首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
气候变化情景下河北省3个优势树种适宜分布区预测   总被引:2,自引:0,他引:2  
【目的】探究河北省3个优势树种分布与气候因子的关系,并进行适宜分布区预测,以期为评估气候变化的影响及制定适宜未来气候变化的森林经营策略提供理论依据。【方法】依据河北省森林资源调查数据,选取华北落叶松、蒙古栎和油松这3个主要树种,采用ClimateAP气候模型生成当前及未来(2040—2069年和2070—2099年)与降水和温度相关的10个气候因子,利用MaxEnt生态位模型和基于3个气候变化情景(温室气体最低排放,RCP2.6;中度稳定排放,RCP4.5;高度排放,RCP8.5)的一致性预测,模拟3个树种当前和未来的潜在适宜分布区,并采取响应曲线分析主要气候因子对3个树种适宜分布区的影响。【结果】3个树种MaxEnt模型的受试者工作特征曲线下面积(AUC值)都大于0.85,具有较好的预测能力;当前3个树种主要适宜分布在燕山和太行山地区;影响3个树种分布的主导气候因子存在差异,华北落叶松主要受小于0℃年积温和湿季降水量的影响,蒙古栎则主要受最热月平均气温、Hargreaves水分亏缺和湿季降水量的影响,而最热月平均气温、湿季降水量、大于5℃年积温和年均气温是影响油松分布的主要气候因子;一致性预测表明,在2040—2069年,河北省华北落叶松分布面积明显扩大,蒙古栎分布面积变化较小,而油松分布面积显著缩小;在2070—2099年,3个树种的适宜分布面积都显著缩小,幅度均超过3%。【结论】随着气候变化,3个树种均有向高海拔地区迁移的趋势,但在经纬度方向上的分布变化不大。在未来3个树种的适宜分布区,采取人工手段(如造林)辅助树种扩散以适应气候变化,有利于提高森林生产力,构建健康稳定的森林生态系统。  相似文献   

2.
ABSTRACT

Climate change affects plant phenology, spatial distribution, and even extinction of vulnerable species. Dipterocarpus turbinatus, locally known as garjan, is a valuable but vulnerable native tree species of Bangladesh whose spatial distribution under future climate change scenarios is not fully understood. The aim of this study was to examine the effects of present and future climatic scenarios on spatiotemporal distribution of D. turbinatus. We used maximum entropy species distribution modeling to perform the present and future habitat suitability of garjan under different climate scenarios. The representative concentration pathways (RCP) 2.6 and 8.5 were considered for bioclimatic variables from the Global Climate Model – Hadley Global Environment Model 2 Atmosphere-Ocean. The predictive accuracy of the model was more than 97% in both the training and test data. The prediction results suggest that compared to present areas (7624 km2) under moderate habitat class it will be 2755 km2 and 1239 km2, respectively, in 2050 and 2070 under RCP2.6 scenario and decreases more rapidly under RCP8.5 scenario. Besides, the prediction also indicates that the habitat of the species will shift toward the high altitudinal south-eastern corner of the country whereas local extinction might occur in the north-eastern part during 2070.  相似文献   

3.
Prediction of potential geographic distributions is important for species protection and habitat restoration.Ulmus lamellosa is an endangered and endemic species in China for which conservation efforts are required.The maximum entropy(MaxEnt) model was used to predict the current and future geographic distribution(from 2030 to 2070) of U.lamellosa in China and discuss the reasons for changes in climatic suitability.The MaxEnt model provided a good fit to our data as confirmed by an AUC value of 0.948.The suitable areas for U.lamellosa were primarily projected in the northern part of China from 2030 to2070, especially in Liaoning province.The variables"temperature seasonality", "precipitation of wettest month" and "precipitation of warmest quarter" were the most influential climatic variables in limiting the distribution of U.lamellosa.Our results clearly predict the future impacts of climate change on the geographic distribution of U.lamellosa and this can help prioritize design of localized conservation strategies in China.  相似文献   

