首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fatigue and creep performance of MDF, OSB and chipboard have been examined in two environments, namely 65%RH (standard environment) and 85%RH (high humidity). Parallel fatigue and creep tests have been performed in four-point bending on the three wood-based panel products in the two environments. The constant 65%RH environment is service class 1 and the constant 85% RH environment is indicative of a service class 2 environment as detailed in Eurocode 5. The non-interruptive technique of stress-strain hysteresis loop capture has been utilised to follow property changes of the fatigue samples during cyclic loading at a stress ratio of R equal to 0.1. Loop parameters such as loop area, dynamic modulus, and fatigue modulus have been used to characterise the response of these materials to fatigue loads in the two environments. Creep microstrains for the creep samples were recorded in parallel with the fatigue parameters. Fatigue and creep results at 85%RH were more variable than those reported at 65%RH for MDF, OSB and chipboard. In general, at R=0.1 and 85%RH, fatigue and creep microstrains were higher, dynamic stiffnesses were lower and hysteresis loop areas were higher than corresponding properties measured at 65%RH. MDF and chipboard were less moisture tolerant than OSB, this is reflected in the large changes in fatigue and creep parameters.  相似文献   

2.
Summary Structural grade chipboard used as floor decking can be exposed to a combination of creep loading, and fatigue loading at a wide range of frequencies. Creep loads are produced by static masses such as machinery. Fatigue loads arise from intermittent loads such as fork lift trucks in motion, people in motion, or vibrating machinery.Four-point bend tests in fatigue and creep have been performed simultaneously on matched sets of four structural grade chipboard samples. The aim was to examine the effect of frequency on the fatigue performance of chipboard by following the rate of microstrain development in each case at the same peak stress. The ratio of the minimum to the maximum fatigue stress (the R ratio) was set at R = 0.1. Fatigue tests were performed at three different frequencies classified as low, medium and high, determined by the rate of application of stress.The performance of chipboard in flooring applications is shown to be highly dependent on the loading frequency. Increasing the frequency increased the number of cycles to failure as did reducing the stress level. Using hysteresis loop capture to monitor damage accumulation during testing indicates that there is a fatigue limit for chipboard loaded at constant amplitude at some point just below 20% of its static bending strength.This research was supported by the Building Research Establishment who also supported the postgraduate case award in conjunction with the Engineering and Physical Sciences Research Council (EPSRC)  相似文献   

3.
Wood-based panels are viscoelastic so when a load (stress) is applied to them there is a time lag before a deflection (strain) is produced, which results in hysteresis (a loss of energy). The capture of stress versus strain hysteresis loops is a non-interruptive method of monitoring the damage produced during fatigue testing. Hysteresis loops were captured throughout the flexural fatigue testing of OSB, chipboard and MDF in four-point bending allowing the development of fatigue damage to be followed. The MDF tested had a greater mean bending strength than the OSB and chipboard. When stresses were applied to the materials as a percentage of their bending strengths, the stresses applied to the MDF samples were larger than those applied to the OSB and chipboard samples. As a result the microstrains were greater for MDF than for the chipboard and OSB. The OSB was stiffer than the chipboard and MDF, which were both of similar stiffness. The information gained from the hysteresis loops indicates that the OSB, chipboard and MDF all had fatigue limits just below 20% of their bending strengths. The fatigue limit for the MDF is likely to be slightly lower than for the chipboard and the OSB.  相似文献   

4.
Summary Deflection under 4-point bending of a range of board types was measured for up to six months. Results were obtained under steady-state conditions of stress level (30%, 45%, 60%, 67.5% and 75% of the short term breaking stress), relative humidity (30%, 65% and 90% rh) and temperature (10°C, 20°C and 30°C). These results are presented in terms of relative creep and creep modulus. The relative creep for all board types increased with increasing stress level, increasing relative humidity and increasing temperature. An analysis of variance investigating variations between materials showed significant differences in relative creep. When the relative creep of all materials was compared over all conditions and all stress levels, plywood and waferboard had consistently low relative creep values. High alkaline cured PF chipboard and non-British Standard UF chipboard had consistently high relative creep values. The creep modulus of MUF bonded chipboard decreased with increasing log10 (time) under all conditions. Creep modulus also decreased with increasing stress level.The statistical analysis in this paper was performed by Anne Hasted and Laura New of the Statistical Services Centre, Reading University  相似文献   

