首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Economic pressures have driven an ever-widening period during which foresters use machines to plant Scots pine (Pinus sylvestris L.) seedlings. In Fennoscandia, this period has recently stretched to the entire growing season. To evaluate the performance of seedlings planted during this extended period, three experiments were carried out in Central and Northern Finland over 2 years. One-year-old and current-year seedlings were planted in mounds or disc-trenched furrows when soil temperatures were >0°C. When 1-year-old seedlings grown for spring planting and overwintered outdoors were planted after mid-June, more needles browned and growth was reduced, possibly because seedlings were oversized with respect to planting density and the volume of growth media. When current-year seedlings sown in spring were planted from July to November, those planted in late September and October grew less in later years than those planted earlier, but survival was unaffected. No large differences in field performance were found with respect to whether seedlings were planted in mounds or disc-trenched furrows. In conclusion, Scots pine seedlings can be machine planted in mounds or furrows during May and early June (later in the North) and then continued from early August until late September, provided climatic conditions in late spring and early autumn are typical and similar to those experienced in Central Finland.  相似文献   

2.

The objective of this study was to evaluate the possibility of enlarging the planting window of container-grown silver birch seedlings from spring and autumn to summer by planting young, actively growing seedlings. For over 3 yrs the study investigated the growth, survival and damage of silver birch seedlings grown in containers and planted at different times during the growing season on 18 sites in fields and forest sites in central Finland. In a pot experiment in the greenhouse, the root-egress ability of seedlings planted at different times during the growing season was monitored. Root egress of seedlings was rapid from the beginning of July to the middle of August. Actively growing seedlings planted in summer on a site suitable for silver birch grew and survived at least as well as seedlings planted in spring during the dormant stage. The risk of drought stress increased when seedlings were planted on easily drying, coarse sandy soils. The risk was also high in soils with high levels of fine soil fractions that become hard when dry and when the dry period continued for several weeks before planting. In conclusion, it is possible to enlarge the planting window of birch seedlings to July and the beginning of August by using actively growing container seedlings.  相似文献   

3.
Abstract

Second year Norway spruce [Picea abies (L.) Karst.] container seedlings, short-day (SD) treated for 3 weeks in July, were exposed together with untreated control seedlings (Co) to three different drought treatments for 5 weeks after planting in early August. The treatments were: (1) regular watering (0 week drought); (2) 2 weeks of drought and 3 weeks of watering; and (3) no watering (5 week drought). No difference was found in the vigour and shoot xylem water potential between the SD-treated and the Co seedlings after the drought treatments. The root growth decreased less for the SD seedlings than for the Co seedlings along with the increase in the length of the drought period.  相似文献   

4.
One‐year‐old container‐grown seedlings were planted in spring on clear cut areas: the Norway spruce (Picea abies) on a moist upland site (Myrtillus‐type) and Scots pine (Pinus sylvestris) on a dryish upland site (Vaccinium‐type). While still in the nursery, half of the seedlings of each species had been inoculated during the previous summer, with a uninucleate Rhizoctonia sp., a root dieback fungus. At outplanting all the seedlings appeared healthy and had a normal apical bud, although the height of the inoculated seedlings was less than that of the uninoculated control seedlings. At the end of the first growing season after planting, the mortality of inoculated Scots pine and Norway spruce seedlings was 25 and 69%, respectively. After two growing seasons the mortality of inoculated seedlings had increased to 38% for Scots pine and 93% for Norway spruce. The mortality of control seedlings after two growing seasons in the forest was 2% for Scots pine and 13% for Norway spruce. After outplanting the annual growth of inoculated seedlings was poor compared with the growth of control seedlings. These results show that, although Rhizoctonia‐affected seedlings are alive and green in the nursery, the disease subsequently affects both their survival and growth in the forest.  相似文献   

