首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The heartwood of the Japanese persimmon tree (Diospyros kaki) becomes black on rare occasions and has been highly esteemed as a substitute for ebony. We attempted to clarify how the physical, mechanical, chemical, and biodegradation properties differ between sapwood and blackened heartwood. The specific gravity, equilibrium moisture content, modulus of rupture, and modulus of elasticity in the blackened heartwood were higher, and the loss tangent was lower, than those in sapwood. Furthermore, the blackened portion was more resistant to fungal and termite attacks. A section of heartwood was dark-brown, and the specific gravity and mechanical properties of this portion were slightly lower than those in sapwood. The dark-brown portion was speculated to be a sign or interrupted state of fungal attack. The blackening substance was bound tightly to cell wall components and could not be extracted with any of the organic solvents used. The findings of trace element analysis using inductively coupled plasma-mass spectrometry showed that the boron content was markedly high in the blackened portion. The findings obtained here suggest a role of boron in the antifungal properties and the blackening phenomenon of Japanese persimmon.Part of this work was presented at the 50th Annual Meeting of the Japan Wood Research Society, Kyoto, April 2000  相似文献   

2.
ABSTRACT

This paper describes the chemical composition of sapwood (SW) and heartwood (HW) of Pinus halepensis Mill stem. Extractives were first isolated by accelerated solvent extraction and then analysed by gas chromatography-mass spectrometry (GC-MS). The cellulosic polysaccharide content present in the pre-extracted wood samples was determined with acid hydrolysis and GC. The hemicelluloses content was determined with acid methanolysis and GC. Free monomers were additionally analysed by GC. The amount of lignin was determined gravimetrically by the Klason lignin method and the acid-soluble lignin was determined by a UV method. Formic and acetic acids in wood were determined after alkaline hydrolysis and analysed by HP-SEC. It was found that lipophilic and hydrophilic extractives were more abundant in heartwood (1.6% and 2.5%) than in sapwood (1.1% and 1.8%). Celluloses content was higher in sapwood (42.5%) than in heartwood (39.7%), whereas lignin, hemicelluloses and sugar monomer contents were more abundant in heartwood (28.9%, 26.8% and 0.3%) than in sapwood (28.0%, 24.5% and 0.2%). The variation in acetic and formic acids and ash contents between sapwood (0.7%, 0.2% and 0.5%) and heartwood (0.6%, 0.1% and 0.4%) was small. The acetylation degrees were found to be slightly similar in sapwood (0.4) and heartwood (0.3).  相似文献   

3.
Acetaldehyde emission from wood induced by the addition of ethanol   总被引:1,自引:1,他引:0  
A mechanism of acetaldehyde emission from wood induced by the addition of ethanol was proposed. It is known that acetaldehyde generation is due to the oxidation of ethanol via a metabolic process involving alcohol dehydrogenase (ADH) in living bodies. However, it remains unclear whether the enzymatic alcohol oxidation is applicable to wood. We investigated possible factors of wood parts, conditioning, storage sites, and heating and sterilization treatments on acetaldehyde emission using the syringe method and HPLC analysis. We reconfirmed that acetaldehyde emission was observed only when ethanol was added to wood. Greater acetaldehyde emissions were obtained in heartwood compared to sapwood in both Japanese cedar (Cryptomeria japonica D. Don) and Japanese cypress (Chamaecyparis obtusa Endl.) specimens. In addition, an acetaldehyde conversion rate of 1–2 mol% was determined in green cedar heartwood samples, while, conversely, air-dried cedar heartwood samples showed 4–5 mol%. Ethylene oxide gas sterilization had the effect of decreasing acetaldehyde emission on air-dried wood, but not on green wood. Autoclave sterilization could completely prevent acetaldehyde emissions from both green and air-dried wood. These results suggested that an original ADH in wood and an attached ADH from the outside via microorganisms onto wood were assumed to be the primary causes of acetaldehyde emissions from wood induced by the addition of ethanol.  相似文献   