5.
Wood-based panels used as floor decking can be exposed to fatigue as well as creep loading. The strength and fatigue performances of three wood-based panel products OSB, chipboard and MDF have been determined in four-point bending. The mean bending strengths were found to decrease in the following order MDF>OSB>chipboard. The bending strength variation within the OSB was considerably greater than that for chipboard and MDF. Normalised with respect to the static strengths, the fatigue performance of the chipboard was superior to that of the OSB, although the two materials have very similar performances at low stress levels. Normalised with respect to the static strengths, the fatigue performance of the MDF was inferior to both materials and at lower stress levels the fatigue performance deteriorated to a greater extent. However, in terms of absolute applied stress, the fatigue performance of the MDF was superior to that of the OSB, which was superior to that of the chipboard. However, as the stress was reduced the difference between the three materials reduced. At low stresses the performances of the three materials were quite similar. Received 5 August 1999  相似文献   

6.
Summary  An investigation of fatigue failure in wood subjected to load cycles in compression parallel to grain is presented. Small clear specimens of spruce are taken to failure in square wave formed fatigue loading at a stress excitation level corresponding to 80% of the short term strength. Four frequencies ranging from 0.01 Hz to 10 Hz are used. The number of cycles to failure is found to be a poor measure of the fatigue performance of wood. Creep, maximum strain, stiffness and work are monitored throughout the fatigue tests. Accumulated creep is suggested identified with damage and a correlation is observed between stiffness reduction and accumulated creep. A failure model based on the total work during the fatigue life is rejected, and a modified work model based on elastic, viscous and non-recovered viscoelastic work is experimentally supported, and an explanation at a microstructural level is attempted. The outline of a model explaining the interaction of the effect of load duration and the effect of the loading sequences is presented. Received 8 December 1997  相似文献   

7.
对塑木地板进行抗弯性能测试,分别选取25%和75%两种应力水平进行疲劳/蠕变试验。研究了塑木地板在疲劳/蠕变复合作用下的断裂机理。结果表明:随着应力水平的增加,蠕变应变也随之增加,75%应力水平时产生的应变为25%应力水平时的3倍;其疲劳/蠕变曲线与纯蠕变曲线十分相似;在25%的应力水平作用后,材料的剩余抗弯强度为原来的94%~97%。  相似文献   

8.
The static strength, stiffness and fatigue life of MDF, OSB and chipboard have been measured in a 65%RH environment and a 85%RH environment. Chipboard is commonly utilised as a flooring material and OSB is also used in structural applications, for example floor decking and webs of I-beams. The mean static strengths of MDF, OSB and chipboard at 65%RH were 47.9 MPa, 27.9 MPa and 21.0Mpa, respectively, compared with 34.59 MPa, 21.70 MPa and 10.61 MPa at 85%RH. However, MDF has mostly been used in non-structural applications, such as furniture, so its resistance to fatigue loads as a structural panel is of considerable interest. In a 65%RH environment dynamic modulus values showed that whilst MDF and chipboard exhibit similar stiffness values (4 GPa), OSB is approximately 50% stiffer. However, at 85%RH MDF was the stiffest of the three materials, followed by OSB and chipboard. The fatigue life performance of all three panel products was markedly lower at 85%RH compared with 65%RH. Overall, the high RH environment had a noticeably detrimental effect on the MOE (modulus of elasticity), MOR (modulus of rupture) and fatigue lives of OSB and chipboard. This is attributed to these panels retaining more of the original characteristics of the original wood, i.e. larger particle sizes (flakes/chips) compared with the homogeneous fibrous composition of MDF. Received 5 November 1999  相似文献   

9.
Summary Previous linear and curvilinear regression models for predicting the creep deflection of timber and timber products have failed to provide an adequately good fit. However, this paper shows that the 4-element (and to a lesser degree the 3-element) rheological model provides an extremely good fit to chipboard creep data.A set of experiments has been carried out on the creep behaviour of five commercially-available types of chipboard under 3-point sustained loading at constant temperature and humidity. This range of board types encompassed three types of glue — UF, MF/UF and Pf- and was loaded at two stress levels-30% and 60% of the short term ultimate stress. The lifetime of these specimens ranged from 25 days to over 31/2 years until either failure occurred or the load was removed.Creep curves based on 3- and 4-element rheological models have been fitted to the data from each specimen using an iterative least squares computer program which we developed. The validity of the two models is discussed, together with studies on the comparative behaviour of different board types and the use of the models as predictive tools.  相似文献   

