首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of tree species mixture on stand volume yield and on tree-species-specific diameter and height growth rates were analysed in managed mixed stands of Scots pine (Pinus sylvestris L.) and silver birch (Betula pendula Ehrn.).Data were obtained from 14 repeatedly measured stands located in Southern Finland on mineral soil sites with varying admixture of Scots pine and silver birch. Statistical analysis was carried out for studying the effect of species mixture on the development of stand characteristics. For the analysis, the plots were categorised into three groups (plot types) according to the species dominance. In order to analyse species-specific growth rates, individual-tree mixed linear growth models for tree diameter and height growth were developed for both tree species.The results clearly show that the yield of the managed mid-rotation, mixed stands was greater for stands dominated by Scots pine than for stands dominated by birch, and the stand volume increment decreased with an increasing proportion of silver birch. Analysis of diameter and height growth by tree species revealed that the main reason for this pattern is the negative impact of birch competition on the growth of pine trees. The increase in diameter of pine was clearly hampered if the proportion of birch was high. An abundance of birch also slightly decreased the growth in height of Scots pine, although the effect was less than on diameter growth. Species mixture did not affect the diameter growth of birch but did have a significant effect on height development. Height growth of birch was considerably greater in pine-dominated stands than in birch-dominated stands. In pine-dominated mixed stands, the height growth of birch was quite close to that of dominant pine trees, and birches can endure in competition with pines for light.The results apply for even-aged and single-storey managed stands, where stocking density and structure are controlled with pre-commercial and commercial thinnings. The results are not applicable to unmanaged mixed stands undergoing self-thinning. This study provides new information on mixed stands from a silvicultural perspective, which can be applied in decisions involving the management of mixed stands.  相似文献   

2.
A process-based ecosystem model was used to assess the impacts of changing climate on net photosynthesis and total stem wood growth in relation to water availability in two unmanaged Norway spruce (Picea abies) dominant stands with a mixture of Scots pine (Pinus sylvestris) and birch (Betula sp.). The mixed stands were grown over a 100-year rotation (2000-99) in southern and northern Finland with initial species shares of 50, 25 and 25% for Norway spruce, Scots pine and birch, respectively. In addition, pure Norway spruce, Scots pine and birch stands were used as a comparison to identify whether species' response is different in mixed and pure stands. Soil type and moisture conditions (moderate drought) were expected to be the same at the beginning of the simulations irrespective of site location. Regardless of tree species, both annual net canopy photosynthesis (P(nc)) and total stem wood growth (V(s)) were, on average, lower on the southern site under the changing climate compared with the current climate (difference increasing toward the end of the rotation); the opposite was the case for the northern site. Regarding the stand water budget, evapotranspiration (E(T)) was higher under the changing climate regardless of site location. Transpiration and evaporation from the canopy affected water depletion the most. Norway spruce and birch accounted for most of the water depletion in mixed stands on both sites regardless of climatic condition. The annual soil water deficit (W(d)) was higher on the southern site under the changing climate. On the northern site, the situation was the opposite. According to our results, the growth of pure Norway spruce stands in southern Finland could be even lower than the growth of Norway spruce in mixed stands under the changing climate. The opposite was found for pure Scots pine and birch stands due to lower water depletion. This indicates that in the future the management should be properly adapted to climate change in order to sustain the productivity of mixed stands dominated by Norway spruce.  相似文献   