4.
Chinese fir plantation sapwood and heartwood boards were treated by three drying methods: radio frequency-vacuum drying (RFVD), conventional kiln drying (KD) and high temperature drying (HTD). The maximum amount of dyeing solution uptake by the capillary rising method was used to evaluate the liquid penetration of the treated wood. The pit aspiration ratio was determined by a semithin section method. Changes in wood microstructure were investigated using scanning electron microscopy. The results show that liquid penetration of Chinese fir sapwood after RFVD is significantly higher than that after KD and HTD. Liquid penetration of Chinese fir heartwood after RFVD is higher than that after HTD. Liquid penetration of Chinese fir sapwood is significantly higher than that of heartwood after three drying treatments. Low pit aspiration ratio and cracks of some bordered pits are the main reasons for the increase in liquid penetration after RFVD treatment. __________ Translated from Scientia Silvae Sinicae, 2006, 42(10): 85–90 [译自: 林业科学]  相似文献   

5.
Eucalyptus globulus sapwood and heartwood were delignified at 130°, 150°, or 170°C by kraft pulping. Pulp yields of heartwood were lower than those of sapwood (46.5% vs. 50.4% at 170°C). Delignification was modeled using consecutive and simultaneous kinetic models. The modeling was similar for heartwood and sapwood, and either approach could be used, with both yielding good correlations between experimental and model data. The consecutive model identified two delignification phases with similar reaction rates and activation energies for heartwood and sapwood at 150° and 170°C. At 130°C only one phase was identified. Three reactive types of lignin fractions were identified using the simultaneous model, without differences between heartwood and sapwood. Their reaction rates were 0.152, 0.138, and 0.003 min−1 at 170°C, and the activation energies were 132, 119, and 102 kJ.mol−1. The presence of heartwood did not influence the kinetic development of delignification. The negative impact of heartwood in pulping is related to the higher content of extractives (9.8% vs. 3.9% in heartwood and sapwood) and to their influence on the process, namely in the heating-totemperature phase when a substantial mass loss occurs (30% vs. 20% for heartwood and sapwood).  相似文献   

6.
Test samples of Japanese larch (Larix leptolepis) heartwood and Japanese beech (Fagus crenata) sapwood were heated for 22 h at constant temperatures (50°–180°C) under three water content conditions. Raman spectra of the samples were recorded before and after the heat treatments, and spectral changes in the range from 1000 cm−1 to 1800 cm−1 were evaluated using the difference spectrum method. For both wood species, the Raman band intensity at 1655–1660 cm−1 due mainly to the C=C and C=O groups in lignin clearly decreased with increasing heat-treatment temperature (HTT). The spectral change was thought to reflect the progress of condensation reactions of lignin molecules during the heat treatment. Moreover, the decrease in band intensity was considerably facilitated by the presence of water in the cell wall, suggesting that the condensation is closely related to the softening of lignin. From the spectral changes in the wavenumber region of 1200–1500 cm−1, it was considered that wood constituents are partially decomposed at the higher HTT. Part of this article was presented at the 53rd Annual Meeting of the Japan Wood Research Society, Fukuoka, March 2003  相似文献   

7.
Abstract

This study assessed the decay resistance of Pinus leucodermis wood to the brown-rot fungus Coniophora puteana. Based upon the median weight losses of 30.65% for heartwood and of 34.68% for sapwood obtained in the biological tests, both the heartwood and sapwood material examined was classified as not durable (durability class 5) according to the CEN/TS 15083-1 classification. Total extractives were low, 3.93% in heartwood and 1.00% in sapwood, while lignin content was 22.60% and 25.41% in heartwood and sapwood, respectively. It is highly recommended to use protective treatments before using P. leucodermis wood in outdoor conditions.  相似文献   

8.
Binderless particleboards were manufactured from sugi (Cryptomeria japonica D. Don) heartwood and sapwood by hot-pressing (pressure: 5 MPa; temperatures: 180°, 200°, and 220°C; times: 10, 20, and 30 min), and the board properties [internal bonding (IB), thickness swelling (TS), water absorption (WA)] were investigated to evaluate the self-bonding ability. The IB, TS, and WA of the boards from sugi heartwood were better than those of the boards from sugi sapwood at any hot-pressing condition. Therefore, it was suggested that the self-bonding ability of sugi heartwood was superior to that of sugi sapwood. Then, sugi heartwood and sapwood powder with grain size 10 βm were used as a binder for plywoods. Four kinds of plywood were manufactured from the combination of powder and veneer, both of which were prepared from sugi heartwood and sapwood under the same hot-pressing conditions as the binderless particleboard, and the adhesive shear strength and wood failure of the plywood were investigated. As a result, the plywood composed of sugi heartwood veneer met the second grade of JAS for plywood, when either powder was used as a binder, when they were pressed at 200°C for 20–30 min and 220°C for 10 min.  相似文献   