10.
Predicting the short-term properties of chipboard using composite theory   总被引:1,自引:0,他引:1  
Summary The applicability of models for describing the short-term properties of chipboard were investigated using the results from experiments conducted on samples of a laboratory-made chipboard (comprised of Scots pine chips and urea formaldehyde resin), and sections of urea formaldehyde and Scots pine strips.The rule of mixtures equations, modified for short fibre composites, were employed to predict the strength and stiffness of chipboard. They were found to provide a good estimate of both the chipboard strength and modulus of elasticity, with the assumptions being made that the chips were aligned parallel to the direction of applied stress and that the chips could be treated as having cylindrical geometry.The results of this investigation revealed that chipboard is a highly unusual material. Compared to conventional fibre-reinforced composites, chipboard has a very high volume fraction of fibres, and the similar moduli of elasticity of the fibres and matrix can result in the concentration of stress in the matrix rather than in the fibres. However, these factors did not prevent the assessment and development of appropriate short fibre composite models to predict the strength and stiffness of chipboard.  相似文献   

11.
We investigated the temporal changes in creep and stress relaxation behavior in both microscopic crystalline cellulose and macroscopic strain of wood specimen using Japanese cypress (Chamaecyparis obtusa Endl.) to understand the viscoelastic properties of wood cell walls. Specimens 600 µm in thickness were observed by the X-ray diffraction and submitted to tensile load. The crystal lattice strain of (004) plane and macroscopic strain of specimen were continuously detected during creep and stress relaxation tests. It was found that the creep compliance based on macroscopic strain showed a gradual increase after instantaneous deformation due to loading and then the parts of creep deformation remained as permanent strain after unloading. On the other hand, crystal lattice strain showed a different behavior for macroscopic strain; it kept a constant value after instantaneous deformation due to loading and then increased gradually after a certain period of time. These differences between macroscopic and microscopic levels were never found in the stress relaxation tests in this study. Relaxation modulus at the macroscopic level only showed a decreasing trend throughout the relaxation process. However crystal lattice strain kept a constant value during the macroscopic relaxation process. In addition, the microfibril angle (MFA) of wood cell wall has a role of mechanical behavior at microscopic level; crystal lattice strains were smaller with increasing MFA at both creep and relaxation processes. Creep compliance and stress relaxation modulus at the macroscopic level decreased and increased with increasing MFA, respectively. Our results on the viscoelastic behavior at microscopic level evidenced its dependency on MFA.  相似文献   

12.
The fatigue behavior of plywood specimens under shear through thickness was examined on the basis of strain energy to obtain common empirical equations for the fatigue process and failure criterion under various loading conditions. Specimens were cut from commercial plywood panels of 9-mm thickness. Loading conditions were set as follows: a square waveform at a loading frequency of 0.5 Hz, a triangular waveform at 0.5 Hz, and a triangular waveform at 5.0 Hz. Peak stress applied was determined to be 0.5, 0.7, and 0.9 of static strength, that is, stress levels of 0.5, 0.7, and 0.9. The stress-strain relationships were measured throughout the fatigue test, and the strain energy was obtained at each loading cycle. Loading conditions apparently affected the relationship between stress level and fatigue life. On the other hand, the relationship between mean strain energy per cycle and fatigue life was found to be independent of loading conditions. Mean strain energy per cycle obtained as the fatigue limit was 5.85 kJ/m3 per cycle. Assuming that the accumulation of strain energy is a fatigue indicator, the fatigue process and failure criterion for the plywood specimens under the three loading conditions were commonly expressed by the relationship between cumulative strain energy and loading cycles.  相似文献   

