首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《农业科学学报》2019,18(8):1667-1679
With an increasing population and changing diet structure, summer maize is increasingly becoming an important energy crop in China. However, traditional farmer practices for maize production are inefficient and unsustainable. To ensure food security and sustainable development of summer maize production in China, an improved, more sustainable farmer management system is needed. Establishing this system requires a comprehensive understanding of the limitations of current farming practice and the ways it could be improved. In our study, 235 plots from three villages in the North China Plain(NCP) were monitored. Maize production on farms was evaluated; our results showed that the maize yield and nitrogen partial factor productivity(PFP_N) were variable on smallholder farms at 6.6~(–1)3.7 t ha~(–1) and 15.4–88.7 kg kg~(–1), respectively.Traditional farming practices also have a large environmental impact(nitrogen surplus: –64.2–323.78 kg ha~(–1)). Key yield components were identified by agronomic diagnosis. Grain yield depend heavily on grain numbers per hectare rather than on the 1 000-grain weight. A set of improved management practices(IP) for maize production was designed by employing a boundary line(BL) approach and tested on farms. Results showed that the IP could increase yield by 18.4% and PFP_N by 31.1%, compared with traditional farmer practices(FP), and reduce the nitrogen(N) surplus by 57.9 kg ha~(–1). However,in terms of IP effect, there was a large heterogeneity among different smallholder farmers' fields, meaning that, precise technologies were needed in different sites especially for N fertilizer management. Our results are valuable for policymakers and smallholder farmers for meeting the objectives of green development in agricultural production.  相似文献   

2.
With increasing water shortage resources and extravagant nitrogen application, there is an urgent need to optimize irrigation regimes and nitrogen management for winter wheat(Triticum aestivum L.) in the North China Plain(NCP). A 4-year field experiment was conducted to evaluate the effect of three irrigation levels(W1, irrigation once at jointing stage; W2, irrigation once at jointing and once at heading stage; W3, irrigation once at jointing, once at heading, and once at filling stage; 60 mm each irrigation) and four N fertilizer rates(N0, 0; N1, 100 kg N ha~(-1); N2, 200 kg N ha~(-1); N3, 300 kg N ha~(-1)) on wheat yield, water use efficiency, fertilizer agronomic efficiency, and economic benefits. The results showed that wheat yield under W2 condition was similar to that under W3, and greater than that under W1 at the same nitrogen level. Yield with the N1 treatment was higher than that with the N0 treatment, but not significantly different from that obtained with the N2 and N3 treatments. The W2 N1 treatment resulted in the highest water use and fertilizer agronomic efficiencies. Compared with local traditional practice(W3 N3), the net income and output-input ratio of W2 N1 were greater by 12.3 and 19.5%, respectively. These findings suggest that two irrigation events of 60 mm each coupled with application of 100 kg N ha~(–1) is sufficient to provide a high wheat yield during drought growing seasons in the NCP.  相似文献   

3.
采用裂区设计,研究不同施氮量和播种密度对宁冬11号分蘖成穗及穗部结实特性的影响。结果表明,施氮量为90~270kg/hm2时,随着施氮量增加,宁冬11号冬分蘖力、成穗率、有效穗数及产量均增加,当施氮量达到360kg/hm2时全部降低;施氮量对结实小穗数、穗粒质量的影响呈单峰曲线,分别在180kg/hm2和270kg/hm2时达到峰值。随着播种密度增加,分蘖成穗率、结实小穗数、穗粒质量均降低,且对结实小穗数和穗粒质量的影响显著。宁夏引黄灌区冬小麦品种宁冬11号在适宜播期的最佳肥密组合为施氮量270kg/hm2,播种密度600万/hm2。  相似文献   

4.
In order to study the effects of different levels of salt stress and nitrogen(N) on physiological mechanisms,carbon isotope discrimination(△~(13)C),and yield of two wheat cultivars(cv.),a two-year field experiment was carried out during 2013-2015.The treatments included three levels of salt stress(1.3,5.2,and 10.5 dS m~(-1)),three levels of N(50,100,and 150 kg N ha~(-1)),and two wheat cultivars,Bam and Toos.Under salt stress,N application(100 and 150 kg N ha~(-1)) produced a significant effect on both cultivars with respect to physiological traits,i.e.,net photosynthetic rate(P_n),stomatal conductance(g_s),chlorophyll index(Cl),Na~+/K~+ratio as well as the grain yield(GY).The salt-tolerant and-sensitive cultivars exhibited the maximum values of physio-biochemical and yield attributes at 100 and 150 kg N ha~(-1),respectively.The results of △~(13)C showed a significant difference(P0.001) between wheat cultivars under the control and salt stress.According to our result,salt-tolerant cultivar Bam seems to be more efficient in terms of higher GY,P_n,g_s,Cl,and lower Na~+/K~+ratio as well as higher △~(13)C as compared with salt-sensitive cultivar Toos,under salt stress.Therefore,a significant positive correlation that observed between △~(13)C and GY,indicated that △~(13)C may be an effective index for indirect selection of yield potential in wheat under irrigation regimes with saline water.  相似文献   

