首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 62 毫秒
1.
利用综合热分析仪分别对胜利褐煤、生物质(沙柳)以及二者以不同比例(1∶4,5∶5,4∶1)混合后的试样在不同的CO2/N2(1∶4,5∶5,4∶1)气氛条件下的热解失重行为进行研究,并观察褐煤与沙柳在共热解反应过程中的相互作用,应用Coats-Redfern方法分析热解反应。实验结果表明:褐煤与沙柳主要热解温度段有相互重叠的部分,且存在相互作用,当V(CO2)∶V(N2)=5∶5时,褐煤与沙柳混合物在热解高温段全部表现为促进作用,且促进作用随沙柳含量的增加越来越弱。当m(煤)∶m(沙柳)=5∶5时,不同CO2/N2比例气氛下热解的高温段中CO2气氛比例越大,煤与沙柳的相互促进作用越强。活化能的范围均在15~70 kJ/mol之间,且沙柳的活化能比煤的大;高温段所需的活化能较低温段的大;CO2/N2气氛比例及沙柳/煤混合比例均对活化能和指前因子有一定的影响。当V(CO2)∶V(N2)=5∶5时,随着混合物中沙柳的增加,混合物的活化能和指前因子先增后降;当m(煤)∶m(沙柳)=5∶5时,随着CO2/N2混合气氛中CO2的增加,混合物的活化能和指前因子的变化趋势也先增加后降低。  相似文献   

2.
利用综合热分析仪分别对胜利褐煤、生物质(沙柳)以及二者以不同比例(1∶4,5∶5,4∶1)混合后的试样在不同的CO2/N2(1∶4,5∶5,4∶1)气氛条件下的热解失重行为进行研究,并观察褐煤与沙柳在共热解反应过程中的相互作用,应用Coats-Redfern方法分析热解反应。实验结果表明:褐煤与沙柳主要热解温度段有相互重叠的部分,且存在相互作用,当V(CO2)∶V(N2)=5∶5时,褐煤与沙柳混合物在热解高温段全部表现为促进作用,且促进作用随沙柳含量的增加越来越弱。当m(煤)∶m(沙柳)=5∶5时,不同CO2/N2比例气氛下热解的高温段中CO2气氛比例越大,煤与沙柳的相互促进作用越强。活化能的范围均在15~70 kJ/mol之间,且沙柳的活化能比煤的大;高温段所需的活化能较低温段的大;CO2/N2气氛比例及沙柳/煤混合比例均对活化能和指前因子有一定的影响。当V(CO2)∶V(N2)=5∶5时,随着混合物中沙柳的增加,混合物的活化能和指前因子先增后降;当m(煤)∶m(沙柳)=5∶5时,随着CO2/N2混合气氛中CO2的增加,混合物的活化能和指前因子的变化趋势也先增加后降低。  相似文献   

3.
采用热重分析(TG-DTG)对废轮胎和生物质的热解特性进行了分析,研究了原料配比、升温速率及粒度对热解的影响,并采用HSC计算模拟软件对热解气体的分布规律进行了模拟。研究结果表明:废轮胎与生物质共热解过程主要分为干燥阶段(20~200℃)、气化裂解阶段(200~500℃)和二次裂解阶段(500~800℃) 3个阶段。废轮胎掺混比例由100%下降至0时,热解初始温度由358.0℃下降至288.5℃,热解终止温度由473.0℃下降至361.6℃。随着升温速率和原料粒度的增加,废轮胎热解反应的最大失重速率增大,热解终温逐渐升高,反应向高温方向移动。采用Coats-Redfern法得到的废轮胎与生物质共热解阶段(250~500℃)活化能为18.61~40.86 k J/mol,生物质掺混比例增加时反应所需要的活化能减小。HSC计算模拟发现:热解过程气体产物主要为H_2、CO、CH_4和CO_2,随着废轮胎掺混比例下降,H_2、CO和CO_2产量增加,CH_4产量减小。通过可燃性气体总量与CO_2产量比值及热解特性分析发现:废轮胎掺混比例控制在40%~60%时获取的可燃性气体产量较高。  相似文献   

