hm-2.a-1;南亚热带和北亚热带分别是8.83 t.hm-2.a-1和5.54 t.hm-2.a-1;北热带地区杉木林的生物生产力最低,平均为5.02t.hm-2.a-1。②1994年以前的统计数据,中国杉木林生态系统的总植物碳储量为:幼龄林9.98×106t,中龄林31.61×106t,近熟林11.73×106t,成熟林7.50×106t,过熟林2.87×106t,总计为63.69×106t。③目前,中国杉木林面积达1 239.1×104hm2,蓄积量为47 357.33×104m3,换算成生物量约为18 938.20×104t,总固碳量约为5 211.65×104t.a-1。目前,杉木林生态系统的碳储量的估算没有包括土壤以及凋落物层的碳含量,因此,所估算的杉木林固碳能力和总的碳储量可能偏低。  相似文献   

3.
采用样方法和收获法,根据光合作用方程式、碳税法和人工制氧法,对云南玉溪磨盘山华山松人工林(16 a中龄林、26 a近成熟林、43 a成熟林)生物量、碳储量及其空间分布特征和固碳释氧进行了研究。结果如下:三种林龄华山松人工林的生物量分别为181.515 t·hm-2、284.679 t·hm-2、295.311 t·hm-2,碳储量分别为85.751 3t C·hm-2、139.934 4 t C·hm-2、132.508 6 t C·hm-2,净碳储量分别为:5.365 3 t C·hm-2·a-1、5.383 6 t C·hm-2·a-1和3.082 7t C·hm-2·a-1;三种林龄群落各层碳储量均为乔木层枯落物层灌木层草本层,三种林龄乔木层的碳储量分别占:91.37%、94.99%、93.70%;不同林龄相同器官(根、皮、叶、干、枝)之间变异系数在2.10%~7.33%之间,而同一林龄不同器官的变异系数在2.12%~5.82%之间;方差分析结果显示除成熟林乔木外,另两种林龄乔木各营养器官之间均存在显著差异;华山松中龄林、近成熟林、成熟林同化大气中CO2和释放出O2价值量分别是355 044.221 3 yuan·hm-2,216 003.386 1 yuan·hm-2,556 831.529 6 yuan·hm-2和338 767.648 4 yuan·hm-2、577 627.367 6 yuan·hm-2和351 419.513 0 yuan·hm-2。  相似文献   

4.
依据五指山市2010年森林资源二类调查数据,运用生物量换算因子连续函数法估算五指山市森林植被碳储量,借助地理信息系统技术分析其空间分布特征。结果表明:五指山市森林植被总碳储量6060938.32 t,平均碳密度52.22 t·hm~(-2);各乡镇、林场、农场和自然保护区的森林碳储量与面积大小不成正比;乔木林碳密度分布规律为:水土保持林国防林水源涵养林自然保护林一般用材林林化工业原料林短轮伐期用材林药用林果树林食用原料林;樟树林杂木林阔叶混交林松类杉木林热带林桉树林;天然林人工林;过熟林近熟林成熟林中龄林幼龄林;高郁闭度中郁闭度低郁闭度;自然度Ⅱ级Ⅰ级Ⅲ级Ⅳ级Ⅴ级。  相似文献   

5.
毛竹、杉木人工林生态系统碳平衡估算   总被引:4,自引:0,他引:4  
采用CID-301PS光合测定仪,对湖南会同林区毛竹和杉木人工林土壤CO2排放动态进行观测,并结合现存生物量调查,对其生态系统碳平衡特征进行估算.结果表明:毛竹和杉木林生态系统碳贮量分别为144.3和152.52 t·hm-2,并且其碳贮量空间分布格局基本一致,土壤层是主要部分,其次为乔木层,凋落物层和林下植被层所占比例最小.毛竹林土壤层有机碳贮量占76.89%,乔木层占22.16%,凋落物和林下植被层分别占0.51%和0.41%;杉木林土壤层碳贮量占62.03%,乔木层占34.99%,凋落物和林下植被层分别占2.28%和0.70%.毛竹林和杉木林生态系统年固定CO2总量分别为38.87和26.95 t·hm-2a-1,但其每年以土壤异养呼吸和凋落物呼吸的形式排放CO2的量分别为24.35和15.75 t·hm-2a-1,毛竹林和杉木林生态系统年净固定CO2的量分别为14.52和11.21 t·hm-2a-1,折合成净碳量分别为3.96和3.07 t·hm-2a-1.  相似文献   

6.
根据7块不同林龄杉木人工林标准地调查的数据,对亚热带杉木人工林生物量和碳储量及其垂直分布进行研究。结果表明:杉木人工林林木和各器官生物量随着林龄的增大而增加,树干所占比重最大且逐渐增大,在林龄28年时,乔木层的生物量最大为167.86 t/hm2。杉木人工林碳储量垂直分布序列为乔木层凋落物层草本层,分别为50.28 t/hm2、4.32 t/hm2、1.50 t/hm2,平均年固碳量分别为2.44 t/hm2·a-1、0.19 t/hm2·a-1、0.14 t/hm2·a-1。杉木人工林总平均生物量、总平均碳储量和总平均年固碳量分别为119.05 t/hm2、56.10 t/hm2、2.77 t/hm2·a-1。因此,乔木层作为森林生态系统中主要的碳库层,对于森林的碳汇功能发挥着重要的作用。  相似文献   