5.
Intercropping is an important agronomic practice. However, assessment of intercropping systems using field experiments is often limited by time and cost. In this study, the suitability of using the DeNitrification DeComposition(DNDC) model to simulate intercropping of maize(Zea mays L.) and soybean(Glycine max L.) and its aftereffect on the succeeding wheat(Triticum aestivum L.) crop was tested in the North China Plain. First, the model was calibrated and corroborated to simulate crop yield and nitrogen(N) uptake based on a field experiment with a typical double cropping system. With a wheat crop in winter, the experiment included five treatments in summer: maize monoculture, soybean monoculture, intercropping of maize and soybean with no N topdressing to maize(N0), intercropping of maize and soybean with 75 kg N ha~(–1) topdressing to maize(N75), and intercropping of maize and soybean with 180 kg N ha~(–1) topdressing to maize(N180). All treatments had 45 kg N ha~(–1) as basal fertilizer. After calibration and corroboration, DNDC was used to simulate long-term(1955 to 2012) treatment effects on yield. Results showed that DNDC could stringently capture the yield and N uptake of the intercropping system under all N management scenarios, though it tended to underestimate wheat yield and N uptake under N0 and N75. Long-term simulation results showed that N75 led to the highest maize and soybean yields per unit planting area among all treatments, increasing maize yield by 59% and soybean yield by 24%, resulting in a land utilization rate 42% higher than monoculture. The results suggest a high potential to promote soybean production by intercropping soybean with maize in the North China Plain, which will help to meet the large national demand for soybean.  相似文献   

6.
Active canopy sensor (ACS)—based precision nitrogen (N) management (PNM) is a promising strategy to improve crop N use efficiency (NUE). The GreenSeeker (GS) sensor with two fixed bands has been applied to improve winter wheat (Triticum aestivum L.) N management in North China Plain (NCP). The Crop Circle (CC) ACS-470 active sensor is user configurable with three wavebands. The objective of this study was to develop a CC ACS-470 sensor-based PNM strategy for winter wheat in NCP and compare it with GS sensor-based N management strategy, soil Nmin test-based in-season N management strategy and conventional farmer’s practice. Four site-years of field N rate experiments were conducted from 2009 to 2013 to identify optimum CC vegetation indices for estimating early season winter wheat plant N uptake (PNU) and grain yield in Quzhou Experiment Station of China Agricultural University located in Hebei province of NCP. Another nine on-farm experiments were conducted at three different villages in Quzhou County in 2012/2013 to evaluate the performance of the developed N management strategy. The results indicated that the CC ACS-470 sensor could significantly improve estimation of early season PNU (R2 = 0.78) and grain yield (R2 = 0.62) of winter wheat over GS sensor (R2 = 0.60 and 0.33, respectively). All three in-season N management strategies achieved similar grain yield as compared with farmer’s practice. The three PNM strategies all significantly reduced N application rates and increased N partial factor productivity (PFP) by an average of 61–67 %. It is concluded that the CC sensor can improve estimation of early season winter wheat PNU and grain yield as compared to the GS sensor, but the PNM strategies based on these two sensors perform equally well for improving winter wheat NUE in NCP. More studies are needed to further develop and evaluate these active sensor-based PNM strategies under more diverse on-farm conditions.  相似文献   