4.
以工业滤纸为炭基材料,聚氧乙烯-聚氧丙烯-聚氧乙烯三嵌段聚醚(普朗尼克F127)为软模板,1,3,5-三甲苯为扩孔剂,在添加3-氨基苯酚(氮源)和六次甲基四胺的条件下进行水热合成反应制得纸基复合材料,并经炭化制得氮掺杂介孔炭化复合材料(NMC-700),进一步KOH活化后制得活化氮掺杂介孔炭化复合材料(ANMC-700),同时以工业滤纸直接炭化制得的炭化滤纸(C-700)样品为对照,采用SEM、TEM、XRD、XPS等方法对3种炭材料进行了表征。研究结果表明:ANMC-700表面形成了粒径0.6~7μm的炭微球,孔结构由随机分布、蠕虫状的孔组成,比表面积高达1 559 m~2/g,孔容为0.80 cm~3/g,且氮原子已经成功掺杂到炭骨架中,含氮量为3.60%,含氧量为13.65%。电化学性能测试结果表明:以6 mol/L KOH为电解质溶液,在1 A/g的电流密度下,ANMC-700的比电容可达284 F/g,在20 A/g的电流密度下其比电容仍能保持在173 F/g,并在此电流密度下经过10 000次循环充放电,其电容保持率在98.6%,表现出良好的电化学稳定性。  相似文献   

5.
木屑高温水蒸气气化制备富氢燃气的特性研究   总被引:1,自引:0,他引:1  
在高温固定床反应器内,无催化剂作用下,进行了木屑高温水蒸气气化制取富氢燃气的特性研究。实验主要研究3 g原料,反应温度(750~1 050℃)及水蒸气流量(0~1.5 g/min)对燃气组分、产氢率、燃气热值(QLHV)等气化过程评价指标的影响。实验结果表明:反应温度和水蒸气流量对燃气组分影响很大,较高的反应温度和加入适量的水蒸气有利于氢气的产生,但随着反应温度的升高和水蒸气流量的增加会使燃气热值降低。在1 000℃时,水蒸气流量为1.02 g/min时,燃气中氢气体积分数可达51.03%,产氢率为71.08 g/kg(以干燥基计,下同),为理论最大产氢率(172.02 g/kg)的41.32%。考虑到实际操作过程,在反应温度为850℃时,水蒸气流量的最佳值为1.02 g/min。木屑高温水蒸气气化所得燃气热值在11~13 MJ/m3范围内变化。研究结果证明,高温水蒸气气化是生物质制取富氢燃气的一种有效方法。  相似文献   

6.
以竹炭为前驱体、三聚氰胺为氮源、碳酸钾为预活化剂,采用两次活化工艺成功制备了氮掺杂竹活性炭超级电容器电极材料。利用扫描电镜(SEM)、透射电镜(TEM)、X射线衍射(XRD)、拉曼光谱(Raman)、比表面积及孔隙分析(BET)和X射线光电子能谱(XPS)等测试方法对制备的电极材料的形貌、结构、化学成分进行表征。通过控制活化过程中的炭碱比(质量比)优化样品的电化学性能,结果表明:炭碱比为1∶1时制备的NC-1样品比表面积高达1 984.4 m2/g,平均孔径为1.26 nm,样品具有清晰的介孔以及内部蠕虫状的微孔。炭材料中氮元素和氧元素含量(质量分数)分别为2.20%和4.65%,有利于增加活性炭表面的亲水性和赝电容,从而提高其比电容量。经电化学性能测试,NC-1样品循环伏安曲线(CV曲线)具有良好的对称性,呈近似矩形;其中在低电势窗口出现明显的宽峰,表明充放电过程中材料表面的含氮官能团与电解液之间发生氧化还原反应,贡献赝电容。恒流充放电显示在1 A/g电流密度下质量比电容高达224 F/g,与未采用该活化工艺的样品比较提高了86.7%。在50 A/g电流密度下其质量比电容高达144 F/g,且在10 A/g下经5 000次循环充放电后仍可达到93%的初始电容保持率,显示了氮掺杂竹活性炭超级电容器电极材料较优异的电化学性能和稳定的循环性能。  相似文献   

7.
采用松香基季铵盐为结构导向剂,经尿素水热-均匀沉淀法成功合成出高分散纤维状介孔氧化铝。采用X射线衍射、N2-吸附脱附、场发射扫描电镜和透射电镜表征样品的结构性能。结果表明,经水热反应后,样品形成高分散的纤维状碳酸铝铵前驱体,经823 K煅烧4 h后,形成纤维状介孔γ-Al2O3。水热反应温度的高低,对样品的微观结构有着较大的影响,水热反应温度的升高有利于前驱体结晶度的提高,但经煅烧后,样品均转变为γ-Al2O3,且各样品晶相结构无显著差异。当水热温度为373 K时,样品比表面积相对较大(241.18 m2/g),但孔径相对较小(7.21 nm),提高或降低样品的水热反应温度会造成样品比表面积的下降,但样品的孔径会有所增大。在水热温度373 K下所得前驱体纤维长约为5μm,宽约为200 nm,经煅烧后样品形貌保存完整,且孔隙率有所增大。  相似文献   

