首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 812 毫秒
1.
水曲柳林冠的降水截留特征   总被引:5,自引:0,他引:5       下载免费PDF全文
对水曲柳林冠在2003年5-9月的降水截留特征进行了野外测定与统计分析,结果表明:水曲柳林分林冠截留量为68.77 mm,占同期降水量的17.41%;降水约按以下比例被再次分配:穿透降水72.50%,林冠截留17.41%,树干茎流10.08%.模拟分析结果表明:Horton改进模型模拟精度高,参数物理意义较明确,水曲柳林冠吸附容量为0.84 mm,区域降雨蒸发能力的参数值为11.83%,水曲柳林冠截留率随降水变化的曲线可分为快变期(截留率大于19.0%,降水量小于10 mm)、渐变期(截留率19.0%~12.8%,降水10~30 mm)和稳定期(截留率小于12.8%,降水大于30 mm),水曲柳林冠稳定截留率为12.8%.  相似文献   

2.
油松人工林林冠对降水再分配的研究   总被引:9,自引:0,他引:9  
分析了28年生油松人工林对降水的再分配及林冠容水量与蒸发速率。林冠对降水的再分配是:林冠截留量占17.4%,林内降水量占80.2%,树干径流量占2.4%。林冠容水量为1.12mm,平均蒸发速率为0.18mm/min。  相似文献   

3.
枫香人工林林冠截留对降水水量输入的影响   总被引:1,自引:1,他引:0  
采用定位研究方法,根据2007年5月至2008年3月的观测数据,对长沙市天际岭林场枫香人工林生态系统的降水再分配进行了研究.结果表明:该系统11个月的总降水量为817.8mm.其中林内的净降水量占总降水量的81.99%,林冠年截留量占年降水量的18.01%;进入枫香人工林内的雨水绝大部分是穿透水,占净降水量的80.3%,以树干茎流形式进入林内的水量为13.8mm,占年降水量的1.69%;树干茎流率的季节变化幅度最小,穿透水率季节变化幅度不大,而林冠截留率季节变化幅度最为明显;对于不同降雨量级来说,穿透率和树干茎流率随着降水量的增加而增加,而林冠截留量则随着降水量的增加呈递减趋势.  相似文献   

4.
为了评估生态公益林涵养水源服务功能,选择德庆县三叉顶自然保护区生态公益林,定位观测2006年6月~2007年6月100次大气降水事件的截留分配效应。结果表明,观测期内降水总量为1 317.60mm,林冠截留量、树干茎流量和穿透水量分别是318.37,87.85和911.38 mm,林冠截留率、茎流率和穿透率分别为24.16%,6.67%和69.17%。林外降水量大于1.3 mm时才能观测到穿透雨,林外降水量达到3.0mm时才开始有树干茎流出现。林冠截留量、树干茎流量和穿透量与降水量均呈正相关,相关系数R2分别为0.788 8,0.957 7和0.965 9;林冠截留率与林外降水量呈负相关,而树干茎流率和穿透率呈正相关,相关系数R2分别为0.835 6,0.803 4和0.874 2。  相似文献   

5.
武夷山甜槠常绿阔叶林林分降水分量特征   总被引:4,自引:0,他引:4  
任引  薛建辉 《林业科学》2008,44(2):23-27
2004年对武夷山甜槠林不同水文分量定位观测,探讨甜槠林森林水文与降水的关系 .结果表明:1)2004年共发生降水219次,年降水量1 767.4 mm,穿透水、茎流量和林冠截留量分别为1 304.9、245.0和217.5 mm;穿透率、茎流率和截留率分别为73.8%、 13.9%和12.3%;2)同次降水中,林内不同位置的穿透雨量差异显著,穿透水量与大气降水量之间存在明显的线性关系;3)随着胸径的增加,茎流量减小,形成茎流的时间推迟;4)当降水量<202.1 mm时,林冠截留量随着降水量的增加而增加;当降水量超过202.1 mm后,林冠截留量趋于定值52.5 mm.  相似文献   

6.
第2代杉木近熟林水文学过程研究   总被引:1,自引:0,他引:1  
根据2005年会同定位观测站第3小集水区实测数据,对第2代杉木近熟林进行了水量平衡和蒸发散研究.结果表明:2005年降水量为1077.5 mm,水分输出中,总径流量为191.90 mm,总蒸发散量899.49 mm,水分输出比水分输入多13.89 mm,这部分水量由原来贮存在土壤中的水分提供;与第1代杉木成熟林的水量平衡相比,林冠截留率降低了4.7%,总径流系数降低了2.1%,土壤蓄水多亏损0.1%左右,蒸发散系数由81.20%提高到83.48%.  相似文献   