7.
《农业科学学报》2019,18(5):1138-1147
A simulated grazing field experiment was conducted to determine the effect of timing and intensity of grazing on the growth and yield of a mid-late maturing spring wheat(cv. Flanker) under different watering regimes, at Wagga Wagga in southeastern Australia. The experiment was a factorial design of watering regime and pasture "grazing" as factors, with three replications. The two watering regimes were rainfed(R) and supplemental irrigation(I). There were four simulated grazing treatments: no grazing, "crash" grazing by mowing to 5 cm height on 13 June(Cut1-5), "crash" grazing by mowing to 5 cm on 15 July(Cut2-5) and "clip" grazing by mowing to 15 cm height on 15 July(Cut2-15). The lowest dry matter(simulated grazing) was obtained from RCut1-5(0.13 t ha~(–1)) and the highest(0.86 t ha~(–1)) was from ICut2-5. There was no significant difference(P0.05) among the grain yields of the grazing treatments in the respective watering regimes. However, there was significant difference(P0.05) between the grain yields of the rainfed(3.60 t ha~(–1)) and irrigated(6.0 t ha~(–1)) treatments. Under both watering regimes, the highest grain yield was obtained from the late "clip" grazings: 3.79 t ha~(–1)(RCut2-15) for rainfed and 6.47 t ha~(–1)(ICut2-15) for irrigated treatments. The lowest grain yield for the rainfed treatment was 3.26 t ha~(–1)(RCut1-5) and for the irrigated treatments, the lowest grain yield was 5.50 t ha~(–1)(ICut2-5). Harvest index(HI) was not significantly affected(P0.05) by either the watering regime or grazing. Seed weight was significantly(P0.05) affected both by the watering regime and grazing with the lowest value for 1 000-seed weight of 30.05 g(RCut2-5) and the highest value of 38.00 g(ICut2-15). Water use efficiency was significantly(P0.05) affected both by the watering regime and grazing with the lowest value of 9.94 kg ha~(–1) mm~(–1)(ICut2-5) and the highest value 13.43 kg ha~(–1) mm~(–1)(RCut2-5). By "crash" grazing late(just before stem elongation stage) to a height of 5 cm, a significantly higher(P0.05) above ground dry matter can be grazed without significantly affecting the yield both in seasons with low amount of rainfall and high amount of rainfall(irrigated in this study) although in a wet season a slightly lower(15% lower) grain yield is obtained relative to "clip grazing" to 15 cm height. Grazing of mid-late maturing wheat cultivars has the potential to fill the feed gap without significantly affecting grain yield.  相似文献   

8.
Under the limited cultivated land area and the pursuit of sustainable agricultural development,it is essential for the safety of grain production to study agricultural management approaches on narrowing the winter wheat yield gap and improving nitrogen use efficiency (NUE) in China.In this study,DSSAT-CERES-Wheat Model is used to simulate winter wheat yield under different agricultural treatments,and we analyze yield gaps and NUE with different management scenarios at regional scales and evaluate the suitable approaches for reducing yield gap and increasing NUE.The results show that,the potential of narrowing yield gap ranges 300–900 kg ha~(–1) with soil nutrients increase,400–1 200 kg ha~(–1) with sowing date adjustment and 0–400 kg ha~(–1) with planting density increase as well as 700–2 200 kg ha~(–1) with adding nitrogen fertilizer.Contribution rates of management measures of soil nutrients,sowing date adjusting,planting density,and nitrogen fertilizers are 5–15%,5–15%,0–4%,and 10–20%,respectively.Difference in nitrogen partial productivity ranges 3–10 kg kg~(–1) for soil nutrients,1–10 kg kg~(–1) for sowing date adjusting,1–5 kg kg~(–1) for planting density increase,and–12–0 kg kg~(–1) for adding nitrogen fertilizers,respectively.It indicates that four treatments can narrow yield gap and improve the NUE in varying degrees,but increasing nitrogen fertilizer leads to the decrease of NUE.  相似文献   

9.
Oilseed rape is one of the most important oil crops globally. Attaining the appropriate cultivation method(planting pattern and nitrogen level) is necessary to achieve high yield, quality and resource utilization efficiency. However, the optimal method for oilseed rape varies across countries and regions. The objective of the present study was to determine an appropriate cultivation method, including planting pattern and nitrogen application, for winter oilseed rape in northwestern China. Two planting patterns: ridge film mulching and furrow planting(RFMF) and flat planting(FP), and six nitrogen(N) amounts: 0(N0), 60(N60), 120(N120), 180(N180), 240(N240), and 300(N300) kg N ha–1 were applied across three growing seasons(2014–2017). Three comprehensive decision analysis methods: principal component analysis, grey correlation degree analysis and the combined entropy weight and dynamic technique for order preference by similarity to ideal solution method were used to evaluate the growth and physiological indicators, nutrient uptake, yield, quality, evapotranspiration, and water use efficiency of winter oilseed rape. Planting pattern, nitrogen amount and their interaction significantly affected the indicators aforementioned. The RFMF pattern significantly increased all indicators over the FP pattern. Application of N also markedly increased all the indicators except for seed oil content, but the yield, oil production and water use efficiency were decreased when N fertilizer exceeded 180 kg N ha–1 under FP and 240 kg N ha–1 under RFFM. The evaluation results of the three comprehensive decision analysis methods indicated that RFMF planting pattern with 240 kg N ha–1 is an appropriate cultivation method for winter oilseed rape in northwestern China. These findings are of vital significance to maximize yield, optimize quality and improve resource use efficiencies of winter oilseed rape.  相似文献   