5.
Replanting at appropriate times after harvesting a coniferous forest stand can help efforts to suppress seedling mortality caused by the pine weevil Hylobius abietis, but optimal times are uncertain. We hypothesized that planting in June rather than May in the third season after harvest would reduce feeding damage by the pine weevil and increase seedling survival rates in central Sweden, where new-generation weevils mainly fly away from their development sites in May/early June. An experimental test of the hypothesis in eight clear-cuts confirmed that planting in June instead of May reduced proportions of seedlings attacked by pine weevil, bark removal from seedlings’ stems, and proportions of seedlings killed by feeding damage. These differences between seedlings planted in May and June declined to some extent with time but still remained significant after two growing seasons. The total seedling mortality after two seasons did, however, not differ significantly between seedlings planted in May and June. Overall, 29% of all seedlings were killed by pine weevil, 4.0% by Hylastes bark beetles, and 2.3% by drought. The results indicate that replanting in spring during the third season after harvest can advantageously continue until mid-June with respect to damage and mortality.  相似文献   

6.
Feeding by pine weevil (Hylobius abietis L.) causes severe damage to newly planted conifer seedlings in most parts of Scandinavia. We investigated the effect of planting time and insecticide treatment on pine weevil damage and seedling growth. The main objective was to study if planting in early autumn on fresh clear-cuts would promote seedling establishment and reduce the amount of damage caused by pine weevil the following season. The experiment was conducted in southern Sweden and in south-eastern Norway with an identical experimental design at three sites in each country. On each site, Norway spruce seedlings with or without insecticide treatment were planted at four different planting times: August, September, November and May the following year. In Sweden, the proportion of untreated seedlings that were killed by pine weevils was reduced when seedlings were planted at the earliest time (August/September) compared to late planting in November, or May the following year. This pattern was not found in Norway. The average length of leading shoot, diameter growth and biomass were clearly benefited by planting in August in both countries. Insecticide treatment decreased the number of seedlings killed or severely damaged in both Norway and Sweden.  相似文献   

7.
Abstract

An experiment was established in 1978 in two Norway spruce [Picea abies (L.) Karst.] plantations in southern Sweden to study yield after mortality in patches with and without supplementarily planted (SP) seedlings. Gaps of different sizes were created by removing the originally planted seedlings. The gaps were either left unplanted or a supplementary planting was performed with one of four species [Norway spruce, Scots pine (Pinus sylvestris L.), lodgepole pine (Pinus contorta Dougl.) or hybrid larch (Larix deciduas Mill×L. Leptolepis Gord.)] 2 (at Knäred) or 6 years (at Ullasjö) after the original plantation. In 2002, most of the SP Scots pine, lodgepole pine and hybrid larch seedlings were dead or severely damaged by roe deer and moose. Survival was high among SP Norway spruces, but they had slower growth than the originally planted spruces. Growth was lower at Ullasjö than at Knäred. In Ullasjö, growth was lower in small gaps than in large gaps. Trees in original regeneration in areas surrounding unplanted gaps were larger than trees surrounding gaps with SP seedlings, which in turn were larger than originally planted trees in plots without gaps. In conclusion, because the original plantation surrounding unplanted gaps used a large part of the open space and growth of SP seedlings was slow, supplementary planting resulted in an insignificant growth increase. However, supplementary planting may increase the timber quality of trees surrounding the gaps, although this effect remains to be quantified.  相似文献   

8.
This study measured the amount of uptake of labeled nitrogen (15N) of lodgepole pine (Pinus contorta Dougl. var. latifolia Engelm) seedlings, at three different phenological stages, in a growth chamber experiment. Thirty days after 15N application, the amount of 15N recovered in seedlings as a percentage of the total 15N fertilizer applied was 4% in early spring, 43% in summer and 33% in autumn. The total 15N recovered in the plant–pot system ranged from 80 to 96%, and is higher than reported in other studies. Total 15N recovered from the pot compartment alone ranged from 48 to 95%, suggesting that substantial pools of N remain in the soil. Results suggest that low 15N uptake in the spring was associated with limited development of new root as a result of low spring soil temperatures. The lack of unsuberized roots in spring could be a key factor decreasing the effectiveness of early spring fertilization in the boreal forest.  相似文献   