4.
流苏香竹(Chimonocalamus fimbriatus)是云南特有珍稀竹种,主要分布于云南西南部。文章以野外调查获取的流苏香竹分布信息为主,运用最大熵模型(MaxEnt)同时结合地理信息系统(ArcGIS),基于19个气候因子,预测其在当前及未来气候变化情景下的潜在分布区。结果表明:当前流苏香竹的高适生区和中适生区主要分布于德宏州、保山市和临沧市等地,除迪庆州、丽江市和昭通市外,云南其他区域均有低适生区零星分布。在未来2050s和2070s的2个时间段,基于2种不同共享社会经济路径(SSP1-2.6和SSP5-8.5),流苏香竹的高适生区面积呈减少的趋势,尤其是SSP5-8.5路径下,高适生区面积仅为当前的12.51%(2050s)和18.63%(2070s);中、低适生区在SSP1-2.6路径下,显著扩张(2050s)或略微扩张(2070s),在SSP5-8.5路径下,则大幅收缩。流苏香竹野外实际分布区及其潜在分布区均以斑块状为主,可能与云南特殊的地形、地貌有关。影响流苏香竹分布的主导气候因子为最湿月份降水量、最暖月份最高温度、最干季度降水量和平均气温日较差。流苏香竹对气候变化比较敏感,根据其野外分布状况,建议以就地保护为主、迁地保护为辅,在其潜在适生区内适当引种栽培。  相似文献   

5.
Adansonia digitata (baobab tree), a multipurpose tree species, occurs throughout semi-arid and arid zones of Africa. Its survival is, however, threatened by bush fire, over-exploitation, grazing and a lack of natural regeneration. The extent of variation in fruit characteristics, seed germination and seedling traits of the baobab tree in Benin, was evaluated at climatic zone level. 1,200 fruits were sampled in each of the three climatic zones of Benin for morphological assessment and to assess germination rate and seedling growth dynamics according to the climatic zones, the used substrate and the scarification of the seed coat. There were significant differences in fruit characteristics not only between climatic zones but also between individuals from the same zone and within-trees. Using mechanical scarification on freshly-collected baobab seeds negatively affected the germination rate of baobab seeds sampled in the Guinean and Sudano-Guinean zones of Benin. The best-germination rate was recorded for non-treated seeds from the Guinean zone, up to 57% on day 25. All seeds germinated best on the sand substrate, but supplying organic matter promoted further seedling growth after 11 days of germination. Based on these observations we propose some strategies for efficient ex situ conservation of baobab in Benin.  相似文献   

6.
Daxing'anling is a key region for forest fire prevention in China.Assessing changes in fire risk in the future under multiple climatic scenarios will contribute to our understanding of the influences of climate change for the region and provide a reference for applying adaptive measures for fire management.This study analyzed the changes in fire weather indices and the fire season under four climate scenarios(RCP2.6,RCP4.5,RCP6.0,RCP8.5)for 2021–2050 using data from five global climate models together with observation data.The results showed that the analog data could project the average state of the climate for a given period but were not effective for simulating extreme weather conditions.Compared with the baseline period(1971–2000),the period 2021–2050 was predicted to have an increase in average temperature of 2.02–2.65 °C and in annual precipitation 25.4–40.3 mm,while the fire weather index(FWI) was predicted to increase by6.2–11.2% and seasonal severity rating(SSR) by5.5–17.2%.The DMC(Duff moisture code),ISI(initial spread index),BUI(build-up index),FWI and SSR were predicted to increase significantly under scenarios RCP4.5,RCP6.0,and RCP8.5.Furthermore,days with high or higher fire danger rating were predicted to be prolonged by 3–6 days,with the change in the southern region being greater under scenarios RCP4.5,RCP6.0,and RCP8.5.  相似文献   

7.
We modeled and mapped, using the predictive data mining tool Random Forests, 134 tree species from the eastern United States for potential response to several scenarios of climate change. Each species was modeled individually to show current and potential future habitats according to two emission scenarios (high emissions on current trajectory and reasonable conservation of energy implemented) and three climate models: the Parallel Climate Model, the Hadley CM3 model, and the Geophysical Fluid Dynamics Laboratory model. Since we model potential suitable habitats of species, our results should not be interpreted as actual changes in ranges of the species. We also evaluated both emission scenarios under an “average” future climate from all three models. Climate change could have large impacts on suitable habitat for tree species in the eastern United States, especially under a high emissions trajectory. Of the 134 species, approximately 66 species would gain and 54 species would lose at least 10% of their suitable habitat under climate change. A lower emission pathway would result in lower numbers of both losers and gainers. When the mean centers, i.e. center of gravity, of current and potential future habitat are evaluated, most of the species habitat moves generally northeast, up to 800 km in the hottest scenario and highest emissions trajectory. The models suggest a retreat of the spruce-fir zone and an advance of the southern oaks and pines. In any case, our results show that species will have a lot less pressure to move their suitable habitats if we follow the path of lower emissions of greenhouse gases. The information contained in this paper, and much more, is detailed on our website: http://www.nrs.fs.fed.us/atlas.  相似文献   

