首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this report, we undertook studies of the viscoelastic properties of wood from the viewpoint of the fine structure and properties of the constituent materials in the wood cell wall. To measure the mechanical properties of the wood as the behavior of the cell wall, it is required to perform the longitudinal tensile test using a homogeneous specimen. In this study, microtomed specimens of sugi (Cryptomeria japonica D.Don) earlywood were used for the creep test, which were conducted at the fiber saturation point. The substantial creep compliance of the cell wall was simulated using a simplified viscoelastic model consisting of a Voigt element and an independent spring in series. Based on the experimental results, the values of the parameters were optimized. The results were as follows: (1) the longitudinal tensile creep deformation tends to increase with the elapsed time, similar to the bending creep behavior; (2) the magnitude of the longitudinal creep function increases with MFA; and (3) each parameter in the simplified viscoelastic model is markedly affected by the MFA. Based on these results, the mechanism of the longitudinal tensile creep deformation of wood is discussed.  相似文献   

2.
Abstract

Compression creep experiments of hybrid poplar (Populus deltoides×Populus trichocarpa) were performed in a pressurized vessel equipped with a heated hydraulic press. The viscoelastic response at various stress levels (2–7 MPa), a temperature of 170°C and transient steam conditions was studied. Moisture content and oven-dry density of compressed specimens were determined. While some recovery of compression strain occurred, compression resulted in permanent deformation and increased wood density. The influence of stress level on the amount of set recovery of compressive deformation was evaluated after 24 h water soaking. Applied stress level had a significant effect on the compression deformation. The initial strain, as well as creep strain, varied depending on the applied stress level. The highest oven-dry density was obtained at a stress level of 6.9 MPa. Lower stress levels resulted in lower moisture content after the compression process, while the equilibrium moisture content of compressed specimens was not significantly affected by stress level. Set recovery increased from 20% to 65% with increased stress level from 1.7 MPa to 4.1 MPa, then decreased to 53% for specimens compressed at 6.9 MPa. Moisture content after the compression process significantly affected the set recovery.  相似文献   

3.
This study investigated the relationship between the cellulose crystal lattice strain (crystalline region) and the macroscopic surface strain in specimens of Chamaecyparis obtusa wood under repeated uniaxial tension stress in the fiber direction. Changes in the strain of the crystal lattice were measured from the peak of (004) reflection using the transit X-ray method. The macroscopic surface strain of each specimen was measured with a strain gauge. In both loading and unloading, the surface strain changed linearly with changes in stress. However, crystal lattice strain was not linear but exhibited changes along a curve with changing stress. Under stressed conditions, the crystal lattice strain was always less than the surface strain, regardless of the frequency of repetition in the loading and unloading cycle. The ratio of the crystal lattice strain to the surface strain showed a negative correlation for stress in both loading and unloading. That is, the ratio decreased with increasing stress, and finally tend to converge to a specific value. The ratio (I/I 0) between the diffracted intensity (I 0) in the (004) plane in the unloaded condition and the diffracted intensity (I) in the (004) plane in the loaded condition tend to converge on a specific value with increasing frequency of repetition. When the substantial tension Young’s modulus of the wood in the longitudinal direction decreased, the ratio of the strain of the crystal lattice to the surface strain also decreased. Moreover, the ratio decreased with increasing microfibril angle of the specimen.  相似文献   

4.
To understand the viscoelasticity of wood three dimensionally, matched samples of Japanese cypress were loaded in uniaxial tensile creep in the longitudinal (L), radial (R), and tangential (T) directions at approximately 9.7 % equilibrium moisture content. Longitudinal and transverse strains were measured for the determination of viscoelastic Poisson’s ratios and three-dimensional viscoelastic compliance tensors concerning the normal strain. The changes in the transverse strains showed the same tendencies as those in the longitudinal strains, in all directions of loading. That is, during creep, the absolute value of transverse strain continued to increase with the gradual reduction in the increase rate; immediately after the removal of the load, it recovered rapidly, after which it continued to recover slowly. The transverse strain increased most easily in the T direction, followed by R and L, during creep. All the viscoelastic Poisson’s ratios and the absolute values of all elements of the viscoelastic compliance increased logarithmically with creep time. The three-dimensional viscoelastic compliance matrix for Japanese cypress is concluded to be asymmetric.  相似文献   

