首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
纳米TiO_2处理木材的表面疏水性能初探   总被引:2,自引:0,他引:2  
为改善木材的疏水性能,先采用二氧化钛(TiO2)溶胶进行处理,再分别用低表面能物质硬脂酸、十六烷基三甲氧基硅烷(HDTMS)进行改性处理。结果表明,改性试样表面负载有纳米级TiO2颗粒,表面修饰了低表面能物质;改性试样的水接触角较未处理材大幅提高;HDTMS比硬脂酸显示出更优良的疏水性能。  相似文献   

2.
纤维素纳米纤维(cellulose nanofiber,本文缩写为CNF)因其独特的网状结构和性能特点,在增强聚合物制备复合材料方面发展迅速.简述CNF的制备及特征;然后从改善团聚、提高界面相容性的角度,介绍对CNF进行表面衍生化、表面接枝和添加偶联剂等表面化学改性研究及改性后CNF的性能特点;简述利用CNF增强聚乙烯醇、聚乳酸、环氧树脂、酚醛树脂等聚合物的研究进展;最后对CNF增强聚合物复合材料今后的主要研究方向进行展望.  相似文献   

3.
聚多巴胺(PDA)修饰的木材表面具有较强粘附特性和表面化学反应活性,通过引入氨基改性纳米二氧化硅(SiO;)粒子构建木材粗糙表面,采用乙二醇二缩水甘油醚为交联剂,提高纳米SiO2粒子在木材表面的稳固性,采用十八烷基三甲氧基氯硅烷为低功能化改性剂制备表面稳固的超疏水木材。研究表明:当纳米SiO;粒子浓度为2%时,接触角最大为156.6°,滚动角为4.7°,超疏水木材表面经过超声波震荡、模拟下雨冲刷、加热、酸碱腐蚀及有机溶剂浸泡等处理后,仍具有较强的超疏水稳固特性。  相似文献   

4.
纤维素气凝胶因具有强亲水性和低油水选择性,且目前纤维素气凝胶表面的疏水化处理过程较冗长,限制了其在油水分离领域的应用。为了解决上述问题,笔者以硫酸水解微晶纤维素制备得到的纳米纤维素(CNC)为原料,利用甲基三甲氧基硅烷(MTMS)在水相中对其进行硅烷化改性,通过冷冻干燥得到了硅烷化纤维素复合气凝胶。结果表明:所制备的纤维素复合气凝胶具有轻质、多孔特性,随着MTMS添加量的增加,密度逐渐升高(≤0.012 0 g/cm^3),孔隙率略有下降; MTMS的加入对纤维素复合气凝胶的微观形貌影响不大,其骨架结构以二维片层形貌为主,聚甲基硅氧烷均匀地包覆在纤维素片层表面; MTMS的加入使纤维素复合气凝胶的热稳定性明显提高,且未改变纤维素气凝胶的晶型结构,但导致其结晶度逐渐下降。纤维素复合气凝胶的表面接触角随着MTMS添加量的增加而升高,最高达到153.7°,表现出优异的超亲油/超疏水性能。作为吸油材料,超疏水纤维素复合气凝胶不仅可以吸附多种油类和有机溶剂(吸附容量达到52~121 g/g),而且表现出很好的循环使用性能。  相似文献   

5.
利用硅烷偶联剂对纳米结晶纤维素(NCC)进行表面改性以提高其对水性聚氨酯的浸润性,并以改性NCC关于水性聚氨酯的接触角为主要依据,研究了NCC表面改性对浸润性影响规律.实验以硅烷偶联剂SCA-1、SCA-2、SCA-3为改性剂,以水性聚氨酯为有机相.结果表明:1)SCA-1、SCA-2、SCA-3中不同的疏水性基团,能使改性NCC关于水性聚氨酯的浸润能力产生不同程度的提高;2)SCA-3结构中的环氧基团空间位阻效应明显,SCA-3用量8%时可使改性后的NCC对水性聚氨酯浸润性提高37.7%.  相似文献   

