首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The restoration of natural fire regimes has emerged as a primary management objective within fire-prone forests in the interior western US. However, this objective becomes contentious when perceived to be in conflict with the conservation of rare wildlife species. For example, the integration of fire ecology in disturbance-prone forests of eastern Washington with the recovery of the Northern spotted owl has been described as a management dilemma. We intersected modeled spotted owl habitat with mapped priority fuels treatment areas in order to determine the magnitude of the potential conflict between fuels management and owl conservation. Our results show that there is considerable overlap within dry forests between high suitability spotted owl habitat and moderate-high priority fuels treatment areas (34% overlap). However, there is also considerable overlap of lower suitability spotted owl habitat with moderate-high priority fuels treatment areas (35% overlap) providing opportunities to accomplish multiple management objectives if one considers a landscape perspective. We propose that a conservation strategy for the Northern spotted owl in the eastern Cascades consider the following: emphasize landscape restoration of dry forests within which spotted owl habitat is embedded; landscapes considered for restoration need to be large enough to accomodate the effects of fire disturbances and still retain sufficient habitat to support spotted owl populations; and include adaptive management allowing for adequate monitoring and feedback for managers to make needed adjustments.  相似文献   

2.
Natural disturbances including wildfire, insects and disease are a growing threat to the remaining late successional forests in the Pacific Northwest, USA. These forests are a cornerstone of the region's ecological diversity and provide essential habitat to a number of rare terrestrial and aquatic species including the endangered northern spotted owl (Strix occidentalis caurina). Wildfires in particular have reduced the amount of late successional forests over the past decade, prompting land managers to expand investments in forest management in an attempt to slow losses and mitigate wildfire risk. Much of the emphasis is focused specifically on late successional reserves established under the Northwest Forest Plan to provide habitat for spotted owls. In this paper, we demonstrate a probabilistic risk analysis system for quantifying wildfire threats to spotted owl habitat and comparing the efficacy of fuel treatment scenarios. We used wildfire simulation methods to calculate spatially explicit probabilities of habitat loss for fuel treatment scenarios on a 70,245 ha study area in Central Oregon, USA. We simulated 1000 wildfires with randomly located ignitions and weather conditions that replicated a recent large fire within the study area. A flame length threshold for each spotted owl habitat stand was determined using the forest vegetation simulator and used to predict the proportion of fires that resulted in habitat loss. Wildfire modeling revealed a strong spatial pattern in burn probability created by natural fuel breaks (lakes and lava flows). We observed a non-linear decrease in the probability of habitat loss with increasing treatment area. Fuels treatments on a relatively minor percentage of the forested landscape (20%) resulted in a 44% decrease in the probability of spotted owl habitat loss averaged over all habitat stands. The modeling system advances the application of quantitative and probabilistic risk assessment for habitat and species conservation planning.  相似文献   

3.
Progress in implementing ecosystem approaches to conservation and restoration is slowed by legitimate concerns about the effects of such approaches on individual imperiled species. The perceived conflict between the restoration of fire-excluded forests and concomitant reduction of dense fuels and high-severity wildfire, versus the recovery of endangered species, has led to a policy ambiguity that has slowed on-the-ground action at a time when active management is urgently needed, both for ecosystem restoration and species conservation. The Mexican spotted owl (Strix occidentalis lucida) in the southwestern U.S.A. is emblematic of this perceived conflict, with numerous appeals and lawsuits focused on the species and vast acres of forest managed with habitat quality for this species in mind. We use spatial analysis across large landscapes in Arizona to examine potential conflicts between the desire to reduce the likelihood of uncharacteristically severe wildfire and restore native fire regimes, and the concurrent desire and legal mandate to manage forests for the recovery of the owl. Our spatially explicit analysis indicates that real conflicts between these management objectives exist, but that locations where conflicts might inhibit active forest management represent less than 1/3 of the 811,000 ha study region. Furthermore, within the areas where conflicts might be expected, the majority of the forest could be managed in ways that would reduce fire hazard without eliminating owl habitat. Finally, management treatments that emphasize ecosystem restoration might improve the suitability of large areas of forest habitat in the southwest that is currently unsuitable for owls. These results demonstrate that even where policy conflicts exist, their magnitude has been overstated. Active restoration of dry forests from which fire has been excluded is compatible in many areas with conservation and recovery of the owl. Identifying and prioritizing areas to meet the dual goals of ecosystem restoration and imperiled species conservation require a broad spatial approach that is analytically feasible but currently underutilized. Working together, conservation biologists, restoration ecologists, and forest managers can employ landscape-level spatial analysis to identify appropriate areas for management attention, identify suitable management practices, and explore the predicted consequences of alternative management scenarios on forests, fire ecology, and the fate of sensitive species of conservation concern.  相似文献   