5.
温度对重组竹短期受压蠕变性能的影响   总被引:1,自引:0,他引:1  
通过对重组竹受压试件进行短期蠕变试验,研究温度对重组竹受压试件蠕变特性及蠕变规律的影响。针对不同应力水平下温度对重组竹短期受压蠕变的影响,研究了在同一应力水平7.5%下,重组竹在5种不同温度下的24 h顺纹受压蠕变性能;进一步比较了重组竹在应力水平为7.5%,15%,30%且温度分别为25,50,75℃情况下的24 h顺纹短期受压蠕变特点。最后,采用Burgers模型对上述不同温度变量和不同应力水平变量下重组竹短期受压蠕变曲线进行拟合分析。结果表明:在重组竹顺纹受压蠕变中,温度和材料应力水平越高,瞬时弹性变形越大,重组竹蠕变应变总量越大,重组竹抵抗蠕变性能越弱,且较高温度和较高应力水平的同时作用会对重组竹构件产生不利影响;Burgers模型的拟合决定系数基本均在0.98以上,说明Burgers模型能够较准确地描述温度对重组竹短期受压蠕变曲线特性的影响。根据试验与拟合曲线特性可知,重组竹顺纹受压蠕变中弹性变形占80%以上,说明在不同温度下重组竹顺纹受压蠕变中弹性变形占主要部分,随着温度的升高,弹性变形有所下降,黏性变形逐渐增加。  相似文献   

6.
We investigated the relationship between the crystal lattice strain and the piezoelectric response in Japanese cypress (Chamaecyparis obtusa Endl.) wood fibers subjected to tension stress in the fiber direction. As a result, the piezoelectric voltage was very sensitive to the mechanical behavior (deformation) of the wood crystalline regions obtained from the x-ray stress measurement. Thus, by investigating the behavior of piezoelectric voltage, it was possible to simply estimate the mechanical behavior of the crystalline regions in the wood.  相似文献   

7.
Summary The development of rheological models to predict creep has led to the derivation of quite complex equations that can predict creep reasonably accurately. However, these models are conceptual and are not based on a fundamental understanding of the actual deformation processes occurring within the material. The concept of modelling creep using a chemical kinetic approach is one that attempts to understand creep in wood at a molecular level and, from this, to develop models that more accurately predict creep deflections.This paper presents two models developed from chemical kinetic theory, that describe the time-dependant deformation of wood. The validity of applying these models to experimental data has been assessed by stress relaxation tests on thin samples of Sequoia sempervirens. Two stages of experimentation were carried out. In stage 1, both models were applied to the results of stress relaxation tests on 6 samples. Similar values of activation energy and activation volume were calculated by both models and a single energy barrier was found to dominate the deformation process.In stage 2, the effect of varying the initial applied stress on activation energy and activation volume was assessed by carrying out stress relaxation tests at stress levels of 25%, 30% and 35% of the short-term strength. Values of activation energy and activation were found to increase as the applied stress level decreased.Both models describe the time-dependent behaviour of wood well, however their ability to predict long-term creep deflections may be limited. Future work will develop these models further in order to improve long-term creep prediction and then apply them to the results of both creep and stress relaxation tests at a variety of stress levels and moisture contents in order to test their validity.  相似文献   

8.
In our previous report, we investigated the effect of the microfibril angle (MFA) in the middle layer of the secondary wall (S2) on the longitudinal creep behavior of a thin homogeneous earlywood specimen sugi. In the present study, we investigated the role of moisture on the tensile creep behavior of wood. We discuss the creep behavior of the wood cell wall from the viewpoint of the composite structure of the cell wall and the properties of the constituent materials. A microtomed thin specimen of earlywood of sugi (Cryptomeria japonica D.Don) was used for the longitudinal tensile creep test. Creep tests were conducted at three moisture stages (oven-dry, air-dry, fiber saturation point) over a broad range of MFA. Results showed that the longitudinal tensile creep behavior was highly dependent on both the moisture content and the MFA. With a small MFA, the variation in the creep function among the three moisture states was very small. For a large MFA, the variation in the creep function was larger. At low moisture contents, the magnitude of the creep function was very small, while at high moisture content, it was very large except for the case of specimens with very small MFA. Those results show that the longitudinal tensile creep behavior was directly affected by the fine composite structure and the internal properties of the cell wall constituents.  相似文献   