7.
章古台地区樟子松人工林水量平衡初步研究   总被引:1,自引:0,他引:1  
为揭示樟子松人工林水量平衡规律,在辽宁省章古台地区,选择林龄为32 a、密度为404株/hm2的樟子松人工林,利用2 a(2010、2011)的观测结果,采用水量平衡方法对樟子松人工林的降水分配进行研究。结果表明:樟子松人工林内降水量、树干茎流量、林冠截留量分别为422.7、0.8、28.1 mm,占同期降水量的93.6%、0.2%、6.2%。樟子松蒸腾耗水量、枯落物+林下植被+土壤蒸散量、土壤贮水量变化量分别为116.1、287.3、20.1 mm,占同期降水量的25.7%、63.6%、4.5%;樟子松蒸腾耗水量占林地内蒸散量的28.8%,枯落物+林下植被+土壤蒸散量占林地内蒸散量的71.2%。  相似文献   

8.
滇中华山松人工林的水文特征及水量平衡   总被引:21,自引:1,他引:21       下载免费PDF全文
根据滇中高原的华山松林集水区径流场连续 3a的降雨和径流观测数据 ,进行了华山松人工林的水文特征及水量平衡的研究。结果表明 :( 1)本区域降水量的季节分配不均 ,湿季 ( 6~ 10月 )降水量占全年的 80 % ,降水量主要由大于 10mm以上的降雨带来 ,且降雨强度大部分小于 5.0mm·h- 1。 ( 2 )集水区年平均降雨量 10 0 5.6mm ,在林冠作用面降雨量的分配中 ,林冠截留雨量 2 10 .6mm ,截留率 2 0 .9% ;穿透过林冠层的降雨 74 5.3mm ,树干茎流量 4 9.7mm ,分别占降雨量的 74 .2 %和 4 .9%。 ( 3)集水区径流的月变化滞后于降雨 ,总径流量 172 .2 9mm ,总径流系数 17.13% ,其中 ,地表径流 8.0 3mm ,地下径流 164.2 6mm ;地表径流主要集中在雨季产生 ,一次性降雨对地表径流的影响显著 (R =0 .91)。 ( 4 )土壤蓄水年变化量 11.2mm ,约占年降水量的 1.1% ,但月变化较大 ;系统水量最大的输出是蒸散 ,每年以气态形式返回大气的水量 82 2 .1mm ,占降水量的 81.8% ;在蒸散的水量中 ,林冠截留雨量的直接物理蒸发量 2 10 .6mm ,占总蒸散量的 2 5.6%。  相似文献   

9.
林冠截留对杉木人工林生态系统物质循环的影响   总被引:2,自引:1,他引:2  
根据1999-2002年连续4年的观测数据,对林冠截留在杉木林生态系统物质循环中的作用进行研究.结果表明:每年林冠截留降雨量267.0 mm; 林冠截留蒸发散量占杉木人工林总蒸发散量的27.2%,林冠截留水分的物理蒸发量占杉木林集水区水分输出的18.97%;林内净降水的营养物质为143.329 kg·hm-2a-1,比冠上大气降水输入的63.924 kg·hm-2a-1多74.905 kg·hm-2a-1,增加了117.2%; 林冠截留减少了到达林地表面和入渗土壤的水分,减少了集水区地表水和土壤漏水的输出,从而减少了营养物质的输出,可见,林冠截留是系统保存营养物质的重要机制之一.  相似文献   