13.
Summary Matched samples of chipboard were loaded in four-point bending under either a 7 hours loaded/17 hours unloaded cycle, a 17 hours loaded/7 hours unloaded cycle, or constant load in order to asses the effect of cyclic loading on creep deformation. Tests were carried out at three humidity levels (30, 45 and 90% RH) and at three stress levels (30, 45, and 60% of the short term strength). The creep rate of samples under constant load was greater than under cyclic load, with the 7 hours loaded/17 hours unloaded samples giving the lowest creep rate. Analysis of the data on an accumulated time-under-load basis showed that the law of superposition did not apply to the 7 hours loaded/17 hours unloaded samples at the 30% and 45% stress levels, with these samples giving lower deflection than for the other loading conditions. The 17 hours loaded/7 hours unloaded samples also did not appear to obey the law of superposition, although the difference between them and the constantly loaded samples was slight. Considerable scatter in data accumulated at the 60% stress level did not allow any differences in the superposition analysis of cyclic and constant loaded samples to become apparent. Increasing the stress level applied to samples produced an almost linear increase in relative creep for all loading regimes. The 7 hours loaded/17 hours unloaded samples gave consistently lower relative creep values at all levels of stressing, but particularly at the 30 and 45% stress levels. Increasing the relative humidity from 30% to 65% RH had an almost negligible effect on relative creep of all samples, but increasing the humidity to 90% RH caused a marked increase in relative creep.  相似文献   

14.
Wood-based panels are subjected to cyclic panel shear load caused by wind and seismic forces in such an application as the sheathing of bearing walls. The fatigue behavior of structural plywood under panel shear load with two different loading frequencies was examined. Pulsating panel shear load with a triangular waveform and loading frequency of 0.5 or 5 Hz was applied to the plywood specimens. Stress−strain hysteresis loops were measured throughout the fatigue tests. Fatigue life was highly dependent on loading frequency at more than 0.5 stress level. The deterioration of mechanical property and damage accumulation in plywood specimen was observed to be slower at higher loading frequency at more than 0.5 stress level. Analyses based on energy loss suggest that panel shear load with higher loading frequency causes less damage to the plywood specimen during one loading cycle at higher stress level, and that the fatigue damage accumulation causing failure might be dependent on stress level although it seems to be unaffected by loading frequency. Based on these results, a new fatigue failure model for plywood specimen was qualitatively developed by combining Weibull’s weakest link model and Daniels’ fiber bundle model.  相似文献   

15.
Summary The study of intermittent loading of wood described in an earlier publication was extended to explore the effects of shorter cycles. For stresses below about 50 per cent of the modulus of rupture the principle of superposition provides a fair indication of expected deflections when the environmental conditions are constant. It is shown how, under this principle, the peak strains are limited to fractions of the creep strain at constant load, the excess after the first peak being dependent on the proportion of time under load in a cycle. Consequently, when the intervals between loads are considerably longer than the duration of loads, cumulative effects are negligible.The authors wish to acknowledge the advice and help received from Messrs L. N. Clarke, R. Donaldson and F. Peplar on instrumentation and data-logging, the contribution by Mr. J. J. Mack to the planning and execution of the short-cycle tests and the preparation of the statistical analyses by Mr. P. PahlAt the time of the study this author was working with the CSIRO, Australia, under a fellowship provided by the Japanese Government  相似文献   

16.
Summary Ten samples from each of ten brands of commercial chipboard, covering a range of UF, MUF and PF resins, were stressed over a 5-year period at 30% of their short term ultimate bending strength, under protected external conditions. No relationship could be established for the term of the experiment between fluctuations in creep deflection and changes in environmental conditions. Exceptionally, for two short periods of time, relationships were established and these were in line with current views on mechano-sorptive behaviour. Differences in relative creep between the ten brands were significantly greater than those occurring between samples of any one brand. Although there were significant differences in relative creep among the six brands of MUF bonded boards, the relative creep of all these boards was significantly lower than those brands made with UF and high-alkaline cured PF resins. While most of the MUF bonded samples survived the duration of the experiment, all UF and PF samples failed before the end of the 5-year period. For the first 6 months of the experiment, the mean relative creep under protected external conditions was equal to, or slightly less than, that obtained in matched samples tested under a constant environment of 20°C 90% rh.  相似文献   