7.
将浙江省杉木公益林划分为3个发育阶段:≤10 a为幼龄林;11~20 a为中龄林;20 a为成熟林。对杉木(Cunninghamia lanceolata)优势林和含杉木混交林的三个发育阶段的乔木层、下木层和草本层的植物多样性进行比较研究。结果表明:杉木优势林的乔木层植物多样性指数都随时间缓慢上升(15%),成熟林乔木层的异质性和均匀性高于草本层,幼龄林下木层多样性不高,物种数和异质性也都随时间缓慢上升(5%),下木层均匀性在中龄以后稳定,杉木优势林随着林龄的增加,郁闭度相应增加使得草本层的Gleason指数从2.62下降到1.68;含杉木混交林封山育林后幼龄林下木层植物多样性最高,中龄林的物种数、异质性最低,均匀度随时间逐渐降低,各层植物多样性指数在各个发育阶段都表现为下木层乔木层草本层,仅有草本层Gleason指数中幼龄林阶段较高例外;在各个发育阶段杉木优势林的乔木层和下木层的植物多样性都不如含杉木混交林,优势林草本层的物种丰富度、异质性和均匀性指数幼龄林阶段都高于含杉木混交林,中龄林阶段接近,在成熟林阶段都比含杉木混交林低;总体而言,杉木优势林的植物多样性不如相同发育阶段的含杉木混交林。  相似文献   

8.
基于内蒙古大兴安岭林区2013年森林资源档案数据,运用生物量扩展因子法,量化内蒙古大兴安岭林区植被碳储量和碳密度。结果表明:内蒙古大兴安岭林区植被碳库总量41709.83×104t,平均碳密度为47.59±8.93 t C·hm-2;有林地乔木层在碳封存中占主导地位,其碳储量与面积近乎成正比,按龄组划分依次为中龄林成熟林近熟林过熟林幼龄林;按林分类型为针叶林针阔混交林阔叶林阔叶混交林针叶混交林;按林分起源为天然林人工林。有林地乔木层碳密度在不同龄组及不同林分起源间存在显著差异,在不同林分类型间无显著差异,其碳密度大小按龄组依次为成熟林近熟林过熟林中龄林幼龄林;按林分类型为阔叶林阔叶混交林针叶林针阔混交林针叶混交林;按林分起源为天然林人工林。  相似文献   

9.
湖南省杉木林植被碳贮量、碳密度及碳吸存潜力   总被引:2,自引:0,他引:2  
基于湖南省2005和2010年森林资源调查统计数据,结合国家野外科学观测研究站湖南会同杉木林生态系统定位研究站的观测数据,估算湖南省杉木林植被碳贮量、碳密度及碳吸存潜力.结果表明:2005和2010年湖南省杉木林植被碳贮量分别为30.39×106和32.92×106t,均以中龄林的碳贮量最高,分别为17.64×106和17.31×106t; 2010年各地州市杉木林植被碳贮量为0.34×106~6.45×106t;杉木林碳密度随林分龄级增加而增高,过熟林最大(23.90 tC·hm1以上),2005和2010年湖南省杉木林平均碳密度分别为10.83和12.05 tC·hm-2,各地州市杉木林植被碳密度为6.03 ~16.58 tC·hm-2,基本上呈现出南高北低的趋势;湖南省杉木林植被的现实碳吸存潜力为90.75×106t,不同龄级林分的现实碳吸存潜力表现为中龄林(53.62×106t)>近熟林(32.77×106t)>幼龄林(4.36×106t),各地州市杉木林植被的现实碳吸存潜力为1.18×106 ~ 17.39×106t;湖南省(2010年)现有未成熟杉木林到2020年时的固碳潜力为176.77 × 106t,年固碳潜力为17.68×106t·a-1,到达成熟阶段(26年生)时固碳潜力为211.67×106t.湖南省杉木林分质量不高,中幼龄林所占比重较大,若能对现有杉木林加以更好的抚育管理,湖南省杉木林仍有很大的碳汇潜力.  相似文献   

10.
将乐县针阔混交林生态系统碳储量格局   总被引:1,自引:0,他引:1  
依据全国碳汇专项调查的理论和调查方法,对福建省将乐县不同龄组针阔混交林生态系统的碳储量进行调查分析。结果表明:针阔混交林生态系统碳储量随着林分年龄的增加而增加,幼龄林、中龄林、成熟林生态系统总碳储量分别为121.13、176.00、253.33 t·hm-2;在幼龄林、中龄林和成熟林中,乔木层碳储量所占比重分别为33.16%、46.94%、28.27%,土壤层有机碳储量所占比重分别为60.10%、50.45%、68.21%,土壤层和乔木层碳储量占生态系统总碳储量的90%以上;除成熟林中,30~100 cm土层有机碳储量略高于10~30 cm土层外,土壤层有机碳储量在各龄组针阔混交林中均表现为随土壤深度的增加而减少,随着林分年龄的增加而增加;各龄组针阔混交林其他层次不同组分碳储量差异各不相同,估算针阔混交林生态系统碳储量应充分考虑这种差异性,以提高估算精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号