3.
Early management of the regenerated seedlings shapes the future stand properties. To address these issues, pre-commercial thinning (PCT) and control treatments were applied to planted Norway spruce (Picea abies L. Karst) and naturally regenerated birch (Betula pendula Roth., Betula pubescens Ehrh.) stands in forest experiments in southern Sweden (lat. 56–57?N) containing 1.1–5.5?m tall saplings. The treatments were retention of 1000 or 2000?stems?ha?1 of Norway spruce, with no birch or birch at 1000?stems?ha?1. Treatments were replicated with and without annual removal of birch sprouts from stumps. The periodic annual increment (PAI) over five years was calculated for total stand volume and individual trees. The mean PAI of dominant trees was significantly higher both following all PCT treatments than controls, and following low rather than high-density PCT. Birch retention did not affect growth of the dominant trees but PAI was lower in plots with uncontrolled sprouting. The PAI of birch was significantly higher in low-density Norway spruce plots than in control plots and the high-density plots. The treatment response was significant even in stands with initial heights of only 1–2?m.  相似文献   

4.
Wind is the major abiotic risk factor in Finnish forests. Therefore, tools that help managers to assess the risk of wind damage are required. This study developed simple regression models for predicting the critical wind speed needed to uproot Scots pine, Norway spruce and birch trees at the stand edges in Finnish conditions, using the characteristics of the retained forest both downwind and upwind stands as predictors. Using information on the prevailing wind conditions in the region, the critical wind speeds were converted into probabilities of wind damage, from which a mean risk index was calculated. The mean risk index was used as an objective variable in heuristic optimisation. The results of minimizing the mean risk index were compared to other objective variables such as minimal height differences between adjacent stands. The residuals of the regression models of critical wind speeds were small, especially in Scots pine and birch. Increasing tree height of the downwind stand or area of the upwind stand (gap size) decreased the critical wind speed regardless of tree species, whereas increases in the dbh/height ratio of the downwind stand increased the critical wind speed. The shelter effect of upwind stand height was stronger in Norway spruce than in other tree species, whereas the effect of tree height of the downwind stand was larger in Scots pine and birch. Minimization of the mean risk of wind damage within forest landscapes led to smooth and non-fragmented landscape structures in terms of tree height. Incorporating even-flow constraints into the planning model led to a slight increase in the mean risk of wind damage. Of the surrogate methods for risk assessment minimization of height differences between adjacent stands performed well but not equally well as minimization of the mean risk index.  相似文献   

5.
The growth, technical quality and nutritional status of pure and mixed silver birch (Betula pendula Roth) and downy birch (Betula pubescens Ehrh.) plantations were studied 21 and 22 years after planting on afforested organic soil arable land and on upland forest soil. In mixtures, 50% of both birch species was planted. Silver birch trees grew better, but had higher mortality than downy birch trees on both sites. Mortality of both species was highest, and the difference in their growth smallest, on organic soil. In pure stands on organic soil, downy birch dominant height, diameter and mean volume were 96%, 92% and 82% of those of silver birch and on mineral soil 87%, 84% and 60%, correspondingly. On mineral soil, silver birch had a higher mean annual increment (MAI) (5.8 m3 ha?1a?1) than downy birch (3.9 m3 ha?1a?1), but on organic soil the MAI of both species was similar (3.3–3.4 m3 ha?1 a?1). Planting birches in mixture did not affect the growth of the trees on organic soil. On mineral soil, the mean diameter and mean volume of silver birch trees were higher in mixed than in pure plantations. The technical stem quality of both tree species was low. On mineral soils, pure silver birch is more productive than mixture, but on peat soil the higher growth of silver birch could contribute to increased productivity and downy birch would ensure sufficient survival for future timber production.  相似文献   

6.
The profitability of growing a naturally emerged birch (Betula pendula Roth or Betula pubescens Ehrh.) overstory in a young Norway spruce (Picea abies (L.) Karst.) plantation was examined with empirical stand structure, growth and yield, logging cost, and logging damage models. In the projected alternatives, an overstory of either birch species was thinned to 200–1000 stems per ha at the age of 15 years and retained for another 15 years. Development of the remaining spruce stand was simulated up to rotation age (70–85 years). Alternative treatments included removing the overstory completely at 15 years, and managing a pure spruce stand that was kept free of birch throughout.