6.
木材含有大量亲水基团,为多孔性材料,极易受到水分的影响,再加上木材本身属于有机高分子材料,易受微生物侵染。为减少水分给木材带来的不利影响,提高木材利用率,需对木材进行特殊处理,从而阻止大量水分进入木材。将纳米SiO2和纳米TiO2复合,并利用不同硅烷偶联剂对复合后的纳米颗粒进行改性处理,通过分析表面形貌、化学结构、表面润湿性等,考察处理后木材的疏水性。结果表明:经硅烷偶联剂KH550处理后的木材,疏水效果最好。处理材横切面的接触角高达146.1°,其他两个切面也均达到疏水效果。  相似文献   

7.
纳米TiO2/纤维素的复合纤维可以用于纺织、材料和催化等领域.在1-丁基-3-甲基咪唑氧盐([ BMIM] Cl)离子液体中,将纳米TiO2粉末与纤维素浆柏共混,采用湿法成型技术制备不同含量的纳米TiO2/纤维素纤维复合纤维.通过力学测试、傅立叶变换红外光谱(FT-IR)、扫描电子显微镜(SEM)对所得复合纤维的力学性能、形貌和结构等进行表征;以亚甲基蓝为模型物,对其光催化性能进行测试.结果表明,TiO2质量分数对复合纤维的形貌和性能影响显著,随TiO2质量分数由2%增大至16.7%,复合纤维的断裂强度降低,初始模量由0.139 cN/dtex降至0.077 cN/dtex,光催化性能先降低而后增强,其中含TiO216.7%的复合纤维催化性能较强.以[BMIM] Cl离子液体为介质,温法纺丝制备有光催化活性纳米TiO2/纤维素纤维的方法是可行的;综合考虑,含TiO2 2.0%的复合纤维性能较佳.  相似文献   

8.
为探究适合工业化生产的纳米TiO_2疏水修饰工艺,以便宜无毒的钛酸四丁酯、硬脂酸、无水乙醇等为原料进行了研究。通过对光学接触角测量仪的数据分析,得出水接触角最优的纳米TiO_2疏水材料制备工艺为:将0.2 g TiO_2放入70 mL无水乙醇中超声1 h,再加入1 g硬脂酸,继续超声30 min;接着将超声后的混合液70℃磁力搅拌12 h,然后常温磁力搅拌使得混合溶液稳定6 h,再加入等体积无水乙醇后离心去除上清液,120℃鼓风干燥,最终得到超疏水材料,水接触角166°。该工艺操作简单方便,成本低、疏水性好,适应工业化生产,极具商业价值。通过傅里叶变换红外光谱仪(FT-IR)和场发射扫描电子显微镜(SEM)等对内部机理进行探究,得出表面修饰物硬脂酸以化学方式吸附于材料表面。  相似文献   

9.
光控润湿性转换的抑菌性木材基银钛复合薄膜   总被引:1,自引:0,他引:1  
以水热法和银镜法在木材表面制备出Ag-Ti O2复合微纳米结构薄膜,并通过有机物氟硅烷修饰使木材表面具有超疏水性。采用场发射扫描电子显微镜(FE-SEM)、X射线衍射能谱(XRD)、傅立叶变换红外光谱仪(FTIR)和接触角测试等方法对木材表面进行了分析和表征。研究结果显示,经氟硅烷修饰后的Ag-Ti O2负载的木材表面具有良好的紫外光驱动润湿性转换的特性,即光照前为超疏水性(152.8°)和亲油性(25°),光照一段时间后转变为超疏油性(150.2°)和亲水性(26.2°)。这是由于氟硅烷受到紫外光照射后会光致分解破坏一部分的烷基链,并在紫外光的激发下产生亲水基团所致。同时,与单纯Ti O2负载的木材相比,Ag-Ti O2复合薄膜中银纳米颗粒赋予了木材良好的抑菌性能,可提高木材的生物耐久性。以上研究为木材润湿性转换的智能化设计和多功能化设计开辟了新的途径。  相似文献   