4.
After a century of fire suppression, conifer forests in the western United States have dramatically departed from conditions that existed prior to Euro-American settlement, with heavy fuel loads and an increased incidence of wildfire. To reduce this threat and improve overall forest health, land managers are designing landscape-scale treatments that strategically locate thinning and burning treatments to disrupt fuel continuity, allowing managed wildfires to burn the remaining area. A necessary step in designing and evaluating these treatments is understanding their ecological effects on wildlife. We used meta-analysis to compare effects of small-diameter removal (thinnings and shelterwoods) and burning treatments, selective harvesting, overstory removal (including clearcutting), and wildfire on wildlife species in southwestern conifer forests. We hypothesized that small-diameter removal and burning treatments would have minimal effects on wildlife compared to other treatments. We found 33 studies that met our criteria by (1) comparing density or reproductive output for wildlife species, (2) using forest management or wildfire treatments, (3) implementing control-impact or before-after control-impact design using unmanaged stands as controls, and (4) occurring in Arizona or New Mexico ponderosa pine (Pinus ponderosa) or mixed conifer (Abies/Picea/Pinus) forest. The 22 studies suitable for meta-analysis occurred ≤20 years post-treatment on sites <400 ha. Small-diameter harvest and burning treatments had positive effects but thin/burn and selective harvest treatments had no detectable effect on most small mammals and passerine bird species reported in studies; overstory removal and wildfire resulted in an overall negative response. We examined foraging guild responses to treatments; ground-foraging birds and rodents had no strong response. Aerial-, tree-, and bole-foraging birds had positive or neutral responses to the small-diameter removal and burning treatments, but negative responses to overstory removal and wildfire. Small-diameter removal and burning treatments as currently being implemented in the Southwest do not negatively impact most of the wildlife species in the studies we examined in the short-term (≤10 years). We believe a combination of treatments in a patchy arrangement across the landscape will result in the highest diversity and density. We recommend that managers implement thinning and burning treatments, but that future research efforts focus on long-term responses of species at larger spatial scales, use reproductive output as a more informative response variable, and target species for which there is a paucity of data.  相似文献   

5.
We hypothesized that edge density more strongly influences species abundances in more productive environments. To test this hypothesis we collected songbird point count data across broad biophysical gradients and gradients in forest patch edge density in the west and east slopes of the Cascade Mountains of Oregon and Washington, U.S.A., which differ in ecological productivity. We then analyzed bird response (75 species) at both the species and community level to gradients in edge density (m/ha) of open and closed-canopy forest within 1-km radius landscapes. We found that (1) differences in vegetation and structural conditions between open and closed-canopy stands were significantly greater at a highly productive landscape than a landscape with intermediate levels of productivity; (2) more bird species responded to changes in edge density in more productive west-slope Cascade forests than less productive east-side Cascade forests; (3) pooled abundance data from both sites showed that 25 of the 60 most abundant bird species responded significantly to the interaction between forest productivity and changes in landscape-level edge density; and, (4) at the community level, ordinations showed that bird community similarity in the productive west-slope Cascade forests differed across low and high levels of edge density whereas no such differentiation occurred in harsh, east-side Cascade forests. These results provide some of the first evidence supporting the hypothesis that edge effects are more pronounced in productive west-side forests where higher levels of edge density benefit generalist and open-canopy species while negatively influencing closed-canopy species. Consequently, forest management aimed at supporting species diversity will be most effective if tailored to ecosystem productivity.  相似文献   