Growing a birch overstory of 200–1000 stems per ha up to age 30 years resulted in a 61–93 m3 ha−1 or 9.1–16.8% yield loss for the spruce stand due to growth retardation, and a mortality of 382–498 out of 1900 stems per ha through logging damage. This was compensated for or exceeded by the additional yield of the birch (54–173 m3 ha−1) except for the lowest stocking (200–400 stems per ha) alternatives with B. pubescens. Treatment regimes with a birch overstory were clearly the most profitable alternatives, yielding up to 151% (B. pendula) and 113% (B. pubescens) of the net present value of the pure spruce alternative, at 4% interest rate. Removing the birch overstory already at 15 years was the least profitable alternative with 79 and 83% net present values, respectively. The most profitable treatment with current technology, price, and cost structure appears to be to grow 500–800 birch per ha up to about age 40 years for B. pendula and 45–50 years for B. pubescens.  相似文献   


7.

An individual tree basal area increment model was developed for Norway spruce [Picea abies (L.) Karst] in mixed stands of spruce and birch in Estonia. Different regression equations were fitted for different combinations of variables to obtain biologically tractable interactions between growth and factors affecting it. The best fit index of the regression model was pursued in trials with variable combinations. The basal area increment was chosen to describe the tree growth and both the diameter and age of the tree were included as independent variables. The logical growth relationships were obtained. The basal area increment has a culmination introduced by the simultaneous influence of tree size and age explicitly included in the model. The stand level attributes contributed modestly to the explanatory power of the model because of the narrow range of stand conditions sampled. The present model is applicable to Estonian conditions.  相似文献   

8.

In order to obtain a more precise prediction of the distribution of each timber grade or log grade with regard to the volume of birch (Betula pendula Roth., B. pubescens Ehrh.) in models for long-term planning, ordered probit models were developed. These models were developed by using data from three mixed birch and Norway spruce stands in Norway. The data consisted of 168 stems. In Norway, three ordinary birch saw log grades are commonly used, with pulpwood as a fourth grade. In this study, these four grades were applied in addition to waste timber, which was treated as a fifth grade. The developed models showed that the grade distribution of birch trees of mixed birch and spruce stands was highly correlated with tree height (p<0.01) and height to first visible dry branch (p=0.081). The statistical significance of both models was good (p<0.0001), as measured by log likelihood test statistics. Classifying the 168 stems by saw timber or pulpwood in butt log led to greatly improved estimates (p<0.01). The developed models would allow the incorporation of timber grade in stand simulators, enabling more precise predictions regarding the economic implications of alternative management strategies for birch trees.  相似文献   

9.
This paper summarises the results from 35 years-observed thinning experiments on 256 permanent sample plots in 10–60 year-old stands of ash, aspen, birch, oak, pine and spruce in Lithuania. Thinning enhanced crown projection area increment of residual trees. The largest effect was observed in stands of aspen and birch (growth increase by 200%), followed by ash and oak (over 100%), and spruce and pine (about 80%). Thinning also promoted dbh increment, especially in younger stands, and the increase of dbh increment was positively correlated with the thinning intensity. The strongest reaction was exhibited by oak and aspen, while ash, birch and conifers reacted to a lower extent. Low and moderate intensities of thinning stimulated volume production in younger stands while the opposite was observed in older stands with increasing removals. Spruce stands exhibited relatively strongest increase of volume increment and pine, –the weakest, while the effect on deciduous species was intermediate. The results demonstrate that significant increase in volume increment is achievable with thinning of only young forest stands, e.g. 10–20 year-old pine, birch and ash, or 10–30 year-old oak, aspen and spruce.  相似文献   