10.
近年来,随着人们对于可再生生物质资源转化利用的日益重视,纳米纤维素因其独特的性质而受到广泛关注。纳米纤维素在高性能复合材料、电子产品、催化材料、生物医用材料和能源等领域的潜在应用引起了学术界和工业界的浓厚兴趣。纳米纤维素与有着近100年发展历史的石油化工产品之间的竞争将是大势所趋。林业行业、建筑业、石化行业和制造业之间的密切合作是将绿色纳米纤维素引入大型消费品市场的关键。纳米纤维素的成本和性能非常具有市场竞争力,其两大主要产品为纤维素纳米纤丝(CNF)和纤维素纳米晶体(CNC)。目前,CNF的制备主要是用化学和酶解等方法对纤维素纤维进行预处理,再通过机械解纤法来分离和减小经过预处理的CNF尺寸。CNC则是利用无机酸、有机酸、氧化、酶解、离子液体、低共熔溶剂(DES)或超临界水法对纯化纤维素处理得到的。CNF和CNC未来的市场发展将取决于新型高效溶剂体系的开发(如固体有机酸和DES等),可大量应用纳米纤维素、有效降低总体生产成本的相关产品(如纳米纤维素复合钻井液、纳米纤维素-水泥复合材料和纳米纤维素改性塑料等)的研发,以及纤维素纳米材料的相关国际标准、生理毒性和使用规范的制订,从而帮助相关部门研发和利用纤维素纳米材料。  相似文献   

11.
纤维素纳米纤维在生物医用产品、增强材料、过滤吸附材料、柔性电极材料和储能器件等领域具有广阔的应用前景。静电纺丝法是目前能直接且连续制备微纳米纤维的主要方法之一,由于纤维素中极强的氢键网络导致的高结晶度,使得直接使用纤维素静电纺丝制备纳米纤维较难。笔者以微晶纤维素、纸浆纤维素为研究对象,通过氯化锂/二甲基乙酰胺(LiCl/DMAc)溶剂体系溶解并进行活化处理,加入不同含量聚丙烯腈(PAN)对纤维素进行静电纺丝制备纤维素纳米纤维,探究纤维素类型、N,N-二甲基甲酰胺(DMF)活化处理前后、PAN加入量对纤维素溶解性、纺丝液性参数和纺丝效果影响。结果表明:DMF活化处理可有效提升纤维素在LiCl/DMAc溶剂体系中的溶解性,在相同溶解温度下获得更加均匀透明的纤维素溶液。在该溶剂体系下,纺丝液黏度、电导率和表面张力分别高于1 300 mPa·s、2 000μs/cm和34.5 mN/m,可获得连续的电纺纤维素纳米纤维。活化微晶纤维素纳米纤维膜比活化纸浆纤维素纳米纤维膜表面更光滑且纤维直径分布更均匀。活化微晶纤维素与PAN质量比为2∶8时可获得表面光滑无珠状物,纤维均一程度高,直径分布小(185~245 nm)的纤维素纳米纤维膜。  相似文献   

12.
以商品南方松溶解浆、漂白桉木浆为原料,采用硫酸水解法、纤维素酶预处理法、2,2,6,6-四甲基哌啶氧自由基(TEMPO)氧化法以及机械法分别制备了纳米纤维素,利用透射电镜(TEM)、原子力显微镜(AFM)详细表征了不同方法制备的纳米微晶纤维素(CNC)和纳米纤丝纤维素(CNF)。采用了多种商品粒度仪快速定性表征了纳米纤维素的大小,CNC为棒状纳米晶须结构,直径约为20 nm,长度为10~200 nm;CNF一般为网状结构,尺寸较大且分布较宽,单根CNF直径从几纳米到几百纳米不等。依据离心分离以及布朗运动制备的2种仪器非常适合半定量快速表征非网状结构的纳米微晶纤维素,实验重复性也很好。  相似文献   

13.
以竹粉为原料制备纳米纤维素基体材料,以聚乙烯醇(PVA)为增强相,在酸性环境下采用冷冻干燥法制得PVA/CNFs(纳米纤维素)复合气凝胶;采用三甲基氯硅烷(TMCS)对其进行疏水改性处理,随后将其浸渍到还原氧化石墨烯(r GO)悬浮液中,最终制得疏水型r GO/PVA/CNFs复合气凝胶;通过扫描电子显微镜(SEM)、傅里叶变换红外光谱(FT-IR)、拉曼光谱(Raman)、接触角(CA)和吸油性能测试,对所制气凝胶的微观形貌、化学结构、疏水性能及吸油性能进行表征。结果表明:制得的复合气凝胶密度为6.78 mg/cm3,具有均匀的三维网状多孔结构,且孔洞结构表面均被石墨烯片层覆盖;经过TMCS疏水处理后,在气凝胶表面形成疏水层结构。FT-IR和Raman分析表明,TMCS疏水改性处理并未改变PVA/CNFs复合气凝胶的化学结构。经疏水处理后气凝胶与水的接触角为138°左右,吸油倍率为78 g/g左右,且吸附过程迅速,饱油后也能悬浮于溶液表面,便于回收再利用。  相似文献   