8.
为了获得性能优良、成本低廉的二维炭材料,选择木质素磺酸钠为碳源、硼酸作为模板剂,经溶液混合、高温炭化和沸水回流等过程制得木质素基炭纳米片,当m(硼酸)∶m(木质素磺酸钠)为1∶1、5∶1和10∶1时,分别标记为SLB-1、SLB-5和SLB-10。通过扫描电镜(SEM)和透射电镜(TEM)等手段分析了炭纳米片的微观形貌,采用X射线衍射(XRD)、X射线光电子能谱(XPS)和激光拉曼光谱等手段检测了炭纳米片的晶体结构、元素组成和表面性质,通过循环伏安(CV)、恒电流充放电(GCD)和交流阻抗(EIS)等方法检测了炭纳米片的电化学性能,结果表明:SLB-5具有完好的二维片层结构,通过调整硼酸与木质素磺酸钠的质量比,可以有效调控炭纳米片的厚度。SLB-5具有一定的石墨化程度,模板剂被完全去除,含氧元素高达16.63%,同时,SLB-5炭纳米片厚度达到纳米级,电流密度为1 A/g时比电容为350.79 F/g,电流密度增加到10 A/g时比电容仍可以保持79.95%,循环5 000次后比电容可以保持90%以上。  相似文献   

9.
电磁辐射污染已成为一种除水和空气污染外的新环境污染问题,为解决这一问题,对废弃的竹粉进行回收利用,制备吸波性能较好的磁性竹炭,不仅可以提高产品附加值,同时也可解决废弃竹粉污染环境的问题。采用原位共沉淀、Fe2+/Fe3+混合液和NaOH溶液两步常压浸渍法制备磁性竹粉,并在1000℃下原位碳化,合成了α?/β?Fe/Fe3O4/Fe3C四相Fe/C复合材料(CF3)的磁性竹炭。通过扫描电子显微镜、能谱仪、X射线衍射仪、振动样品磁强计以及矢量网络分析仪等研究方法可以看出,随着热解温度的升高,生成的CF3表面出现许多微孔,有利于实现电磁波的吸收,磁性竹粉炭化前后的饱和磁化强度由2.18 emu/g显著提高到67.00 emu/g。CF3的电磁波吸收性能较好,其在5.72 GHz处具有最小反射损耗值,为-19.82 dB,匹配厚度为4.25 mm,有效响应带宽为13.76 GHz。研究表明,较好的吸波性能是由于α?/β?Fe/Fe3O4/Fe3C多相复合形成的连续网络结构可得到最佳的阻抗匹配特性,以及最大的介电损耗和磁损耗能力。3种材料中磁性竹炭表现出最高的电导率,说明磁性竹炭的导电性能最好,具有较强的电磁波衰减能力。此外,在C?Fe3C、C?Fe和C?Fe3O4界面处的界面极化对提高微波吸收性能有积极作用。  相似文献   

10.
薄皮核桃壳基活性炭的制备及表征   总被引:1,自引:0,他引:1  
【目的】以农林废弃物薄皮核桃壳为原料,通过化学活化-高温炭化法制备多孔活性炭材料,优化制备工艺过程,表征吸附性能机理,为薄皮核桃壳的开发利用提供技术指导。【方法】以碘吸附值和亚基甲蓝吸附值为考察指标,进行活化剂的筛选,并进一步考察原料粒度、料液比、活化时间、炭化温度和炭化时间对制备出的活性炭的吸附性能的影响。采用N2吸附-脱附等温线、元素分析仪和FTIR测定了活性炭的孔隙结构、主要元素组成和表面官能团,扫描电镜分析形貌结构,XRD和TG分析活性炭的结晶度和热稳定性。【结果】选用磷酸为最佳活化剂,薄皮核桃壳活性炭的最佳制备工艺条件为:核桃壳粉100目、料液比1:4、活化时间120 min、炭化温度500℃、炭化时间60 min,此工艺条件下制备出的活性炭的碘吸附值为657.42±3.16 mg/g、亚甲基蓝吸附值为248.55±1.94 mg/g。制备出的活性炭的表面积为449.80 m2/g,具有丰富的孔隙结构,孔容积为1.11 m2/g,平均孔径为7.87 nm。碳元素含量为65.56%,结晶度不高,为无定型结构,活性炭在400℃左右发生热降解,主要含有羧基、酚基、醇羟基等活性官能团。【结论】采用磷酸活化法制备出的薄皮核桃壳活性炭的孔隙结构发达,具有良好的吸附性能,碘吸附值和亚甲基蓝吸附值均高于国家标准,具有将废弃物资源循环利用的价值和前景。  相似文献   