10.
林冠截留在杉木林生态系统能量转换过程中的作用   总被引:1,自引:0,他引:1  
根据会同生态站2000-2005年连续定位观测数据,研究杉木人工林林冠截留在杉木人工林生态系统能量转换过程中的作用.结果表明:林冠层每年吸收的辐射能为25.543 0亿J·m-2,透过林冠层的辐射能为2.530 6亿J·m-2,被冠层反射的辐射能为2.743 2亿J·m-2,分别占到达林冠表面辐射能的82.7%、8.2%和9.1%;林冠截留水分的蒸发,使得系统获取的净辐射能向潜热能转化.每年林冠截留水分蒸发耗能6.369 5亿J·m-2,占系统净辐射能的22.9%,占系统总蒸发散耗能的30.4%,是系统能量支出的一个重要组成部分;林冠截留使大气降水中的雨滴动能消耗在克服枝叶阻力的做功上,叶面水滴从冠层滴落下,是一个由势能转化为动能的过程;冠层叶片对水滴有汇聚作用,使冠滴水直径较冠上大气降水大,冠滴水的直径主要受冠层结构的影响,与大气降水量和降水强度的关系不大;林分郁闭度为0.9,枝下高7 m,降水量大于3 mm时,林冠层不能有效地降低雨滴动能,只有在雨量极小、林冠能截留大部分水量,或者雨强极大、直径大的雨滴在枝叶表面撞击分散的情况下,才能显示林冠对大气降水雨滴动能的降低作用.  相似文献   

11.
为了评估生态公益林涵养水源服务功能,选择德庆县三叉顶自然保护区生态公益林,定位观测2006年6月~2007年6月100次大气降水事件的截留分配效应。结果表明,观测期内降水总量为1317.60mm,林冠截留量、树干茎流量和穿透水量分别是318.37,87.85和911.38mm,林冠截留率、茎流率和穿透率分别为24.16%,6.67%和69.17%。林外降水量大于1.31mm时才能观测到穿透雨,林外降水量达到3.0mm时才开始有树干茎流出现。林冠截留量、树干茎流量和穿透量与降水量均呈正相关,相关系数序分别为0.7888,0.9577和0.9659;林冠截留率与林外降水量呈负相关,而树干茎流率和穿透率呈正相关,相关系数尺。分别为0.8356,0.8034和0.8742。  相似文献   

12.
人工毛竹林水文生态功能的初步研究   总被引:2,自引:0,他引:2       下载免费PDF全文
在2009年3—10月对浙江庙山坞自然保护区人工毛竹林的水文生态特征进行了定位样地和径流场观测研究,以探讨其林内降水分配规律和水土保持功能。结果表明:(1)观测期内,林外总降水量达1 220.8 mm,穿透雨量、茎流量、林冠截留量分别占总降水量的78.2%、7.3%和14.5%。随着林外降水量的增加,穿透雨量、茎流量呈线性增加,而林冠截留量先是迅速增加,当林外降水量达10 mm后增速减缓,并趋于稳定(5 - 6 mm)。(2)人工毛竹林林地凋落物现存量平均为4.37 t·hm-2,最  相似文献   

13.
晋西黄土区主要造林树种单株耗水量研究   总被引:1,自引:0,他引:1  
依据水量平衡原理,采用桶栽试验分别测算晋西黄土区主要造林树种侧柏、刺槐、杏和河北梨生长季(4-10月)单株耗水量,并根据林地土壤水分动态及土壤水分特征曲线标定的各树种无效水界值,分析各树种土壤水分供耗特点及其有效性.结果表明:1)2002年(贫水年)生长季降水量430.7 mm,试验树种同期耗水量约为430~490 mm,供耗失衡;2003年(丰水年)降水量870.2 mm,耗水量约为480~515 mm,但降雨分配不均,5、10月供耗也略有失衡.2)不同树种年内土壤含水量变化趋势相近,而同月耗水量差异较大,同一树种不同月耗水量差异也较大,丰水年各试验地土壤水分状况要好于贫水年.3)侧柏、刺槐、杏和河北梨无效水界值分别为8.0%、8.4%、9.2%和9.7%,侧柏较其他3个树种利用水分能力强;贫水年林外单株树木土壤含水量在一段时间内低于对应树种的无效水界值,影响树木正常生长;单株树木依靠冬季和次年春季降水补充,生长季初期都能恢复到速效水水平.  相似文献   

14.
Interception loss represents an important factor of water balance. The reduction of interception loss through silvicultural treatments to the benefit of water yield is very important for countries with large periods of limited rainfall like Greece. In the context of climate change and its possible effects on water availability, oak ecosystems can play a significant role in water production, as they comprise the largest part of the forested area in Greece. The objective of this study is to investigate the relationships between water interception changes, as a result of different forest management treatments, and water yield. For this reason, experimental watersheds have been established for the study of the hydrological impacts of thinning and clearcutting in an oak ecosystem in northern Greece. Two watersheds were used as control while different combinations of thinning (removal 50% of basal area) and clearcutting treatments were used in the other three study watersheds. Canopy annual interception amounted for 9.0%, 6.7% and 1.8% of the total precipitation in the untreated, thinned and clearcut plots respectively. The practiced thinning and clearcutting operations increased the available amount of water by a mean annual average of 13.2 mm and 42.8 mm respectively compared to the control watersheds. The total water surplus represented 29.5%, 30.9% and 33.9% of the average annual precipitation for the control, thinned and clearcut plot respectively. Surface flow was very low even during large rainfall events, possibly due to the soil and bedrock attributes and the topography of the area. Analogous silvicultural treatments can increase water availability but they should incorporate reduced-impact logging and skidding practices and thus cause the least possible soil disturbance, by carefully selecting the best suited wood harvesting systems and methods.  相似文献   