9.
In the process of wood drying inevitable stresses are induced. This often leads to checking and undesired deformations that may greatly affect the quality of the dried product. The purpose of this study was to propose a new rheological model representation capable to predict the evolution of stresses and deformations in wood cantilever as applied to wood drying. The rheological model considers wood shrinkage, instantaneous stress–strain relationships, time induced creep, and mechano-sorptive creep. The constitutive law is based on an elasto–viscoplastic model that takes into account the moisture content gradient in wood, the effect of external load, and a threshold viscoplastic (permanent) strain which is dependent on stress level and time. The model was implemented into a numerical program that computes stresses and strains of wood cantilever under constant load for various moisture content conditions. The results indicate that linear and nonlinear creep behavior of wood cantilever under various load levels can be simulated using only one Kelvin element model in combination with a threshold-type viscoplastic element. The proposed rheological model was first developed for the identification of model parameters from cantilever creep tests, but it can be easily used to simulate drying stresses of a piece of wood subjected to no external load. It can therefore predict the stress reversal phenomenon, residual stresses and maximum stress through thickness during a typical drying process.  相似文献   

10.
Wood exhibits a pronounced time dependent deformation behavior which is usually split into ‘viscoelastic’ creep at constant moisture content (MC) and ‘mechano-sorptive’ creep in varying MC conditions. Experimental determination of model rheological parameters on a material level remains a serious challenge, and diversity of experimental methods makes published results difficult to compare. In this study, a cantilever experimental setup is proposed for creep tests because of its close analogy with the mechanical behavior of wood during drying. Creep measurements were conducted at different load levels (LL) under controlled temperature and humidity conditions. Radial specimens of white spruce wood [Picea glauca (Moench.) Voss.] with dimensions of 110 mm in length (R), 25 mm in width (T), and 7 mm in thickness (L) were used. The influence of LL and MC on creep behavior of wood was exhibited. In constant MC conditions, no significant difference was observed between creep of tensile and compressive faces of wood cantilever. For load not greater than 50% of the ultimate load, the material exhibited a linear viscoelastic creep behavior at the three equilibrium moisture contents considered in the study. The mechano-sorptive creep after the first sorption phase was several times greater than creep at constant moisture conditions. Experimental data were fitted with numerical simulation of the global rheological model developed by authors for rheological parameter identification.  相似文献   

11.
刨花板垂直平面压缩流变性能研究Ⅰ   总被引:1,自引:0,他引:1  
就基材而言,刨花板的贴面过程可看作是一压缩流变过程。本文采用压缩流变方法,研究刨花板垂直平面压缩时的行为,为控制贴面刨花板的厚度偏差提供理论依据。由于各流变参数在不同应力阶段有着不同的表现形式,在压缩应力范围内(1—12N/mm~2),会出现四种不同的蠕变-回复曲线。统计分析表明:瞬间弹性变形的偏差较小,且较稳定,而瞬间塑性变形的偏差较大,并随压力的增高而增大;依赖于时间的塑性变形的偏差随压缩应力增加而增加,并和推迟弹性变形偏差一样,随蠕变时间的延长而增加;由瞬间塑性变形和依赖于时间的塑性变形所决定的厚度损失,其偏差的变化规律和它们各自的变化规律一致。由于刨花板在制造过程中,木材刨花中的细胞腔和其它空隙多少已被压缩或压实,故各压缩流变参数值均小于对应的木材压缩流变参数值。  相似文献   

12.
To gain insight into the physical nature of the coupling between mechanical stress and humidity variations, the behaviour of thin wood strips was studied using specially developed apparatus for creep/recovery and relaxation/blotting-out tests in a controlled humidity environment. The load time and the rate of viscoelastic creep were found to have little influence on mechano-sorptive creep. Moreover, creep trajectory curves for specimens with continuous and interrupted humidity cycles indicated divergence from simple creep-limit behaviour. The effect of transient moisture was also modelled numerically at the molecular level using an idealized cellulose-based composite. Preliminary results suggest that: (i) during free shrinkage, the cellulose chains in elementary fibrils may bend perpendicular to the planes of the hydrogen bonded sheets which form the crystalline lattice; (ii) transient hydrogen bonding between the crystalline cellulose and amorphous polymer owing to the introduction or removal of water may accelerate shear slip between the two phases in the presence of an external load. Received 6 July 2000 The financial support of the Swiss Federal Office for Education and Science is gratefully acknowledged.  相似文献   