8.
【目的】刺槐突瓣细蛾是2008年在山东省烟台市新发现的重要外来入侵害虫,严重为害我国重要外来树种——刺槐。通过预测其适生区,为高效率地做好检疫、监管和及时防治工作提供依据。【方法】收集刺槐突瓣细蛾在全国的11个分布点数据,并利用ArcGIS10.0从WorldClim下载1970―2000年的19个环境变量中筛选出相关系数<|0.9|的9个变量,并将其转化为MaxEnt需要的ASCII格式数据。设置模型为双对数(cloglog)输出格式,输出文件类型ASCII和线性(linear)特征。为了提高预测效果的精确性和缩小不确定的水平,在模型中设置10倍交叉验证并重复运行10次,获得平均结果。采用刀切法分析各个环境变量在模型中对潜在地理分布的贡献率,将最优模拟结果在ArcGIS10.0软件中转化并分类,即模型模拟得出的刺槐突瓣细蛾在中国的适宜指数分为4类,即非适生区、低度适生区、中度适生区、高度适生区,最后得到刺槐突瓣细蛾的不同程度适生区分布图。利用2050年和2070年的RCP 8.5气候数据进行投射预测物种的未来分布。用ROC曲线下面积AUC和真实技巧统计法TSS的大小评价MaxEnt生态模型的精确度。【结果】在当前气候条件下,刺槐突瓣细蛾中高度适生区主要集中在山东及其周边省份(辽宁、北京、天津、河北、山西、河南、安徽、江苏),以及四川和云南局部地区;在未来气候条件下,至2050年,刺槐突瓣细蛾在RCP8.5气候条件下的中高度适生区范围比当前的呈整体扩大且向西南部蔓延,至2070年,在相同气候情景下该虫的适生区范围亦呈整体明显扩大且适生区北界向东北移动。而其与2050年的预测结果相比较,高度适生区小幅度减少。刀切法检测表明:年均降水量、最湿季度降水量、最冷月最低温对刺槐突瓣细蛾的分布影响较大,其中年均降水量适宜值为382.08~1 135.81 mm,最适值为753.85 mm;最湿季度降水量适宜值为241.61~693.86 mm,最适值为464.55 mm;最冷月最低温适宜值为-16.96~6.36 ℃,最适值为-5.5 ℃;AUC和TSS值分别为0.957±0.052和0.8±3.05,表明模型预测准确性极好。【结论】通过预测结果可知,刺槐突瓣细蛾对刺槐构成了重大的威胁,建议相关造林绿化和植物检疫部门高度重视。  相似文献   

9.
通过对普洱江城苦丁茶场及西双版纳普文试验林场西南桦与高阿丁枫不同混交模式的生长量指标进行调查分析,结果表明,(1)10年生前,西南桦的胸径较高阿丁枫速生,林木的平均胸径西南桦大于高阿丁枫;11年生后,林木的平均胸径高阿丁枫大于西南桦;(2)10年生时,普文林场混交林的西南桦和高阿丁枫胸径生长一致(11.7 cm),西南桦树高超出高阿丁枫树高3.0 m。说明混交林中西南桦为早期速生树种;幼林阶段,西南桦和高阿丁枫胸径于不同的时期呈现错峰生长。同时,西南桦和高阿丁枫的地理分布、立地的生态适宜条件和林学特征等分析结果表明这2个树种在适宜的混交模式下属混交匹配的树种。建议采用非均匀密度控制混交,以实现2个树种的良好生长和长期混交。  相似文献   