9.
Five Japanese timbers, four timbers from the USA, and one Malaysian timber were evaluated for their resistance to the invasive dry-wood termite Incisitermes minor (Hagen) using laboratory choice and no-choice feeding tests with holed specimens. The highest survival rates of I. minor in both the heartwood and sapwood no-choice feeding tests were more than 70% after 3 months. When offered sapwood and heartwood choice feeding tests and the combined choice feeding tests, the highest survival rates of I. minor were more than 75% after 3 months. With regards to the percentage of wood mass losses in the no-choice and choice feeding tests, karamatsu (Larix leptolepsis), buna (Fagus crenata), and Douglas fir (Pseudotsuga menziesii) were classified as “resistant” species among the ten sapwood specimens. In the heartwood no-choice and choice feeding tests, the resistant species were buna, karamatsu, Douglas fir, sugi (Cryptomeria japonica), akamatsu (Pinus densiflora), and western red cedar (Thuja plicata). The ranking of the resistance of the ten commercial timbers against I. minor was buna > karamatsu > sugi > western red cedar > Douglas fir > rubber > western hemlock > hinoki > spruce.  相似文献   

10.
The amount and composition of sugar units comprising polysaccharides in sapwood and heartwood, or stemwood, of 11 industrially important pulpwood species were analysed. The polysaccharide content was between 60 and 80% (w/w) for all species, with cellulose as the predominant polysaccharide type and glucuronoxylans as the main non-cellulosic polysaccharides. The second most abundant non-cellulosic polysaccharides were either pectins, i.e. polygalacturonic acids, or glucomannans. The amount of acidic sugar units were 15–23% of the total amount of non-cellulosic sugar units in all samples, with the Acacia species in the high end. The amount and composition of water-soluble carbohydrates from ground wood samples were also analysed, since these are important in mechanical and chemimechanical pulping, and as a possible source of bioactive polymers. Sapwood released more carbohydrates than heartwood for most species. It is to be noted that the relative amount of dissolved acidic sugar units was larger from the heartwood than from the sapwood for all species. Probably due to the mild treatment conditions, the main dissolved polysaccharides were xylans only for a few samples, while easily soluble galactans, arabinogalactans, or mannans dominated in most species. Pectins dominated in heartwood of Populus grandidentata. Generally, pectins and acidic xylans were the main acidic polysaccharides.  相似文献   

11.
The content and composition of carbohydrates comprising polysaccharides in sapwood and heartwood of 12 industrially important pulpwood species were analysed. The polysaccharide content was between 60% and 80% (w/w) for all species, with cellulose as the predominant polysaccharide type. The carbohydrate composition suggested that the main non-cellulose polysaccharides were galactoglucomannans, except in Larix heartwood, where arabinogalactans were predominant, while the content of xylans were in the same range as the mannans in Pinus resinosa heartwood and Thuja occidentalis heartwood and sapwood. Pectins, i.e. polygalacturonic acids, were the main acidic polysaccharides in all species. The amount and composition of water-soluble carbohydrates from ground wood samples were also analysed, since these are important in mechanical pulping and as a possible source of bioactive polymers. The main polysaccharides released from the spruce species were mannans, together with starch from sapwood. Especially Abies balsamea stemwood, but also Abies sibirica heartwood, released considerable amounts of pectins, suggesting that fir species may release more troublesome anionic polysaccharides than spruce species. Heartwood of Larix lariciana, Larix decidua, Pinus banksiana, and Pinus resinosa released considerable amounts of acidic arabinogalactans. Thuja occidentalis released mainly arabinogalactans and pectins. Pseudotsuga menziesii heartwood released a large amount of arabinogalactans.  相似文献   