13.
The radial compression behaviors of acetylated cedar wood were measured in various liquids. The compressive Young’s modulus (E) of acetylated wood was reduced by soaking in water, toluene, and acetone, but it was always greater than that of water-swollen unmodified wood at the same swelling level. The behaviors of acetone-swollen unmodified wood were similar to those of acetylated wood rather than those of water-swollen unmodified wood. These results indicated that the swelling of hydrophobic wood components had a lesser influence on the E of wood than the water-swelling of unmodified hydrophilic components. After large compression (ε > 45%), a part of the strain remained unrecovered because of irreversible mechanical deformation. Since the remaining strain was smaller in the wood specimens indicating greater stress relaxation, it was assumed that the viscoelastic deformation of amorphous matrix components is important for lesser irreversible deformation and effective shape recovery of wood. In contrast with water-swollen unmodified wood, the acetylated wood and acetone-swollen unmodified wood exhibited greater shape recovery despite their relatively higher E. This suggested that the swelling of hydrophobic wood components reduced the viscosity of the matrix rather than its elasticity, resulting in more effective shape recovery with lesser softening.  相似文献   

14.
Tree growth stress, resulted from the combined effects of dead weight increase and cell wall maturation in the growing trees, fulfills biomechanical functions by enhancing the strength of growing stems and by controlling their growth orientation. Its value after new wood formation, named maturation stress, can be determined by measuring the instantaneously released strain at stem periphery. Exceptional levels of longitudinal stress are reached in reaction wood, in the form of compression in gymnosperms or higher-than-usual tension in angiosperms, inspiring theories to explain the generation process of the maturation stress at the level of wood fiber: the synergistic action of compressive stress generated in the amorphous lignin–hemicellulose matrix and tensile stress due to the shortening of the crystalline cellulosic framework is a possible driving force. Besides the elastic component, growth stress bears viscoelastic components that are locked in the matured cell wall. Delayed recovery of locked-in components is triggered by increasing temperature under high moisture content: the rheological analysis of this hygrothermal recovery offers the possibility to gain information on the mechanical conditions during wood formation. After tree felling, the presence of residual stress often causes processing defects during logging and lumbering, thus reducing the final yield of harvested resources. In the near future, we expect to develop plantation forests and utilize more wood as industrial resources; in that case, we need to respond to their large growth stress. Thermal treatment is one of the possible countermeasures: green wood heating involves the hygrothermal recovery of viscoelastic locked-in growth strains and tends to counteract the effect of subsequent drying. Methods such as smoke drying of logs are proposed to increase the processing yield at a reasonable cost.  相似文献   

15.
In order to investigate the effect of different reagents on changes of the crystalline region and amorphous region (Matrix) in wood cell walls, the creep behavior of Chinese fir (Cunninghamia lanceolata) wood treated with dimethyl sulfoxide(DMSO) and diethyl amine, sulfur dioxide and dimethyl sulfoxide mixture (1)EA-SO2-DMSO), and the untreated wood at oven-dried, air-dry and water-saturated states during adsorption and desorption processes were all examined in air or in water. The measurements were carded out at ambient temperature and atmospheric pressure. The load is constant with 62 g or 0.607 6 N. The results obtained were as follows: 1) The instantaneous compliance J0 and the creep compliance J of specimens decrystallized with DEA-SO2-DMSO solution were bigger than those of DMSO swollen wood, and the latter was still much bigger than those of untreated wood. 2) For untreated wood, J0 and J increased with equilibrium moisture content (EMC) of wood, but there was not apparent correlation between wood EMC and the relative compliance. 3) Specimens treated with DMSO and DEA-SO2-DMSO mixture were recrystallized after immersion in water, and the degree ofrecrystallization of the former was larger. 4) For oven-dried specimens, the creep compliances in water were bigger than those in air. But for fiber-saturated and water-saturated specimens they were nearly equivalent to each other.  相似文献   