9.
First‐ and second‐year containerized Norway spruce seedlings were inoculated with conidia of type A (large tree type) and type B (small tree type) of Gremmeniella abietina var. abietina at different times during the summer. The appearance of symptoms after artificial inoculation and natural infection on spruce seedlings were recorded the following spring and compared with the disease symptoms on Scots pine seedlings. The proportion of diseased seedlings after inoculation reached as high as 80%. The susceptible period during the summer began later on the first‐year seedlings than on the second‐year seedlings, and was similar for the pine seedlings. Susceptibility of first‐year seedlings was highest in August and on second‐year seedlings in July. The accumulated temperature sum, relative humidity and height growth for first‐ and second‐year seedlings was assessed. Natural infection in 2002 caused more disease on pine than on spruce seedlings. Experimental thinning of seedlings had no effect on disease incidence. In a preliminary comparison between the ability of A and B types to cause disease in Norway spruce seedlings, type B caused more damage than type A after inoculation. However, type A caused a high disease frequency in other experiments in this study. Symptoms on Norway spruce seedlings often first occurred in the mid‐section of the shoot, and were similar to those observed on pine seedlings: needles turned brown, starting at the needle base, in the spring following inoculation. On first‐year spruce, diseased needles were shed rapidly, in contrast to a slower rate of shedding on first‐year pine seedlings. Pycnidia developed about 2 years after inoculation (on pine 1 year after inoculation). On Norway spruce seedlings the lower part of the shoot, including the lateral shoots, often remained alive. The experiments show that G. abietina can cause disease on containerized Norway spruce seedlings under nursery conditions in Finland. The coincidence of spore dispersal, seedling susceptibility and predisposing factors are important in disease development.  相似文献   

10.
采用田间试验方法,对葫芦岛地区山杏容器苗造林技术进行了系统试验与分析。试验结果表明,山杏容器苗造林成活率分别比裸根苗和直播造林提高14.7和33.4个百分点;山杏容器苗造林可在春、雨、秋三季进行,最佳造林时间分别为4月初6、月末、11月初;宜使用大、中型规格的容器杯培育苗木。  相似文献   

11.
The effects of nutrient loading (NLOAD) on the frost hardening and dehardening of Picea abies (L.) Karst. seedlings were investigated under nursery conditions. Before NLOAD, second-year container seedlings were either short-day (SD) treated for 3 weeks in July or left for the natural photoperiod (CO). By mid-September, after 5 weeks of NLOAD, the fertilization of three foliar nutrient concentration levels (low = L-SD, medium = M-SD, and high = H-SD) for the SD-treated seedlings and one (medium = M-CO) for the CO-seedlings was completed. The NLOAD resulted in foliar nitrogen concentration 10.6, 16.1, 22.3, and 17.5 g kg−1 for L-SD, M-SD, H-SD and M-CO seedlings, respectively. The NLOAD had no effects on the morphology or dry mass variables of the seedlings, while SD-treatment reduced the dry mass of shoots, but not that of roots. The frost hardiness (FH) of different batches of the seedlings was assessed by the visual scoring of damage in their needles, stems and buds after their controlled exposure to freezing during frost hardening and dehardening. The low nutrient concentration in the SD-treated seedlings (L-SD seedlings) resulted in poor FH, to an even lower extent than that of the M-CO seedlings. The NLOAD did not affect the dehardening of the seedlings at the end of the freezer storage in the following spring.  相似文献   

12.
压苗栽植是花椒抗旱造林的一个新的栽植方法.用这种方法造林,幼树根系发达,成活率、保存率高,幼树结果早,产量高。以2a生的1级苗压苗造林效果最好。春、夏、秋三季造林均有较高的保存率,但从幼树生长情况来看,春季优于夏季,夏季优于秋季。  相似文献   

13.

Pine weevils (Hylobius spp.) feeding on stem bark of young conifer seedlings pose a serious threat to forest regeneration-planting programmes in Nordic countries. This study was designed to determine the threshold diameter for planted, untreated containerized seedlings, above which pine weevils cause little or no damage. The effects of sublethal weevil damage on seedling growth were also assessed. In total, 5320 containerized spruce seedlings were planted on scarified and unscarified plots on three sites in southern Sweden. Seedlings in six size classes, which differed with regard to age (1.5-3.5 yrs) and cultivation density (28-446 seedlings m 2) were grown using the Combicell system. None of the seedlings was treated with insecticides, except for those in the smallest class, where both untreated and treated seedlings were used. Inspections were made periodically during the first 3 yrs and after both 5 and 7 yrs. A statistically significant relationship was found between seedling losses due to pine weevil attack and seedling stem-base diameter at the time of planting out, on both scarified and unscarified plots. For seedlings with a stem-base diameter of around 10 mm, mortality due to pine weevil attack on scarified plots was low enough to be considered negligible. This threshold diameter was several millimetres greater for seedlings planted on unscarified plots. An analysis of the relationship between the extent of weevil damage and seedling growth rate showed that among surviving seedlings, those that grew fast tended to show low levels of damage. On unscarified plots, the mortality rate amongst seedlings treated once with a permethrin insecticide was only one-third that of untreated seedlings. On scarified plots, the corresponding difference was somewhat smaller. Repeated insecticide treatment resulted in a pronounced reduction in seedling mortality on the unscarified plots, whereas the effect was weaker on scarified plots.  相似文献   