6.
Abstract

Changing forest policies in both riparian and upland areas to help protect threatened and endangered species have contributed to the reduction of timber harvests in western Washington. The economic, biodiversity, and environmental impacts of these policy actions have been substantial. Policy simulations across 9.4 million acres of timber-land show that relative to proactive management strategies, current habitat conservation and environmental programs (largely based on a reservation strategy) result in net present value reductions to forestland owners of $9.9 billion. Accompanying these asset value reductions are employment losses (sustained) of 30% and tax receipt losses of 26%. The policy simulations further demonstrate that proactive management will not decrease the long-term percentage of the upland landscape occupied by functionally old forests relative to the reservation strategy. In the riparian area, adoption of a reservation strategy actually decreases (by 29%) the percent of the landscape occupied by functionally old forests relative to a proactive management approach. These results illustrate the importance of proactively managing western Washington forests to provide maximum functionally old forest habitat for endangered upland animals (such as the northern spotted owl and the marbled murrelet) as well as riparian species.  相似文献   

7.
Simulation models of disturbance and succession are being increasingly applied to characterize landscape composition and dynamics under natural fire regimes, and to evaluate alternative management strategies for ecological restoration and fire hazard reduction. However, we have a limited understanding of how landscapes respond to changes in fire frequency, and about the sensitivity of model predictions to assumptions about successional pathways and fire behavior. We updated an existing landscape dynamics model (LADS) to simulate the complex interactions between forest dynamics, fire spread, and fire effects in dry forests of the interior Pacific Northwest. Experimental model runs were conducted on a hypothetical landscape at fire rotations ranging from 5 to 50 years. Three sensitivity analyses were carried out to explore the responses of landscape composition to (1) parameters characterizing succession and fire effects on vegetation, (2) the probability of fire spread into different successional stages, and (3) the size and spatial pattern of static fire refugia. The area of old open-canopy forests was highest at the shortest fire rotations, and was particularly sensitive to the probability of stand-replacement fire in open-canopy forests and to the fire-free period required for ingrowth to occur in open-canopy forests. The area of old closed-canopy forests increased with lengthening fire rotation, but always comprised a relatively small portion of the landscape (<10%). The area of old closed-canopy forests increased when fire spread was more rapid in open-canopy forests than in closed-canopy forests, and when the physical landscape incorporated large “fire refugia” with low fire spread rates. Old closed-canopy forests appear to comprise a relatively minor landscape component in mixed-severity fire regimes with fire rotations of 50 years or less. However, these results are sensitive to assumptions about the spatial interactions between fire spread, landscape vegetation patterns, and the underlying physical landscape.  相似文献   

8.
Forests characterized by mixed-severity fires occupy a broad moisture gradient between lower elevation forests typified by low-severity fires and higher elevation forests in which high-severity, stand replacing fires are the norm. Mixed-severity forest types are poorly documented and little understood but likely occupy significant areas in the western United States. By definition, mixed-severity types have high beta diversity at meso-scales, encompassing patches of both high and low severity and gradients in between. Studies of mixed-severity types reveal complex landscapes in which patch sizes follow a power law distribution with many small and few large patches. Forest types characterized by mixed severity can be classified according to the modal proportion of high to low severity patches, which increases from relatively dry to relatively mesic site conditions. Mixed-severity regimes are produced by interactions between top-down forcing by climate and bottom-up shaping by topography and the flammability of vegetation, although specific effects may vary widely across the region, especially the relation between aspect and fire severity. History is important in shaping fire behavior in mixed-severity landscapes, as patterns laid down by previous fires can play a significant role in shaping future fires. Like low-severity forests in the western United States, many dry mixed-severity types experienced significant increases in stand density during the 20th century, threatening forest health and biodiversity, however not all understory development in mixed-severity forests increases the threat of severe wild fires. In general, current landscapes have been homogenized, reducing beta diversity and increasing the probability of large fires and insect outbreaks. Further loss of old, fire tolerant trees is of particular concern, but understory diversity has been reduced as well. High stand densities on relatively dry sites increase water use and therefore susceptibility to drought and insect outbreaks, exacerbating a trend of increasing regional drying. The need to restore beta diversity while protecting habitat for closed-forest specialists such as the northern spotted owl call for landscape-level approaches to ecological restoration.  相似文献   