16.
This paper describes the bending creep behavior of two types of bamboo-based products, bamboo-laminated veneer lumber (BLVL), and glued-laminated bamboo (GLB, also called Bamboo Glulam) at different stress levels for half a year and recovery for the same time. It was found that the stress level of BLVL was more sensitive on creep property than that of GLB; the creep resistance of GLB was worse than that of BLVL in the stress levels of 30–50%; the instantaneous recovery ratio (elastic recovery to elastic creep) decreased with an increase of the stress levels, while the residual ratio (residual deformation corresponded to the total creep deflections) increased with an increase of stress levels for all specimens; Burgers model fit creep data very well for both bamboo-based products, while the recovery Weibull equation does not fit recovery data well for GLB.  相似文献   

17.
Wood as a linear orthotropic viscoelastic material   总被引:1,自引:0,他引:1  
Summary Measurements were made of the principal components of the creep compliance tensor in the radial-longitudinal and the tangential-longitudinal planes of Douglas-fir at 10 percent moisture content. Extensional creep compliance measurements at angles to the grain were also made. The results show that creep parallel to grain occurs at an increase in volume, and that creep at angles to the grain can be predicted from standard transformation equations. It is concluded that wood can be regarded as a linear orthotropic viscoelastic material.  相似文献   

18.
Viscoelastic properties of maleated polypropylene (MAPP)-modified wood flour/polypropylene composites (WPC) were investigated by both a compression stress relaxation method and dynamic mechanical analyses (DMA). Three wood to polymer ratios (40:60, 60:40, and 80:20) and five MAPP loading levels (0, 1, 2, 4 and 8%) were used to study their effects on the viscoelastic properties of MAPP-WPC. The results show that: 1) higher wood to polymer ratio corresponds to higher stress relaxation levels for unmodified WPC. The modification with MAPP has an obvious effect on the stress relaxation of MAPP-WPC at higher wood to polymer ratios (60:40 and 80:20), but almost no effect at the 40:60 wood to polymer ratio. The optimal MAPP loading level for the wood to polymer ratio of 60:40 appears at 1%; 2) the storage modulus reaches its maximum at a MAPP loading level of 1% for wood to polymer ratios of 40:60 and 60:40, while for the 80:20 wood to polymer ratio, a higher storage modulus is observed at higher MAPP loading levels, which is quite consistent with the stress relaxation results. The results suggested that a suitable loading level of MAPP has a positive effect on the viscoelastic properties of WPC at higher wood to polymer ratios. Excessive MAPP loading would have resulted in adverse effects.  相似文献   

19.
Summary Linear viscoelastic properties of laboratory handsheets have been investigated from the two dimensional aspect. According to the linear theory of viscoelasticity, the behavior of transverse isotropic materials such as handsheets subjected to plane stresses is fully described by the two in-plane relaxation functions G11 (t) and G12 (t). In the present paper, some viscoelastic characteristic functions describing responses to in-plane deformation histories are derived from G11 (t) and G12 (t) determined by strip biaxial stress relaxation testing. The predicted uniaxial relaxation function curve was in good agreement with the experimental one, and the viscoelastic Poisson's ratios in uniaxial stress relaxation and in uniaxial constant strain rate extension were decrease functions of time. Effects of beating on the areal dilatation and shear relaxation functions are discussed by introducing the classical concept of relaxation spectrum.  相似文献   

20.
To understand the viscoelasticity of wood three dimensionally, a longitudinal tensile creep test for 12 species was conducted to examine the changes with time in the lateral strain and the viscoelastic, i.e., apparent Poisson’s ratio. The changes in the lateral strain (ɛ T and ɛ R) were similar to those in the longitudinal strain (ɛ L). That is, during creep, the absolute value of lateral strain continued to increase with the gradual reduction in the increase rate; immediately after the removal of the load, it recovered abruptly; then, it recovered slowly and finally reached a certain value. The rate of increase in the longitudinal strain during creep was smaller than that in the absolute value of lateral strains. The apparent Poisson’s ratio became large during creep because the lateral strain increased more than the longitudinal strain. The analysis of lateral strain by decomposition into three components, that is, instantaneous strain, delayed elastic strain, and permanent strain, has revealed that the lateral permanent strain in the transverse direction contributes most to the increase in the apparent Poisson’s ratio during creep.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号