14.
为改善竹材的疏水性和稳定性,采用软印刷技术在竹材表面仿制月季花瓣的超疏水微纳结构,同时在竹材表面负载纳米二氧化钛提高其稳定性。利用扫描电子显微镜(SEM)、能谱元素分析(EDS)、X射线衍射光谱(XRD)、傅立叶红外光谱(FTIR)、热重分析(TGA)及接触角技术对样品进行了表面特征分析。结果表明:在竹材表面成功构建了类月季花瓣表面的微纳乳突结构,水滴在其表面的接触角达到154.5°,展现出良好的超疏水特性;TGA结果显示,800℃后的样品仍有31.3%的残炭量,试样具有较好的热稳定性。表面仿生可延长竹材的使用寿命和增加竹材的附加值。  相似文献   

15.
利用TEMPO/NaBr/NaClO体系对硫酸水解漂白硫酸盐浆制备的纳米微晶纤维素(NCC)进行改性制备氧化NCC(TONCC)。采用电导滴定、X射线衍射(XRD)及原子力显微镜(AFM)对改性前后纳米微晶纤维素的表面性能及形貌进行表征,并将其作为造纸增强剂应用于废新闻纸脱墨浆,研究其对浆料强度性能的改善作用。结果表明,TONCC表面引入大量的羧基(0.806 mmol/g),而NCC表面羧基含量仅为0.02 mmol/g,外观由半透明变为透明。TONCC保持了纤维素I的晶型结构,分散性能得到改善,宽度略有减小。将改性前后的纳米微晶纤维素加入到废新闻纸脱墨浆中,与对照样相比,当NCC和TONCC用量为0.6%时,浆料的抗张指数分别提高了8.7%和14.2%;NCC和TONCC用量为0.8%时,撕裂指数提高了约12%。将NCC和TONCC与CPAM联合使用,浆料的抗张指数得到了进一步提升,用量为0.8%时,抗张指数分别为17.35和18.52(N·m)/g,分别比对照样提高了19.6%和27.7%。  相似文献   

16.
由于纳米纤维素晶须(CNW)表面含有丰富的羟基,亲水性强,制约了其在疏水性聚合物体系中的应用。本研究以硅烷偶联剂KH-550对纳米纤维素晶须进行改性,降低其表面的亲水性,再以改性后的纳米纤维素晶须(STCNW)为增强相、可生物降解聚(3-羟基丁酸酯-co-4-羟基丁酸酯)[P(3,4)HB]为基体,采用溶液浇铸法制备P(3,4)HB/STCNW纳米复合材料。通过傅里叶变换红外光谱、X-射线衍射仪、接触角测试、扫描电镜、偏光显微镜、拉伸测试和热重分析仪等对其微观结构、表面形貌、结晶行为、力学性能和热稳定性等进行表征与分析。结果表明:改性后的纳米纤维素晶须具有良好的疏水性,可均匀分散在P(3,4)HB基体中形成纳米复合结构,能促进P(3,4)HB结晶的形成,提高基体的拉伸强度和弹性模量等力学性能,但热稳定性稍差。  相似文献   

17.
通过混合不同类型的纳米纤维素制备混合气凝胶,分析其性能特征。将桉木纸浆经化学预处理,结合机械研磨法制备得到纤维素纳米纤丝(cellulose nanofibril,CNF),桉木微晶纤维素(MCC)经硫酸水解法制备得到纤维素纳米晶体(cellulose nanocrystal,CNC),通过透射电镜与X射线衍射仪观测发现二者具有不同的长径比和结晶度。利用悬浮滴定、叔丁醇置换、冷冻干燥等方法制备球形CNF气凝胶和CNF/CNC混合气凝胶,采用扫描电镜、傅里叶红外光谱仪、比表面积分析仪、万能力学试验机对气凝胶的微观形貌、化学官能团、比表面积、平均孔径及压缩性能进行表征,结果表明:CNF气凝胶内部呈现三维网络结构,片状与纤丝状交织,比表面积为91.07m~2/g,平均孔径为14.81 nm,受压缩到80%应变时,压缩强度为0.125 MPa;添加不同比例的CNC制备CNF/CNC混合气凝胶,当CNC添加量为25%时,气凝胶内部纤丝结构取代片状结构,孔隙更加均匀,比表面积升至143.09m~2/g,压缩强度增至0.2 MPa,化学官能团和晶型结构未发生明显变化。当CNC添加量过大(50%)时,则会造成各项性能的减弱。  相似文献   