9.
Old-growth forests provide important habitat elements for many species of wildlife. These forests, however, are rare where lands are managed for timber. In commercial forests, large and old trees sometimes exist only as widely-dispersed residual or legacy trees. Legacy trees are old trees that have been spared during harvest or have survived stand-replacing natural disturbances. The value of individual legacy trees to wildlife has received little attention by land managers or researchers within the coast redwood (Sequoia sempervirens) region where 95% of the landscape is intensively managed for timber production. We investigated the use of individual legacy old-growth redwood trees by wildlife and compared this use to randomly selected commercially-mature trees. At each legacy/control tree pair we sampled for bats using electronic bat detectors, for small mammals using live traps, for large mammals using remote sensor cameras, and for birds using time-constrained observation surveys. Legacy old-growth trees containing basal hollows were equipped with ‘guano traps’; monthly guano weight was used as an index of roosting by bats. The diversity and richness of wildlife species recorded at legacy trees was significantly greater than at control trees (Shannon index=2.81 versus 2.32; species=38 versus 24, respectively). The index of bat activity and the number of birds observed was significantly greater at legacy trees compared to control trees. We found no statistical differences between legacy and control trees in the numbers of small mammals captured or in the number of species photographed using remote cameras. Every basal hollow contained bat guano and genetic methods confirmed use by four species of bats. Vaux’s swifts (Chaetura vauxi), pygmy nuthatches (Sitta pygmaea), violet-green swallows (Tachycineta thalassina), and the long-legged myotis (Myotis volans) reproduced in legacy trees. As measured by species richness, species diversity, and use by a number of different taxa, legacy trees appear to add significant habitat value to managed redwood forests. This value probably is related to the structural complexity offered by legacy trees. The presence of a basal hollow, which only occur in legacy trees, was the feature that appeared to add the greatest habitat value to legacy trees and, therefore, to commercial forest stands. The results of our study call for an appreciation for particular individual trees as habitat for wildlife in managed stands. This is a spatial resolution of analysis that, heretofore, has not been expected of managers. The cumulative effects of the retention of legacy trees in commercial forest lands could yield important benefits to vertebrate wildlife that are associated with biological legacies.  相似文献   

10.
To sustain native species in managed forests, landowners need silvicultural strategies that retain habitat elements often eliminated during traditional harvests such as clearcut logging. One alternative is green-tree or variable retention. We investigated the response of terrestrial small mammals to experimental harvests that retained large live trees in varying amounts (approximately 100, 75, 40, and 15% of original basal area) and patterns (aggregated versus dispersed) in mature coniferous forests of western Oregon and Washington. Treatments were applied in 36, 13-ha experimental units. We used pitfall traps to sample small mammals for 4 weeks each autumn during 2 years before and 2 years after treatments. We captured 21,351 individuals of 32 species. We analyzed effects of treatments on relative abundance of 12 species. As level of retention declined, we expected species associated with closed-canopy forests to decrease (Sorex trowbridgii, Neurotrichus gibbsii, Peromyscus keeni, Myodes [Clethrionomys] californicus, and M. gapperi); species associated with early successional habitats to increase (S. vagrans, P. maniculatus, Microtus longicaudus, and Microtus oregoni); and habitat generalists to show little response (S. monticolus, S. pacificus, and S. sonomae). As expected, M. californicus declined after harvest, and P. maniculatus and M. longicaudus increased. Sorex sonomae showed an unpredicted decrease. Other species did not show consistent changes. Responses of S. monticolus, S. sonomae, and M. gapperi varied among study areas. For M. gapperi, this variation was not explained by differences in habitat structure among areas. For all species, capture rates were similar in dispersed- and aggregated-retention units. Similarity in species composition between harvested sites and controls decreased with decreasing retention. Future sampling of these treatments is needed to assess long-term responses. Based on our initial results, green-tree retention strategies need to be sensitive to regional variation in environmental characteristics and small mammal community composition.  相似文献   