10.
Parkia biglobosa is a traditional economic tree legume of considerable multipurpose importance in the sudano-sahelian region in Africa. The species grows in multiple climatic zones with precipitation ranging from 600 to 2,500?mm a year and its natural distribution extends from Senegal and Guinea in West Africa to Uganda in Central Africa. In the present paper, a range wide sample of 25 provenances of P. biglobosa was tested in Burkina Faso, West Africa at two sites; Gonse (latitude 12°25′N; longitude 1°20′W; altitude 280?m) in the north-sudanian zone and at Dinderesso (latitude 11°18′N; longitude 4°35′W; altitude 425?m) in the south-sudanian zone. Based on analysis of survival and growth traits, we provide evidence of substantial genetic differentiation between P. biglobosa populations within West Africa. Height growth was best at Gonse, while the survival rate was higher at Dinderesso (61%) compared to Gonse (35%). Links between geographical parameters and the provenances performance were significant, and interesting geographic patterns were observed. Our results point towards superior fitness of the local Burkina Faso populations, and we speculate that presence of a continuum of locally adapted populations can be a part of the explanation for the species’ ability to thrive under quite different climatic conditions across West Africa. Based on the findings, we suggest recommendations for seed deployment and conservation strategies of the species in the West African Sahel. This is particularly important when considering the on-going climate change.  相似文献   

11.
本文通过收集托里桉的实地栽培点地理数据,运用最大熵软件(Maxent)和地理信息系统技术(ArcGIS),结合12个气候因子数据,预测划定了托里桉在我国南部的潜在地理适生分布区。结果表明:Maxent模拟托里桉的潜在地理分布准确性较高,模型预测训练子集和验证子集AUC值均大于0.87。托里桉最适宜分布区集中在广东和海南沿海、广西沿海和中部及福建南部沿海,面积依次为广东(8.63×10~4 km~2)、海南(2.65×10~4 km~2)、广西(2.22×10~4 km~2)、福建(1.18×10~4 km~2);适宜区集中在广西中南部、广东中北部、福建南部、江西中南部,面积依次为广西(10.17×10~4 km~2)、广东(6.15×10~4 km~2)、福建(2.52×10~4 km~2)、江西(1.43×10~4 km~2)。Maxent刀切法(Jackknife)分析结果表明:影响托里桉适生区分布的主导气候因子为年平均气温、≥10℃积温、极端低温、最冷月最低温、最冷月均温、≥10℃的天数。  相似文献   

12.
Juniperus procera is the most preferred tree in Ethiopia. It is an endangered tree species enumerated in IUCN red list. Accordingly, this study investigates the future suitable habitat of the J. procera under climate change in northern Ethiopia. Three occurrence districts were visited and 124 presence observations were taken. The records, altitude, and 19 bio-climatic variables were used to run a species distribution model to account for the climate change effect on the species. Maxent, Diva-GIS, and ArcGIS were used to evaluate the outputs. Future suitable habitats were projected into mid and end-century time frames with two Representative Concentration Pathways (RCP2.6 and 8.5) under one General Circulation Model, namely the Climate Community System Model Version-4. Our results showed that minimum temperature of the coldest month and altitude are main predictors of the distribution of the species. Suitable habitats of the species will be decreased by 79.84%, 91.17%, 75.31%, and 96.25% in Mid-century RCP2.6, Mid-century RCP8.5, End-century RCP2.6, and End-century RCP8.5 when compared with current distributions, respectively. This indicates that climate change will affect the future distribution of the species. The results of the study indicate that appropriate management strategies must be taken to ensure the long-term survival of J. procera.  相似文献   

13.
为了研究气候变化情景下澳洲坚果在云南省的潜在适宜生境,采用当前和未来2050年RCP45气候变化情景下的19个生物气候因子及最大熵模型MaxEnt进行澳洲坚果生境模型构建,并进行适宜生境等级划分及空间变化特点分析。结果表明,2050年RCP45气候变化情景下3个等级的适宜生境大体上仍然保持与当前相似的空间分布格局,即高度适宜生境主要分布在云南西南部和南部,中、低度适宜生境分布在高度适宜生境区以北及以东区域。未来气候变化引起高度和中度适宜生境面积小幅度缩减(5.6%和2.4%),低度适宜生境面积增加22.5%。气候变化同时引起高度适宜生境景观格局破碎化。未来气候变化引起的澳洲坚果在云南高、中度适宜种植区总面积略有缩减,虽幅度不大,但空间分布上发生位移,且呈现破碎化趋势,产业规划时应考虑产业生命周期内气候变化造成对适宜生境迁移的影响。  相似文献   