17.
The mechanics of fresh wood with and without a fatigue pre-treatment that mimics a mechanical pulping process was experimentally studied. The mechanical properties of Norway spruce samples under compression are considered with the macroscopic stress–strain data and from local strain properties via digital image correlation technique. The results highlight the effects of the orientation of the wood annual rings compared to the loading direction and of the pre-fatigue. The wood presents a low yield point when the annual rings are tilted compared to the load axis, but the Young’s modulus and yield stress are higher when the annual rings are either parallel or perpendicular to the load direction. In the last case, buckling of softest layers occurs. The fatigue treatment makes the wood less stiff as deduced from the decreases of Young’s modulus and yield stress, whatever the orientation of annual rings. Secondly, it creates a thin and localized softened layer.  相似文献   

18.
Failure mechanisms of small clear specimens (6×6×24 mm) of air-dried black spruce (Picea mariana) under parallel-to-grain compression were investigated by polarised-light microscopy. Fatigue load was used with a peak stress level of 90% static strength, a load frequency of 0.5 Hz, and a square waveform with a duty ratio of 0.50. Matched pure creep and static load tests were carried out. Damage was quantified in terms of the permanent microstructural changes (kinks) in tracheid walls. In static load tests, kinks develop quickly with any increase in stress beyond the limit of proportionality. In creep tests, damage develops mainly from kinks formed during the initial load application. In fatigue tests, damage develops both from kinks formed during the initial load cycle, and kinks formed during subsequent cycles. The number of kinks exhibits a strong relationship with relative cyclic creep or relative creep.  相似文献   

19.
基于纳米压痕技术的木材胶合界面力学行为   总被引:1,自引:0,他引:1  
【目的】研究木材胶合界面的静态和动态力学行为,探讨树脂渗透对木材管胞壁层力学性能的影响,为木质复合材料制造工艺优化和增强改性提供理论依据。【方法】采用纳米压痕静态和动态力学测试技术(Nano-DMA),对针叶材火炬松与酚醛树脂(PF)、脲醛树脂(UF)胶黏剂所形成胶合界面区域各相材料的静态弹性模量、硬度、蠕变性能以及储能模量和损耗模量等力学行为进行分析。【结果】静态力学行为方面,在界面区域,PF和UF渗透进入管胞壁层后,木材管胞壁的弹性模量( E r)和硬度( H )提高;经PF渗透后,木材管胞壁的 E r和 H 分别增加7%和26%;Burgers蠕变力学模型可有效描述胶合界面区域管胞壁的纳米压痕蠕变特性,经树脂渗透后,木材管胞壁的瞬时弹性模量增加,黏弹性模量和黏性系数减小;在保载初期,PF界面区域木材管胞壁的蠕变柔量约下降60%,UF界面区域木材管胞壁的蠕变柔量约下降58%。动态力学行为方面,随着加载频率增加,界面材料的储能模量( E ′ r)逐渐增大,而损耗模量( E ″ r)和损耗因子(tan δ)呈减小趋势;当加载频率为10 Hz时,PF和UF树脂渗透使得管胞壁层的储能模量分别增加16%和29%。【结论】胶合界面区域胶黏剂进入管胞壁层,对木材管胞的静态力学性能具有增强作用,同时胶黏剂可提高管胞壁的短期抗蠕变能力;木材管胞壁具有较高的储能模量和损耗模量,而树脂的储能模量和损耗模量较低,经树脂渗透后,木材管胞壁的储能模量增加,但损耗模量和损耗因子呈下降趋势,可能对界面传递和分散应力产生不利影响。  相似文献   

20.
Summary The effect of moisture and level of stressing on the rate of creep and time to failure is studied for UF and MUF bonded particleboard. Response curves were fitted to a 4-element rheological model with a high degree of accuracy for four levels of stressing and for three levels of relative humidity at 20°C. Values of relative creep increased with time and also with increased levels of stress and r.h. The ratio of stress to deflection — presented either as the creep modulus or as isochronous curves — decreased rapidly with time. Particleboard is demonstrated to exhibit non-linear viscoelastic properties, particularly at the higher levels of stress. Deflection was increased and time to failure decreased when r.h. was raised from 65 to 90 per cent, but no significant statistical change was noted between 30 and 65 per cent r.h. Increased levels of stress caused a decrease in both deflection and time to failure. Greater deflection at failure and longer time to failure were recorded for MUF board, but for the UF board the 90 per cent r.h. had a more pronounced effect in increasing deflection and decreasing the time to failure. Predictions are made on the long-term stress loadings for different humidity conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号