11.
In western North America, quaking aspen (Populus tremuloides) is the most common hardwood in montane landscapes. Fire suppression, grazing and wildlife management practices, and climate patterns of the past century are all potential threats to aspen coverage in this region. If aspen-dependent species are losing habitat, this raises concerns about their long-term viability. Though lichens have a rich history as air pollution indicators, we believe that they may also be useful as a metric of community diversity associated with habitat change. We established 47 plots in the Bear River Range of northern Utah and southern Idaho to evaluate the effects of forest succession on epiphytic macrolichen communities. Plots were located in a narrow elevational belt (2134–2438 m) to minimize the known covariant effects of elevation and moisture on lichen communities. Results show increasing total lichen diversity and a decrease in aspen-dependent species as aspen forests succeed to conifer cover types. The interactive roles of stand aspect, basal area and cover of dominant trees, stand age, aspen bark scars, and recent tree damage were examined as related to these trends. We developed an aspen index score based on lichens showing an affinity for aspen habitat (Phaeophyscia nigricans, Physcia tenella, Xanthomendoza fulva, Xanthomendoza galericulata) and found a significant negative relationship between the index and successional progression. Indicator species analysis showed the importance of all stages of aspen-conifer succession for lichen community diversity and highlighted the decline of aspen-dependent species with advancing succession. We present a landscape-level community analysis of lichens in the context of a conceptual model for aspen succession for the southern Rocky Mountains. We conclude that while total number of lichen species increases with succession, aspen-dependent species cover and richness will decline. In this way, epiphytic lichens communities may constitute an effective indicator of community-level diversity in for aspen-dependent species at-large.  相似文献   

12.
Relative to closed-canopy tropical forests, tree seedlings planted in open grown areas are exposed to higher light intensity, air temperatures, vapor pressure deficit, and greater seasonal fluxes of plant available water than mature tropical forests. The species-specific adaptive capacity to respond to variable precipitation and seasonality in open grown conditions, therefore, is likely to affect species performance in large-scale reforestation efforts. In the present study, we compared the photosynthetic characteristics of eight tropical tree species within and between seasons at two study sites with contrasting dry season intensities. All species except Pseudosamanea guachapele reduced leaf physiological function between the wet and dry seasons. The contrasting severity of seasonal drought stress at the study sites constrained growth rates and photosynthetic characteristics differently. Variation of photosynthetic characteristics at the species level was high, particularly in the dry season. Faster growing species at the less seasonal site, Terminalia amazonia, Inga punctata, Colubrina glandulosa, and Acacia mangium, exhibited a greater adaptive capacity than the other species to down-regulate leaf photosynthesis between seasons. As the dry season was more severe at the more seasonal site, most species strongly reduced physiological function regardless of relative growth rates, except two species (Tectona grandis and P. guachapele) with widespread distributions and relatively high drought tolerance. Our results underscore the need to consider seasonal drought tolerance when selecting tree species for specific reforestation sites.  相似文献   

13.
Understanding the impacts of local and regional landscape characteristics on spatial distributions of wildlife species is vital for achieving ecological and economic sustainability of forested landscapes. This understanding is important because wildlife species such as white-tailed deer (Odocoileus virginianus) have the potential to affect forest dynamics differently across space. Here, we quantify the effects of local and regional landscape characteristics on the spatial distribution of white-tailed deer, produce maps of estimated deer density using these quantified relationships, provide measures of uncertainty for these maps to aid interpretation, and show how this information can be used to guide co-management of deer and forests. Specifically, we use ordinary least squares and Bayesian regression methods to model the spatial distribution of white-tailed deer in northern hardwood stands during the winter in the managed hardwood-conifer forests of the central Upper Peninsula of Michigan, USA. Our results show that deer density is higher nearer lowland conifer stands and in areas where northern hardwood trees have small mean diameter-at-breast-height. Other factors related with deer density include mean northern hardwood basal area (negative relationship), proportion of lowland conifer forest cover (positive relationship), and mean daily snow depth (negative relationship). The modeling methods we present provide a means to identify locations in forest landscapes where wildlife and forest managers may most effectively co-ordinate their actions.  相似文献   

14.
Regional conservation planning frequently relies on general assumptions about historical disturbance regimes to inform decisions about landscape restoration, reserve allocations, and landscape management. Spatially explicit simulations of landscape dynamics provide quantitative estimates of landscape structure and allow for the testing of alternative scenarios. We used a landscape fire succession model to estimate the historical range of variability of vegetation and fire in a dry forest landscape (size ca. 7900 km2) where the present-day risk of high severity fire threatens the persistence of older closed canopy forest which may serve as Northern Spotted Owl (Strix occidentalis caurina) habitat. Our results indicated that historically, older forest may have comprised the largest percentage of the landscape (∼35%), followed by early successional forest (∼25%), with about 9% of the landscape in a closed canopy older forest condition. The amount and condition of older forest varied by potential vegetation type and land use allocation type. Vegetation successional stages had fine-grained spatial heterogeneity in patch characteristics, with older forest tending to have the largest patch sizes among the successional stages. Increasing fire severities posed a greater risk to Northern Spotted Owl habitat than increasing fire sizes or frequencies under historical fire regimes. Improved understanding of historical landscape-specific fire and vegetation conditions and their variability can assist forest managers to promote landscape resilience and increases of older forest, in dry forests with restricted amounts of habitat for sensitive species.  相似文献   