18.
利用生物质纳米纤维素纤维的高强度和高长径比,向聚乙烯醇中引入纳米纤维素,可改善薄膜的拉伸性能。针对聚乙烯醇阻隔性能的改善问题,选用片层的还原氧化石墨烯作为增强相,将自制的纳米纤维素和氧化石墨烯加入聚乙烯醇溶液中,以D-果糖为绿色还原剂,分别添加质量分数0.2%,0.4%,0.6%,0.8%的还原氧化石墨烯,采用浇涂法制备聚乙烯醇/纳米纤维素/石墨烯复合薄膜。通过纳米纤维素与石墨烯的协同增强作用,研制了兼具优良阻隔性能和拉伸性能的生物降解薄膜。结果表明,当纳米纤维素和石墨烯质量分数分别为0.8%和0.6%时,聚乙烯醇/纳米纤维素/石墨烯复合薄膜的拉伸强度、氧气透过系数、对水的接触角和吸水率分别为88.76 MPa、0.592×10-15cm~3·cm/(cm~2·s·Pa)、90.5°和72.9%。但石墨烯的用量存在一个阈值,当质量分数高于0.6%时,复合薄膜的力学和阻隔性能反而下降。  相似文献   

19.
受荷叶效应启发,使用聚二甲基硅氧烷(PDMS)模板二次转印复型技术,在负载聚乙烯醇缩丁醛(PVB)涂层的白蜡木素材表面遗态仿生制备了类荷叶微/纳米结构形貌,并赋予木材表面自清洁超疏水特性。通过扫描电子显微镜、能谱元素分析仪、X射线衍射光谱仪、傅里叶变换红外光谱仪、X射线光电子能谱仪以及静态水接触角仪对白蜡木素材和遗态仿生类荷叶自清洁超疏水木材试样的微观形貌、化学元素组成、表面化学状态以及润湿性进行表征。结果表明,遗态仿生制备的类荷叶自清洁超疏水木材表面具有与荷叶表面微/纳米乳突结构类似的微观形貌。遗态仿生类荷叶自清洁超疏水木材没有改变白蜡木素材原有的色彩纹理,其表面静态水接触角约为151°,滚动角为6°,接近于遗态材料荷叶表面的接触角与滚动角,表现出超疏水能力;同时,表面的石墨粉能被水滴轻松冲洗掉,具有自清洁特性。这主要是由于木材表面沉积的PVB混合涂层中羟基与木材表面的羟基相结合,使其表面羟基数量有所减少,此外,含氟长链烷基聚合物的存在也增强了木材表面的疏水性能。  相似文献   

20.
以大青杨木材为研究对象,为提高其抗润湿和耐老化性能,采用层层自组装技术,将聚乙烯亚胺(PEI)和纳米ZrO_2交替吸附在木材表面,然后用全氟癸基三甲氧基硅烷(FAS)对组装后的木材进行修饰,在木材表面形成复合的功能薄膜。结果表明,在组装过程中,纳米ZrO_2的单斜晶系晶体结构没有发生转变。(PEI/ZrO_2)i膜层能均匀地负载在木材表面,随着层数的增加,膜层变得更加致密。接触角测试结果发现,与未处理材相比,组装后的木材试样经过FAS修饰后均具有较稳定的疏水效果,初始接触角最高可达148°。加速老化试验结果表明,未处理材的颜色变化ΔE*可达35.36,而处理后木材的ΔE*明显减小,降幅达到66.4%。因此,利用层层自组装技术,在木材表面吸附了(PEI/ZrO_2)i/FAS膜层,可使木材具有良好的抗润湿及耐老化效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号