10.
Over the last 20 years, investigations have been carried out to determine the influence of various ecological factors on silver fir natural regeneration in highlands and mountains. However, there has been little research on the structure and development of fir regeneration in lowlands. Results of this study indicate that three main stand characteristics play a very important part in the structure of fir regeneration in the lowland. The results revealed that the quantity, frequency and growth rate of fir regeneration were affected by site conditions. One of the most important ecological factors differentiating quantity and quality of fir regeneration was the proportion of fir in a stand. It was found that, with an increase in the percentage of fir in a stand, the quantity and the sum of heights and the sum of height increments of fir regeneration tends to increase. Results of this study showed that the number and development of fir regeneration were influenced by species composition of a stand; fir regenerated not only in pure fir stands but also in mixed forests. A positive influence of pine and birch canopy on initiation and development of fir regeneration was confirmed. Optimal conditions for the growth and development of fir with respect to species composition were found in mixed fir stands with an admixture of hornbeam. In contrast, results of the study suggest that the worst conditions for fir regeneration were found in the stands composed of species, such as ash, alder, oak, aspen, lime and spruce.  相似文献   

11.

New silvicultural regimes with high within-stand competition require new functions for estimation of standing stock and growth of biomass components, since the allometry of trees is changed by light competition. This paper presents functions for estimation of the aboveground biomass dry weights for stem wood, stem bark, branches and leaves of young (diameter at breast height <10 cm) Scots pine (Pinus sylvestris L.), Norway spruce [Picea abies (L.) Karst.] and birch (Betula pendula Roth. and Betula pubescens Ehrh.) trees growing in dense mixed stands. The functions were derived from a sample consisting of 84 Scots pine, 43 Norway spruce and 66 birch trees from six stands in northern Sweden with high stand densities (>10000 st ha-1). The logarithmically transformed power function displayed a good ability to stabilize the variance of dry weights and showed a good fit to the material (0.37< R 2 <0.99). A comparison with the most commonly used biomass functions in Sweden today showed that they overestimated the weight of stem wood and branches, while the weight of foliage was underestimated. The nature of these discrepancies suggested that the precision of biomass estimations might also be improved for young trees at wider spacing.  相似文献   

12.
The effects of a birch admixture on the height and diameter growth and maximum branch diameter in planted Scots pine stands was studied using models constructed with a data set from 13 stands of 9–16 yrs of age and 2–8 m dominant height on average sites on mineral soils in southern Finland. The density and height of the birch varied highly between and within stands. Simulated results indicated that the pines were capable of keeping up in height growth with birches that had originated from seed. Even a very high number of birches (10?000 stems ha?1) had virtually no effect on the height growth of the pines. The number of birches had a pronounced effect on the diameter growth and the maximum branch diameter in pine. Retention of a temporary birch component in young pine stands seems a feasible way of mitigating the adverse effects of low planting densities on the external quality of pine.  相似文献   

13.
Berries and mushrooms are increasingly appreciated products of Finnish forests. Therefore, there is a need to integrate them in silvicultural planning. Bilberry (Vaccinium myrtillus L.) is an economically important wild berry that is widely collected for household consumption and sale in North Karelia, Finland. In this study, bilberry yield models developed recently were included in a stand growth simulator and the joint production of timber and bilberry was optimized by maximizing soil expectation value (SEV) with 3% discounting rate, assuming that 75% of the bilberry yield is harvested. The effect of bilberry production on the optimal stand management increased with increasing bilberry price. With high bilberry prices (4–8 € kg−1) it was optimal to manage the mixed stand of Scots pine, Norway spruce and birch, and the pure stand of Norway spruce so as to promote bilberry production. In the Scots pine stand, where bilberry yields are higher, bilberry production affected optimal stand management already with a price of 2 € kg−1. Compared to timber production, joint production led to longer rotation lengths, higher thinning intensities, more frequent thinnings, and higher share of Scots pine in the mixed stand. The contribution of bilberries to the total SEV increased with increasing bilberry price and discounting rate. In the mixed stand and pine stand the SEV of bilberry production, calculated with 3% discounting rate, exceeded the SEV of timber production when bilberry price was 4 € kg−1.With 4% discounting rate this happened already with bilberry price of 2 € kg−1. It was concluded that forest management which promotes bilberry yields is the most profitable in pine stands where the potential bilberry yields are high.  相似文献   