15.
The advent of modern forces and the changes in socioeconomic patterns of forest dwellers have increased the pressures on the forests. In order to mitigate such pressures and also to protect the forests and wildlife the model of protected areas networks has shifted and enhanced such pressures in the unprotected natural forests due to several reasons. Being a low profile category of protected status and continuous human settlements, the present study highlights the case of dry deciduous forests of Sarguja district of Chhattisgarh state of India. The major objectives of this study were to quantify the status of forests and wildlife and also to determine the extent of anthropogenic disturbances faced by the dry deciduous forests of central India. Transect and silent drive count methods were used for sampling wildlife and quadrat method was used for sampling vegetation. Besides, the local uses of various forest produces were also studied in view of understanding the people dependency on forests. The forest vegetation, in the study area, was pre-dominated by Shorea robusta, which had Madhuca indica, Diospyrus melanoxylon and Buchnania lanzan as the major companion species. The forest had either the high girth class mature tree species or the saplings. The low vegetation cover and density were due to the high anthropogenic pressures mainly in the form of heavy livestock grazing and collection of ethnobotanically important species. The study though reveals that the area is not rich in wildlife and the forest is fragmented, the area still supports some important species, which include many rare and endangered plants and animals. The findings of this study have been discussed in view of the management and conservation of the forest and wildlife in the dry deciduous forests.  相似文献   

16.
The loss of connectivity of forest landscapes is seriously hindering dispersal of many forest-dwelling species, which may be critical for their viability and conservation. In this context, explicitly incorporating connectivity considerations is an important challenge in current forest planning and management, but as yet there is a lack of operative methods for appropriate decision making in this respect. We describe a new methodology based on graph structures and a habitat availability index (integral index of connectivity) that integrates forest attributes (like habitat quality) and network connectivity in a single measure. We apply this methodology to examine the connectivity of the highly fragmented habitat of capercaillie (Tetrao urogallus) in Catalonia (NE Spain), where the threatened status of this forest bird species calls for landscape-level forest planning solutions. We analyse data on the distribution of capercaillie forest habitat at 1 km spatial resolution obtained from the recent Catalan Breeding Bird Atlas. We determine the functionally connected regions existing within its habitat distribution and identify the forest habitat areas that are more important for the maintenance of overall landscape connectivity for this species. Based on these results, we provide recommendations on certain critical public forests where management oriented to the conservation of capercaillie habitat is more necessary. These results highlight the potential and practical interest of the proposed methodology for successfully integrating landscape connectivity in broad scale forest planning.  相似文献   

17.
Although use of corridors by some wildlife species has been extensively examined, use by bats is poorly understood. From 1 June to 31 August (2004–2005), we used Anabat II detectors to examine bat activity and species occupancy relative to forested corridors on an intensively managed forest landscape in southern South Carolina, USA. We compared bat activity among corridor interiors, corridor edges, and stands adjacent to corridors. We also compared models relating occupancy of bat species to site-level characteristics using an information theoretic approach. We identified 16,235 call sequences of 8 species and detected bat presence at 89% (n = 320) of sites sampled. Our results indicate higher occupancy rates for bats along corridor edges compared to interior corridor or adjacent stands. Although we found few differences among species with respect to site-level characteristics, occupancy of all bat species was positively associated with corridor overstory height and negatively associated with adjacent stand age. The presence of roads adjacent to corridors positively influenced occupancy of Eptesicus fuscus, Lasiurus seminolus, and Perimyotis subflavus. Our results suggest management practices designed to create and enhance corridors may represent an ecologically sound method for maintaining important bat habitat features (i.e., edge) across managed forest landscapes.  相似文献   

18.