14.
基于MaxEnt模型新疆枣潜在适生区预测   总被引:1,自引:0,他引:1  
【目的】研究全球气候变化对新疆枣潜在分布的影响,划分新疆枣不同等级的适生区,为新疆枣产业的持续稳定发展提供参考。【方法】基于新疆枣地理分布的调查数据和2种气候情景(RCP4.5和RCP8.5),利用GIS技术和MaxEnt生态位模型相结合的方法,在全球气候变化背景下,对新疆枣的当前及未来(2050和2070年)潜在适生区分布进行预测。【结果】在当前气候条件下,新疆枣适生区主要分布在南疆和东疆地区。其中适生区总面积达到11.3×10~4 km^2,占新疆土地总面积的6.8%。采用受试者工作特征曲线(ROC曲线)对MaxEnt模型预测结果进行评价,结果显示训练数据集和测试数据集的曲线下的面积值(AUC值)分别为0.988和0.978,说明模型预测结果较为理想。刀切法分析结果显示,影响新疆枣当前分布的气候因子主要为最热月最高温度、最冷月最低温度、最暖季度均温、最冷季度均温、6月最高气温、7月最高气温、8月最高气温、12月最低气温、1月最低气温和2月最低气温。在未来气候条件下,新疆枣适生区面积有着一定的增加,但适生区的区域变化较小。【结论】Maxent模型预测结果与新疆枣的实际分布重合度较高。低温是影响新疆枣潜在适生区分布的重要因素。在全球气候变暖的趋势下,新疆枣整个潜在适生区面积呈现增加的特点且有向高纬度区域迁移的趋势,北疆地区开始出现较少部分的低适生区。  相似文献   

15.
【目的】依据气候变化,探究气候变化对松针红斑病分布的影响,预测中国松针红斑病的潜在分布区。【方法】根据松针红斑病已知分布区域和相关气候数据,结合政府间气候变化专门委员会(IPCC)针对未来气候变化情景发布的CCSM4气候模式数据,采用最大熵模型(MaxEnt)预测松针红斑病的潜在分布区。【结果】松针红斑病最适宜分布区为黑龙江、吉林、辽宁、内蒙古东北部和云南省。经刀切法分析(Jackknife)表明,6月降水量、11月平均最高温度和最冷季度降水量等主要影响松针红斑病的潜在分布区。在未来不同气候变化情景下,总适宜区面积呈上升趋势,增加幅度为15. 66%~18. 29%。山东北部、河北、山西的大部分地区、陕西中部和南部、甘肃东南部、四川北部和南部、辽宁西部和内蒙古东部的各等级适宜区面积增加,适宜等级上升。【结论】MaxEnt模型预测结果与实际调查结果具有很高的一致性,能够反映松针红斑病在中国的分布情况。随着未来气候变化,云南、四川交界地区,东北三省和内蒙古东北部最适宜分布区呈现破碎化的趋势。松针红斑病适生区质心有由东北向华北、西北扩散的趋势。  相似文献   

16.
This study reports a parametric approach to the climatic and edaphoclimatic potential distribution of the cork oak (Quercus suber L.) in central-western Spain together with an analysis of the influence of the maximum soil water holding capacity (WHC) on such potential distribution. To these ends, we employed 12 climatic and 2 edaphoclimatic parameters of eco-physiological influence derived from the current distribution of cork oaks. The climatic and edaphoclimatic parameters elaborated for two extreme WHC values (50 and 250 mm) are calculated for the whole study area and are mapped by means of a digital elevation model and a geographic information system. The results point to an important climatic potential area for high soil WHC values but there is also a remarkable dependence on this latter parameter, mainly in the Duero basin, since the limits of the climatic potential area are reduced strongly as WHC decreases. We deduce certain other conclusions as regards the importance of this variable in the potential distribution of species and in forestation and reforestation projects using this species.  相似文献   