14.
The nutrient status of Norway spruce in pure and in mixed-species stands   总被引:1,自引:0,他引:1  
Atmospheric deposition of N and S appears to have caused nutrient imbalance in Norway spruce stands in southern Sweden. This calls for a change of forest management to procedures that promote nutrient balance. Studies have shown lower soil acidity in Norway spruce/deciduous mixed stands than in spruce monocultures, but the tree nutrient status in such mixtures has not been much investigated so far.

The nutrient status of Norway spruce foliage and top mineral soil chemistry in monocultures and in stands mixed with beech, birch, or oak was investigated through paired comparisons on 30 sites in southern Sweden (27 sites) and eastern Denmark (three sites). In total, 45 mixed stands and 34 pure stands were included in the study.

Spruce needles from mixed stands had higher concentrations and ratios to N of K, P, and Zn than needles from pure spruce stands. Among the mixed stands, the K status appeared to be positively correlated with the percentage of deciduous tree basal area. Soil samples from mixed stands had a higher Mg concentration, base saturation, and BC/Al ratio than soil samples from pure stands. The spruce needle nutrient status was comparable in pure stands on fertile sites and in mixed stands on poor sites. We did not detect any differences in spruce tree growth between pure and mixed stands.

This paper discusses possible reasons for a positive effect on the tree nutrient status in mixed-species stands and the possibility of using mixed-species stands as a forest management procedure to avoid nutrient imbalance.  相似文献   


15.
油松—白桦混交林种间关系研究   总被引:4,自引:0,他引:4  
聂道平  沈国舫 《林业科学》1997,33(5):394-402
在调查河北隆化县油松-白烨混交林的林木生物量(地上部生物量及根系生物量)、林下草灌木、林地枯落物的总量以及不同混交距离油松地上地下部分生长发育状态的基础上,研究了混交林的种间关系。结果表明,该混交林作为华北地区广泛分布的一种林型,林下草灌木繁茂,林地枯落物分解迅速,有利于土壤理化性质和林分营养状况的改善,种间关系处于基本协调状态。由于林龄及密度原因,混交林生物量略低于油松纯林,在混交林中白桦对油松的生长有一定的抑制作用,抑制作用因混交距离而变化。本文提出了合适的混交距离和混交方式。  相似文献   

16.
A stand-based model for predicting basal-area mean diameter growth for Norway spruce (Picea abies (L.) Karst.) in young mixed stands of spruce and birch (Betula pendula Roth, B. pubescens Ehrh.) was developed and compared with two existing growth models developed for older stands. The main data were from experiments with four different pre-commercial thinning regimes. A multiplicative model with four independent variables was found suitable. The independent variables were total number of trees per hectare of all the species, site index, dominant height of spruce, and a measure of competition between birch and spruce, i.e. dominant height of spruce divided by the dominant height of birch multiplied by the proportion of spruce of total number of trees. The R2 value was 0.59 and the coefficient of variation was 12%. A test with an independent data set from the National Forest Inventory (NFI) indicated that the function developed in this study is suitable for young stands at medium to highly productive areas. Large deviations between observed and predicted growth for the two existing functions were revealed in highly productive stands. The tests based on data from the NFI also indicated that the existing function developed for spruce in older mixed stands is suitable for practical purposes for young stands.  相似文献   