14.

Context

Although drought is generally considered the main environmental constraint in Mediterranean environments, the ability to acclimate to and tolerate frost in early developmental stages can be a determinant for seedling survival of many Mediterranean tree species like stone pine (Pinus pinea L.).

Aims

The aim of this study was to assess the impact of the developmental stage of naturally regenerated stone pine individuals on tolerance to low temperature (LT) from summer to late autumn and in spring, at a highly continental site in central Spain. Specifically, we tested to what extent the differences in tolerance are related to shoot heteroblasty.

Methods

We assessed LT tolerance of needles from individuals at three age classes (class C1: seedlings, class C2: 4- to 8-year-old saplings and class C3: >9-year-old saplings) over nine dates from summer to spring.

Results

LT tolerance displayed severe seasonal trends and differed between age classes. It usually increased with sapling age. Such differences were tightly related to heteroblasty of the shoots. Our results point to a higher LT tolerance associated with larger leaf dry mass per unit area (LMA) values. No impact of late frosts on shoot growth rates was detected during this study.

Conclusions

Developmental changes during early plant growth seem to play a role in frost tolerance of stone pine seedlings, a finding which furthers our understanding of regeneration dynamics in this species in areas with continental influence.  相似文献   

15.
Luoranen  Jaana  Rikala  Risto  Aphalo  Pedro J. 《New Forests》2002,23(1):71-80
Applications of growth retardants, daminozide and CCC (chlormequatchloride), were studied in order to determine their effects on morphology and post-planting growth of silver birch (Betula pendula Roth) container seedlings. Daminozide was sprayed once (on 28 June at concentrations of 1.0 – 6.0 g l–1) and CCC was sprayed twice (on 29 June and 27 July at concentrations of 0.5–3.0 gl–1). Height growth, morphology of seedlings at the end of the growing season, the shoot and root growth potential the following spring and field performance during the following seasons were measured. During the first summer in the nursery, both daminozide and CCC retarded height growth,but daminozide was more effective. The effects of compounds on stem diameter during the summer of application were small. Neither of the compounds affected the field performance of seedlings. The most suitable applications for retardation of height growth, without negative effects on other morphological variables, were 4 g l–1 (32 mg per seedling) for daminozide and 2 g l–1 (16 mg per seedling), sprayed in two applications, for CCC.  相似文献   

16.
Abstract

The pine weevil Hylobius abietis L. is major threat to forest regeneration in the Nordic countries. The persistence of the deltamethrin insecticide used against pine weevil on Norway spruce seedlings was studied after the seedlings were dipped or sprayed. Insecticide application was timed to occur either before or after frozen storage. Bioassays with the stems of Norway spruce seedlings were used to determine the effect of the insecticide against feeding by the pine weevil. The measures of the control effect were reduction in area of gnawed bark and the state of health of the pine weevils. The concentration of deltamethrin decreased rapidly in seedlings, especially after spraying treatment, which did not efficiently protect seedlings against the pine weevil 6 weeks after planting. There were no signs of degradation of deltamethrin or of an effect on seedling height after frozen storage. In bioassay, the amount of deltamethrin that efficiently prevented feeding by the pine weevil was 5.5 µg g?1 fresh weight. After one growing season in the field, about 1.76–2.24 µg g?1 (13–15% of the initial level) of dipped deltamethrin remained in the seedlings. In seedlings treated by spraying, 0.93–0.98 µg g?1 (7–8% of the initial level) of the deltamethrin remained. According to bioassays, these amounts were no longer sufficient to protect seedlings from feeding by the pine weevil. Therefore, in the first summer, dipping was a significantly more efficient method of application for control of pine weevils.  相似文献   

17.