15.
紫金山麻栎林降水分配格局研究   总被引:1,自引:0,他引:1  
对紫金山栎林林冠截留、树干茎流与降水量之间的关系进行了研究。在观测的46场降水中,降水量达823.8 mm,林冠总截留量、树干茎流量和穿透雨量分别为207.95 mm、33.30 mm、582.55 mm,林冠截留率、树干茎流率和穿透率分别为25.24%、4.04%、70.71%。随着降水量的增大,林冠截留量、树干茎流量、穿透雨量及穿透率都有所增加,林冠截留率降低,树干茎流率在2~50 mm降水量级中逐渐增大,在>50 mm降水量级有所降低。林冠截留量与降水量之间呈幂函数关系,而树干茎流量、穿透雨与降水量之间呈线性相关。  相似文献   

16.
Water is the key factor in vegetation growth in a loess area. Researchers have been keen on the study of tree transpiration for a long time. To provide a scientific basis and practical instruction for vegetation reconstruction and recovery in a loess area, the paper measured and calculated the water consumption of potted Platycladus orientalis, Robinia pseudoacacia, Armeniaca vulgaris and Pyrus hopeiensis separately during the growing season (from Apr. to Nov.). The four were the main afforestation species in a loess area of western Shanxi based on the principle of water balance. Using data on soil water dynamics and the range of available moisture on potted mature trees, the relationship between water supply and consumption and soil moisture availability and deficit state were analyzed. Several conclusions are listed as follows: 1) In the dry year (2002), during the growing season the precipitation was 430.7 mm and the water consumption of potted trees was from 430 to 490 mm. More water consumption and less available water supply occurred, showing a serious water deficiency. In the rainfall-rich year (2003), during the growing season the precipitation was 870.2 mm and the water consumption of potted trees was from 480 to 515 mm. Due to the uneven distribution of rainfall, the water budget balance was slightly affected in May and November. 2) The curves of soil water content of different species had similar annual changes, although the trends were different in the same month, and those of the same tree species in different test plots also had different trends in the same month. 3) Non-available soil water content of Platycladus orientalis, Robinia pseudoacacia, Armeniaca vulgaris and Pyrus hopeiensis was less than 8.0%, 8.4%, 9.2% and 9.7% respectively, which indicated that Pyrus orentalis used water more efficiently than the others. In the dry year (2002), for several months, soil water content of potted trees was lower than its threshold value for non-available soil water content, which could influence the healthy growth of trees. After supplements of precipitation of winter in the year and spring in the next year, soil water content was higher than the lower limit of soil readily available moisture content, which implied that a balance between inter-annual water supply and consumption could be maintained. __________ Translated from Scientia Silvae Sinicae, 2006, 42(9): 18–23 [译自: 林业科学]  相似文献   

17.
Continuous recording of precipitation and soil water content(SWC), especially during long periods of torrential rainfall, has proven challenging. Over a 16 h period spanning 21–22 July, 2012, Beijing experienced historic rainfall that totaled 164.4 mm. We used large lysimeter technology in four forested plots to record precipitation and variation in SWC at 10-min intervals to quantify the response of forestland SWC to heavy rainfall in a semi-arid area. Mean,maximum and minimum rainfall intensities were 23.4, 46.8and 12.0 mm/h, respectively. Rainfall was concentrated in 2–6 mm bursts that accounted for 67.32 % of the total rainfall event. Soil moisture conditions in this region are strongly dependent on patterns of precipitation. Water infiltration into 20, 40, 60, 80, 100, 120 and 160 cm soil layers required 1, 5,20, 37, 46, 52 and 61 mm of precipitation, respectively, and to fully saturate these soil layers required 80, 120, 140, 150, 180,200 and 220 mm of precipitation, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号