12.
Peroxidase activity and isoenzymes of fresh wood samples of the third shoot of 12-year old trees and from the sapwood, transition zone and heartwood of c. 60-year old stems of Scots pine (Pinus sylvestris L.) were investigated. Wood samples were ground at −30°C, extracted, and the extracts concentrated c. 20-fold for peroxidase activity assays (guaiacol method) and for IEF-PAGE. At least 11 major isoenzymes could be found in the gels. Even the heartwood contained some peroxidase isoenzymes. Isoenzyme patterns of the juvenile wood did not change with the season. However, juvenile wood showed the highest peroxidase activity at the end of the growing season. Peroxidase activity decreased from the outer sapwood towards the heartwood. Thin sections of different wood zones stained for peroxidase revealed activity in ray parenchyma and resin canal epithelial cells. Intensive staining was localised in the bordered pits of vertical and ray tracheids, and in the end walls of ray parenchyma cells.  相似文献   

13.
Blackening in heartwood was investigated in relation to the metal contents and the moisture content in xylem of about 50-year-old seedling sugi (Cryptomeria japonica D. Don) planted in a steeply sloped stand in Okutama district (Itsukaichi Tokyo), where blackened heartwood is frequently found. The potassium, calcium, iron, and manganese contents were examined in the variously blackened heartwood and normal heartwood by an atomic absorption method. It was recognized that potassium increased relative to the degree of the blackening of heartwood, resulting in a significant correlation between them. This finding implies that an increase in potassium has an important role in the blackening of heartwood. Moisture content has a tendency to increase in the blackened heartwood, so it seems that the large accumulation of potassium is associated with the high moisture content in heartwood.This work was presented at the 43rd Annual Meeting of the Japan Wood Research Society at Morioka, August 1993  相似文献   

14.
The distributions of boron in Japanese cedar (Cryptomeria japonica D. Don) sapwood blocks treated with aqueous or methanolic boric acid [B(OH)3] solutions were explored through Raman spectroscopy and prompt gamma-ray analysis (PGA). B(OH)3 was the sole boron species observed in Raman spectra of the wood blocks treated with either solution. Plots of weight gain of the treated wood blocks versus boron concentration in treatment solutions were found to be linear. The results indicated that the methanolic solution makes it possible to impregnate wood with much larger amounts of boron than the aqueous solution. PGA confirmed that B(OH)3 was highly enriched near the end grains of the treated wood blocks. Raman measurements suggested that boron content in the bulk of the wood block is not as large as expected from the weight gain of the treated wood blocks when an ordinary air-drying method is used. It was concluded that the aqueous solution impregnates the cell walls of wood with boron more easily than the methanolic solution. Part of this report was presented at the 55th (Kyoto, March 2005) and 56th (Akita, August 2006) Annual Meetings of the Japan Wood Research Society. This article follows the previous rapid communication “Analysis of boron in wood treated with boric acid solutions using Doppler broadening method of prompt gamma-rays.” J Wood Sci (2006) 52:279–281  相似文献   

15.
Two activable tracers, Rb and Eu, were injected into the sapwood of Japanese cedars (Cryptomeria japonica D. Don) to investigate the radial movement of minerals in their stems in the resting period. Eight trees of four cultivars, two of which genetically form wet heartwood, were treated near the end of the growing period. At 40 days after the treatment, Rb was detected in the outer heartwood, whereas Eu was not. Radial movement of Rb was more rapid in trees with wet heartwood than in those with normal heartwood. At 204 days after the treatment, more Rb was detected in the heartwood than was found on the first sampling, whereas no Eu was detected in the heartwood. The difference in radial movement between Rb and Eu was considered mainly to be the result of selective transport of beneficial minerals by Japanese cedar. The difference in the rate of radial movement of Rb between wet and normal heartwood became more conspicuous at 204 days after treatment. We concluded that the movement of Rb from the sapwood to the outer heartwood was by active transport through the rays, whereas that in the heartwood was by diffusion due to the gradient of Rb concentration.  相似文献   

16.
The purpose of this study was to compare the distribution of moisture contents (MCs) along the radial direction during radio-frequency/vacuum (RF/V) drying of log cross sections of heartwood (HLC) where sapwood was removed from a green log cross section and log cross section of mixed sapwood and heartwood (MLC) prepared with debarked logs of Japanese larch (Larix leptolepis) and locust (Robinia pseudoacacia). For Japanese larch, an even distribution of MC was observed over the entire cross section in HLC not only at the initial stage of drying but also up to the completion of drying. Furthermore, the moisture gradient between the outermost slice and the adjacent inner slice was more gradual compared with that in MLC. For locust, the moisture gradient between the outermost slice and the adjacent inner slice became severe as drying progressed. It decreased after reaching the maximum during the middle stage of drying but continued until the late stage of drying. Furthermore, despite the fact that the average initial MC of mixed slice within MLC was higher compared with that in heartwood slice, this trend reversed immediately after drying started. It was suggested that the possibility of formation of border checking would be high during drying the MLC, since it would be so complicate that the sapwood and heartwood reach fiber saturation point together because of differences in their green MCs and permeability between them.  相似文献   