Survival, root egress and height growth of 13-month-old actively growing Norway spruce ( Picea abies (L.) Karst.) container seedlings exposed to preplanting drying treatments (0, 4, and 8 days) and postplanting drought periods (1, 2, 3, and 4 weeks) were studied in the field between 5 July and 18 August 1999. The mortality of seedlings increased and the height growth and root egress decreased throughout the postplanting drought period. Postplanting performance was also affected by preplanting drying treatments. The results indicate that no risk of excessive mortality and growth restrictions occurs when actively growing seedlings are planted in summer, provided that seedlings are well watered before planting and the drought period does not exceed 3 weeks.  相似文献   

18.
Oliet  J.  Planelles  R.  López Arias  M.  Artero  F. 《New Forests》2002,23(1):31-44
The capacity of Aleppo pine (Pinus halpensis Mill.) seedlings to overcome the planting shock in dry conditions was assessed by firstly studying the survival and water status during the first year after planting in relation to soil water content. In spite of receiving only 177 mm rainfall during the year studied, survival of planted Aleppo pine was very high (88.5%). Soil water during summer months (after receiving 67 mm rainfall in winter and spring) was only available at 30–60 cm depth, with tension values of –1.1 and –1.3 MPa in July and August respectively; in these conditions, July predawn xylem water potential measured was –2.5 MPa, and midday potential was –3.6 MPa. According to different authors, these values don't jeopardize the survival of Aleppo pine. In addition, acclimation of outplanted seedlings to environmental conditions was followed by comparing their water relations with those of naturally regenerated seedlings on the site. Predawn and midday xylem water potential showed differences in favour of outplanted seedlings since June, indicating an adjustment to this dry site. Compared to naturally regenerated trees, nursery grown stock of the same age before field planting had much more biomass and higher N and P concentrations and contents; although shoot:root balance and Dickson quality index were not significantly different. Finally, planted seedlings acclimation level during first year was also evaluated by Transplant Stress Index, which value (–0.1278) indicated a slight planting impact.  相似文献   

19.
After cold storage, conifer seedlings in British Columbia are tested for field growth potential before planting. We compared three tests of performance potential using container-grown seedlings of Douglas-fir, interior spruce, lodgepole pine, and western larch (14 seedlots total). On several autumn dates, seedlings were lifted and stored at −2°C. The following spring we tested stored seedlings for root growth potential (RGP), chlorophyll fluorescence (CF), and stomatal conductance (Gs), and then planted seedlings in nursery beds. We assessed survival and shoot dry weight (SDW) after one growing season. Performance test results were significantly correlated with each other (r ≥ 0.47) but showed different relationships with field performance, which varied with lift date. The best performance predictor was the sum of CF and RGP (R 2 = 0.79 for 78 seedlot by lift-date combinations), which minimized the risk of planting poor seedlings and not planting good seedlings. A sum of 83 for CF (Fv/Fm %) and RGP (new roots >1 cm) provided a threshold above which survival and growth were good. For evergreen conifers, Gs was a good performance predictor, but required extra time to measure leaf area. We recommend a combination of CF and RGP to assess vigor of shoot and root systems before planting. Wolfgang D. Binder––Scientist Emeritus.  相似文献   

20.
Sahlén  Kenneth  Goulet  France 《New Forests》2002,24(3):175-182
This study was carried out in northern Sweden to determine the effects of frost heaving on the establishment of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) seedlings in relation to planting methods. For this purpose, one year old containerised seedlings were planted on two sites and on two dates: during the spring (early planting) and during the fall (late planting). In each case, two planting depths (normal and deep planting) and four planting sites (in mineral soil in the depressions, in the scalp/trench area, on the top of the mound and in the untreated humus layer) were used. On each site, 50 seedlings were planted for each treatment. Frost heaving was observed and measured during two years. The amount of heaving was highest in the hole and almost insignificant on the top of the mound and in the humus layer. Planting depth influenced the degree of heaving only for Scots pine planted in the hole and was not related to the planting time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号