11.
在高温固定床反应器中,进行松木屑氧气气化制备燃气特性研究,考察了气化温度和用量比(ER)对氧气气化制备燃气的热值、产气率以及燃气中各组分体积分数的影响。将获得的最佳工艺参数,在生物质气化制备燃气用于工业锅炉的示范工程中进行了调试和验证。研究结果表明:在气化温度850~950℃时,随着用量比的增加,燃气热值呈现先升高后降低的趋势,在用量比为0.24时,燃气热值最高;气化温度对木屑的氧气气化有显著的影响,气化温度升高,燃气热值以及燃气中H2、CO、CH4体积分数随之升高,产气率先升高后降低,在900℃时达到最高。气化温度900℃、用量比0.24为最佳的气化条件,此时气化制备的燃气热值为13.14 MJ/m3,产气率为0.98 L/g,燃气中H2、CO、CH4和C2Hm的体积分数分别为17.64%、 39.78%、 12.45%和2.76%。将该参数应用于示范工程得到燃气热值为10.90 MJ/m3,产气率约为1.02...  相似文献   

12.
介绍了一种简单、新颖、环保的制备甲壳素/多壁碳纳米管复合电极的工艺方法。先利用一次研磨法制备出甲壳素纳米纤维(CNFs),纤维直径分布在10~30 nm之间;然后使用十二烷基苯磺酸钠(SDBS)作为多壁碳纳米管的分散剂,通过超声混合法制备CNFs/碳纳米管(CNTs)复合电极;再使用扫描电镜、力学试验机、四探针、热机械分析仪、电化学工作站等对材料性能进行测试。结果表明,CNFs/CNTs复合薄膜内部纤维相互交织,呈现三维网状结构。在此复合物中,甲壳素起到了增强力学性能和抑制碳纳米管团聚的作用,力学性能随着碳纳米管含量的增加而降低,拉伸强度和杨氏模量低至46.23 MPa和1.18 GPa,相比于甲壳素纯膜(113.48 MPa和3.72 GPa)分别减少了59.3%和68.3%。热膨胀系数从2.84×10-5m/K降至3.42×10-6m/K,仅有甲壳素纯膜的12%。CNFs/CNTs复合材料的电导率(1 471.9 S/m)显著提高且电化学性能优异,电容量在经过1 000次充放电循环之后依然保持在99%以上,在扫描速率为10 m V/s时,复合薄膜的电容量达到48.1 F/g。制得的柔性电极材料,成本低廉且环保,今后在便携可折叠装置和固态超级电容器电极方面均具有巨大的应用潜力。  相似文献   

13.
以前期建立的紫胶桐酸HPLC-ELSD手性检测拆分条件为基础,开发了超临界流体色谱(SFC)法制备紫胶桐酸对映异构体的拆分条件:CHIRALPAK AY-H色谱柱(25 cm×3.0 cm,5μm),流动相组成为V(CO 2)∶V(EtOH)=70∶30,流速为70 mL/min,柱温35℃,检测波长为208 nm,进样质量浓度为77.78 g/L(溶剂为甲醇),进样体积为3.0 mL/次。通过以上方法从化学纯紫胶桐酸中分离制备得到A、B两种样品,以(±)-紫胶桐酸混旋体标准品为对照,采用红外光谱(FT-IR)、核磁共振(1 H NMR和13 C NMR)、差示扫描量热法(DSC)、热重(TG)和X射线衍射(XRD)等表征,证实了样品A、B均为紫胶桐酸的立体异构体;通过比旋光度和振动圆二色谱(VCD)测试,确定了A、B互为对映体关系。依据前人采用化学合成方法所得苏式和赤式构型的熔点测定结果,并结合本研究结果可以得出:强碱皂化法从紫胶树脂中提取所得的紫胶桐酸为苏式构型的一组对映体,即9 R,10 R,16-三羟基十六烷酸与9 S,10 S,16-三羟基十六烷酸组成的混旋体。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号