17.
The pulping wood quality of Acacia melanoxylon was evaluated in relation to the presence of heartwood. The sapwood and heartwood from 20 trees from four sites in Portugal were evaluated separately at 5% stem height level in terms of chemical composition and kraft pulping aptitude. Heartwood had more extractives than sapwood ranging from 7.4% to 9.5% and from 4.0% to 4.2%, respectively, and with a heartwood-to-sapwood ratio for extractives ranging from 1.9 to 2.3. The major component of heartwood extractives was made up of ethanol-soluble compounds (70% of total extractives). Lignin content was similar in sapwood and heartwood (21.5% and 20.7%, respectively) as well as the sugar composition. Site did not influence the chemical composition. Pulping heartwood differed from sapwood in chemical and optical terms: lower values of pulp yield (53% vs 56% respectively), higher kappa number (11 vs. 7), and lower brightness (28% vs 49%). Acacia melanoxylon wood showed an overall good pulping aptitude, but the presence of heartwood should be taken into account because it decreases the raw-material quality for pulping. Heartwood content should therefore be considered as a quality variable when using A. melanoxylon wood in pulp industries  相似文献   

18.
Scots pine sapwood (Pinus sylvestris L.) and Douglas fir heartwood (Pseudotsuga menziesii Franco) specimens were exposed in double layer field trials at 23 different European test sites under different exposure conditions (in total 27 test sets). The material climate in terms of wood moisture content (MC) and wood temperature was automatically monitored over a period of up to 7 years and compared with the progress of decay. The overall aim of this study was to establish dose–response relationships between climate factors and decay as a basis for the service life prediction of wood. The “Scheffer Climate Index” based on weather data collected at official meteorological stations at the different test sites poorly correlated with the corresponding decay progress and was therefore not a suitable tool for estimating site-specific decay potential. In contrast, the use of the combined material climatic parameters MC and wood temperature led to a feasible dose–response function and turned out to be a useful basis for service life prediction of wood.  相似文献   

19.
Variations in carbon content in wood among 102 clones, selected from almost the entire natural distribution area, were investigated in Larix kaempferi. The average carbon content was 50.50%, 50.94%, and 50.80% in sapwood, heartwood, and whole wood, respectively. The difference in carbon content between clones was significant. The clonal repeatabilities were 0.46, 0.38, and 0.44 in heartwood, sapwood and whole wood, respectively. The coefficients of variation in the clonal mean carbon content were only 0.43%, 0.42%, and 0.41% in heartwood, sapwood, and whole wood, respectively. This small genetic variation and resulting small relative genetic gain of carbon content indicate that the genetic improvement of carbon content by selection has a small effect on the genetic improvement of carbon sequestration capacity by selection in L. kaempferi.  相似文献   

20.
Absorption of radiocesium (137Cs and 134Cs) through bark, and its subsequent translocation into wood and needles, has been suggested as a potential source of tree contamination, but the process is not well understood. Field experiments were conducted to confirm whether Cs could enter a Japanese cedar tree through the bark and how Cs moves within a tree. Stable Cs (133Cs) was applied to the bark at 1.2-m height on 10- and 26-year-old Japanese cedars. The 133Cs concentrations were determined in the bark, sapwood, and heartwood (for 26-year-old cedar only) of stem disks from several heights, as well as in current-year needles from the canopy. The 133Cs concentrations were considerably higher in the sapwood and heartwood of stem disks from 1.2-m height in treated trees than in untreated trees, suggesting that 133Cs penetrated the bark to enter the wood. The average 133Cs concentrations were higher in the heartwood than the sapwood, indicating 133Cs accumulation in the heartwood. High 133Cs concentrations in the needles of treated trees implied acropetal movement of 133Cs to actively growing organs. Our results demonstrate that Cs can enter Japanese cedar trees through the bark and that Cs is transported radially to the heartwood and vertically to the apex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号