Intensive forest management has changed both local and regional characteristics of Fennoscandian forest. However, quantitative documentation of landscape transformations is rare. In this study, five forest landscapes were examined in order to define and quantify forest landscape transformation in southern Finland from the 1940s to the 1970s and 1990s. These areas of 140-200 km2 contained both private and state-owned forests. Digital aerial photographs of each area were classified into no-canopy forest (clear-cut and seedling stands, open mires) and closed-canopy forest (young and mature stands). Patch density, mean patch size, largest patch index and edge density calculated for closed-canopy patches indicated fragmentation from the 1940s to the 1970s and recovery from the 1970s to the 1990s. Trends were very similar in both ownership groups. Thus, fragmentation of closed-canopy forests has not progressed continuously in southern Finland, but shows different patterns depending on the period. However, the recovery observed between the 1970s and 1990s does not necessarily mean an increased abundance of the natural old-growth areas that are needed to host many of the currently threatened species.  相似文献   

19.
Dry Douglas-fir (Pseudotsuga menziesii) forests offer a wide range of timber and non-timber values, which may benefit from a balanced timber harvest by variable retention systems with conservation of biodiversity. A major component of biodiversity are forest floor small mammal communities whose abundance and diversity serve as ecological indicators of significant change in forest structure and function from harvesting activities. This study was designed to test the hypotheses that abundance, reproduction, and survival of (i) the southern red-backed vole (Myodes gapperi, formerly Clethrionomys gapperi), will decline; (ii) the deer mouse (Peromyscus maniculatus), will be similar; and (iii) the meadow vole (Microtus pennsylvanicus) and northwestern chipmunk (Tamias amoenus), will increase, with decreasing levels of tree retention. Small mammal populations were live-trapped from 1994 to 1997 in replicated sites of uncut forest, 20% and 50% volume removal by single tree selection, 20%, 35%, and 50% patch cuts based on openings of 0.1–1.6 ha, and small 1.6 ha clearcuts in Douglas-fir forest near Kamloops, British Columbia, Canada. M. gapperi dominated the small mammal community, starting with an abundance of 74–98 animals/ha with mean values ranging from 33 to 51 animals/ha. In the two post-harvest years, abundance, reproduction, and survival of M. gapperi populations were consistently similar among uncut forest and the various levels of tree retention. Thereafter, M. gapperi was seldom found on the small clearcuts. M. pennsylvanicus, T. amoenus, and P. maniculatus occurred predominantly in clearcut sites. As with other types of forest disturbance, responses to our treatments were species-specific. The most striking result was the high abundance and productivity of M. gapperi populations in a dry forest ecosystem, a novel result for this bio-indicator species of closed-canopy forest conditions. At least with respect to small mammals, the retention systems studied seem to enable timber extraction and maintenance of mature forest habitat in these dry fir ecosystems.  相似文献   

20.
In an earlier study (Franc et al., 2007), local species richness of saproxylic oak beetles (including red-listed beetles) in forests was predicted mainly by the landscape (area of woodland key habitat within 1 km of plots). Such results are important for conservation work, but need to be backed up well, for reliable advice. We tested a two-stage method that improved our earlier models and our advice for conservation planning. We studied temperate mixed forest, rich in oaks Quercus robur/Quercus petraea, in a large landscape in Sweden. Franc et al. (2007) analysed 21 forests. Here we selected the significant explanatory variables (predictors) and other biologically relevant predictors, used the earlier 21 forests and sampled 11 new forests such that we expanded the range on the axes of the predictors. We collected in total 320 species of saproxylic oak beetles (23,137 individuals) of which 65 and 38 were red-listed (IUCN criteria, Swedish list 2000 and 2005, respectively). We partly confirmed our original results, but the results also changed in important ways: local species richness is now predicted by a combination of local, landscape and regional factors. Moreover, a local variable (dead wood) was the main predictor of saproxylic oak beetles (all species included), while for red-listed saproxylic oak beetles the landscape (woodland key habitat within 1 km of plots) was the main predictor, of local species richness. Thus, species richness of red-listed saproxylic oak beetles seems to depend mainly on landscapes factors, while total species richness of saproxylic oak beetles seems to depend more on local stand factors. We conclude that a two-stage research design can be useful in landscape and conservation studies, especially for species-rich taxa that require large samples per site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号