17.
Norway spruce (Picea abies (L.) Karst.) is the dominant species in the older forests of central northern Sweden. However, spruce has seldom been planted in the area, partly because existing tools for site classification have indicated a low yield capacity for the species. The aim of this study was to examine the yield capacity of spruce on the basis of existing plantations. In total, 91 operational and experimental plantations in the age interval 27–46 yrs were sampled. Stands were located between 62° and 65° N at altitudes 130–620 m a.s.l. Site index was estimated by height growth and site‐factor equations previously developed from old‐growth stand data. Height developments in the plantations indicate that site index for these stands is on average 4.6 m higher than predicted by site‐factor equations. The differences between the two methods are larger on poor sites than on rich sites. No systematic deviations of top height development from the site index curves could be detected on remeasured sample plots. Existing growth models were applied on measured stand data to predict future growth. Calculated mean annual increments were on average 20% lower when site index was predicted by site factors instead of height and age. The bias means that the yield capacity of planted spruce in northern Sweden has been underestimated by about 35%.  相似文献   

18.
Growth data were collected from 157 Norway spruce (Picea abies (L.) Karst.) stands planted on farm land in Sweden from 55 to 66° N. The mean age of the stands was 41 years (range, 25–91), the mean stand density 1 640 stems ha–1 (range, 400–3 722), and the mean diameter at breast height (outside bark) 25 cm (range, 12–48). The height growth was measured in 56 stands during the initial five years after plantation and followed systematically until the stands were 30 years old. Early height growth for spruces growing on clay soils was lower than for trees growing on sand, till and peat soils. The height increment for 5-year-old spruces predicted the height increment for mature spruces (30–50 years old).Site index curves were constructed for total age. Curves for H40 (dominant height at 40 years total age) were made for both northern (50 stands, 61–66° N) and southern (107 stands, 55–61° N) Sweden. Site index curves for H50 at total age are presented for Sweden as a whole (Lat. 55–66° N) and southern Sweden only. Curves based on breast height age were also constructed for H40 and H50. Curves fitted for H40 at breast height were well in accordance with the curves presented in the past for spruce on forest lands by Nordic studies. The curves from the present study have slower growth for young spruces than curves for forest land. For 40–90-year-old spruce stands, curves from the present study indicate taller heights than from forest land curves.  相似文献   

19.
Summary The yield level of a stand of a given species expresses quantatively the potentiality of a site to produce wood. The General Yield Level is defined as the relative total production per unit area for a given mean-or top height. The so-called Specific Yield Level specifies the variation in the total volume production of stands of a given age and site quality class. The author’s studies in stands of scots pine reveal that the total volume production in stands of a given height varies as much as 20%. Yield levels above the average are found on dry sites, those below the average on loamy soils with a high soil water level.Assmann’s studies in spruce stands, however, revealed the occurrence of relatively high yield levels on loamy soils with a favourable soil moisture regime. In addition to soil moisture regime, the yield level of a stand is affected by the duration of the growing season and by rooting habits of the species.   相似文献   

20.
The individual tree growth in stands of mixed Norway spruce (Picea abies (L.) Karst.) and birch (Betula pendula Roth & Betula pubescens Ehrh.) is estimated using basal area and height growth functions for each species separately. The individual tree growth models are distant dependent and the number, size and proximity of neighbours are expressed as size‐ratio competition indices. The competition indices were calculated using a basal area factor gauge to define competitors. The tree growth functions are based on data from nine mixed stands of Norway spruce and birch. The recursive multivariate regression approach is used. The growth functions have standard deviation about the function/standard deviation about the mean (sf/sm) values between 31 and 61% and the evaluations made with root mean square error (rmse) give estimates which vary between 8 and 45 % of the observed mean value. These values are comparable with the precision reported in other studies. In the present investigation the distant dependent indices are important independent variables. It seems suitable to describe the change in growth conditions from retarded to released growth by means of size ratio competition indices. For birch, a positive effect on growth is obtained the more the total competition consists of Norway spruce. For Norway spruce a negative effect on growth is obtained the more the total competition consists of Norway spruce. The lower competitors have a positive effect on the growth of the spruce trees. The interpretation should be that it is better to have a small competitor than a larger one, not that small competitors as such have a positive effect on growth of Norway spruce.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号