17.
Species distribution models are feasible methods for projecting theoretical responses of living organisms’ occurrence under several future climate change scenarios. The major interest is focused on trees, which regulate the equilibrium within ecosystems and guarantee the survival of many life forms on the Earth. The repercussions of climatic drivers are expected to pose the strongest threats for the Mediterranean biome, an acknowledged hotspot of biodiversity. Here, we focused on cork oak (Quercus suber L.), a keystone species of many landscapes, sustaining a rich biodiversity, ecological processes and economic incomes. Results of 8 combined ecological modelling techniques and two Global Circulation Models highlight a broad contraction of the species potential range over the twenty-first century, both under intermediate and high emissions scenarios. Coupled northward and upward shifts are predicted, mostly pertaining Iberia and North Africa. The potential areas detected at Levantine will likely undergo disappearance. To exacerbate the impacts of climate change, the future of the ecosystems linked to cork oak remains uncertain, because of the expected implications on the phenotypic plasticity or evolutionary responses. A synergy among niche-based, physiological and eco-genetic investigations is strongly needed in the field of applied research, to improve the assessment of conservation and reforestation actions.  相似文献   

18.
We described potential changes in the geographic distribution and occurrence probability of Pinus koraiensis Sieb. et Zucc. and Eleutherococcus senticosus (Rupr. et Maxim.) Maxim. in the counties of northeast China. This information was used to identify priority areas for protection and provide protection and management recommendations within each studied county. The two species were mapped in 2884 study plots throughout this region over a 4-year period (38°40′N–53°30′N, 115°05′E–135°02′E). We used the species distribution models (Maxent), systematic conservation planning models (Marxan), and Geographic Information Systems (ArcGIS 10.0). The distributions of two species were correlated in the study area, enabling unique and economically viable joint conservation measures to be implemented. Three models were combined to identify feasible priority conservation sites. We used local spatial statistics to assess all identified conservation areas in relation to potential climate change based shifts in the geographic distribution of the two species. Model-based conservation strategies were used to identify effective measures to protect and utilize these two tree species in the study region. This study presents a novel technique for assessing wild plant distributions, in addition to serving as a model for the conservation of other species within the framework of general forest management, ecological construction, and geographical surveying.  相似文献   

19.
Forecasting the potential impacts of forest policies on species of special conservation value is a prerequisite for safeguarding forest biodiversity. In this study, regional forest policy scenarios were compared in terms of predicted habitats suitable for the Siberian flying squirrel (Pteromys volans). To derive both patch- and landscape-scale models to predict species presence in a forest stand, species occurrence data from a systematic field survey covering the whole distribution area of the flying squirrel in Finland and Multi-Source National Forest Inventory data were combined. Then, the Finnish forestry model MELA and the derived occupancy models were applied to predict the quantity of suitable habitats for flying squirrels in three different 50-year policy scenarios. The results confirm that increasing the utilization of felling potential from the level of business-as-usual to the level stated as policy targets in regional forest programs decreases the amount of suitable habitat in the future. However, regional forest programs had a less drastic impact on habitats than maximum sustainable removal, except in two regions. It should be noted that the occupancy models seemed to fail on sites that experts deem to be most suitable for the species. Obviously, there are other factors than forest management affecting presence.  相似文献   

20.

We examined the association between habitat variables and the relative impacts of topographic microclimates as a valuable tool for restoration and conservation of Abies pinsapo in southern Spain. We used presence–absence data from A. pinsapo and 79 environmental variables and biomod species distribution models to describe the current and future species habitat across the Sierra de las Nieves Natural Park (southern Spain). A. pinsapo habitat was most strongly associated with microtopographic (solar incidence) and temperature variables, indicating climate-driven changes in microhabitat use. Most of the temperature variation among the study site was attributable to topographic microclimates rather than regional temperature differences, such that differences in microhabitat associations occurred principally between north- and south-facing slopes within the same region. The current potential distribution suggests that around 8.7% (56.44 km2) of the study area is highly suitable for A. pinsapo, with 9.7% (62.84 km2) being moderately suitable. Under different global circulation models and climate change scenarios, the net decrease in suitable habitat is predicted to be 93% of the current distribution by 2040, disappearing altogether by 2099. Our findings also show a sharp reduction of potential restoration areas (1.8% of the current areas). Microclimatic variation generated by the topography offers the microclimate-driven locations of habitat suitability which could shape species’ distribution restoration actions and their responses to environmental change. The approach presented here can provide a rapid assessment of the future conservation status of other important forest tree species in Spain, improving our understanding of the vulnerability of endangered species under climate change, and can be an effective tool for biodiversity conservation, restoration, and management.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号