10.
Sowing date and seeding rate are critical for productivity of winter wheat(Triticum aestivum L.).A three-year field experiment was conducted with three sowing dates(20 September(SD1),1 October(SD2),and 10 October(SD3)) and three seeding rates(SR67.5,SR90,and SR112.5) to determine suitable sowing date and seeding rate for high wheat yield.A large seasonal variation in accumulated temperature from sowing to winter dormancy was observed among three growing seasons.Suitable sowing dates for strong seedlings before winter varied with the seasons,that was SD2 in 2012–2013,SD3 in 2013–2014,and SD2 as well as SD1 in 2014–2015.Seasonal variation in precipitation during summer fallow also had substantial effects on soil water storage,and consequently influenced grain yield through soil water consumption from winter dormancy to maturity stages.Lower consumption of soil water from winter dormancy to booting stages could make more water available for productive growth from anthesis to maturity stages,leading to higher grain yield.SD2 combined with SR90 had the lowest soil water consumption from winter dormancy to booting stages in 2012–2013 and 2014–2015; while in 2013–2014,it was close to that with SR67.5 or SR112.5.For productive growth from anthesis to maturity stages,SD2 with SR90 had the highest soil water consumption in all three seasons.The highest water consumption in the productive growth period resulted in the best grain yield in both low and high rainfall years.Ear number largely contributed to the seasonal variation in grain yield,while grain number per ear and 1 000-grain weight also contributed to grain yield,especially when soil water storage was high.Our results indicate that sowing date and seeding rate affect grain yield through seedling development before winter and also affect soil water consumption in different growth periods.By selecting the suitable sowing date(1 October) in combination with the proper seeding rate of 90 kg ha–1,the best yield was achieved.Based on these results,we recommend that the current sowing date be delayed from 22 or 23 September to 1 October.  相似文献   

11.
Cotton producers have substantially reduced their inputs(labor, nutrients, and management) mainly by adopting a shortseason cropping management that is characterized by late sowing, high density, and reduced fertilization with one-time application at the first bloom stage without lint yield reduction. However, it has been hypothesized that one-time fertilization at an earlier growth stage could be a more effective and economic management practice. A two-year field experiment was conducted by applying five fertilizer one-time fertilization at 0(FT1), 5(FT2), 10(FT3), 15(FT4), and 20(FT5) days after the first flower appeared in the field and one three-split fertilizer application taken as the conventional control(FT6), making six treatments altogether. Cotton growth period, biomass accumulation, yield, and its formation were quantified. The results showed that the one-time fertilization did not affect the cotton growth progress as compared to FT6, however, the total crop cycles for FT3–FT5 were 3 days shorter. FT1 produced the highest cotton lint yield(1 396 kg ha–1), which was similar to the FT6 but higher than the other treatments, and could be attributed to more bolls per unit area and higher lint percentage. Cotton yield was positively correlated with cotton plant biomass accumulated. FT1 had both the highest average(VT)(193.7 kg ha–1 d–1) and the highest maximum(VM)(220.9 kg ha–1 d–1) rates during the fast biomass accumulation period. These results suggest that one-time fertilizer application at the first flower stage might be an adjustment that is more effective than at first bloom, and allowed for easier decision making for application date due to non counting of plants with flowers is needed.  相似文献   

12.
Soil management practices affect rhizosphere microorganisms and enzyme activities, which in turn influence soil ecosystem processes. The objective of this study was to explore the effects of different nitrogen application rates on wheat(Triticum aestivum L.) rhizosphere soil microorganisms and enzyme activities, and their temporal variations in relation to soil fertility under supplemental irrigation conditions in a fluvo-aquic region. For this, we established a split-plot experiment for two consecutive years(2014–2015 and 2015–2016) in the field with three levels of soil moisture: water deficit to no irrigation(W1), medium irrigation to(70±5)% of soil relative moisture after jointing stage(W2), and adequate irrigation to(80±5)% of soil relative moisture after jointing stage(W3); and three levels of nitrogen: 0 kg ha~(–1)(N1), 195 kg ha~(–1)(N2) and 270 kg ha~(–1)(N3). Results showed that irrigation and nitrogen application significantly increased rhizosphere microorganisms and enzyme activities. Soil microbiological properties showed different trends in response to N level; the highest values of bacteria, protease, catalase and phosphatase appeared in N2, while the highest levels of actinobacteria, fungi and urease were observed in N3. In addition, these items performed best under medium irrigation(W2) relative to W1 and W3; particularly the maximum microorganism(bacteria, actinobacteria and fungi) amounts appeared at W2, 5.37×10~7 and 6.35×10~7 CFUs g–1 higher than those at W3 in 2014–2015 and 2015–2016, respectively; and these changes were similar in both growing seasons. Microbe-related parameters fluctuated over time but their seasonality did not hamper the irrigation and fertilization-induced effects. Further, the highest grain yields of 13 309.2 and 12 885.7 kg ha~(–1) were both obtained at W2 N2 in 2014–2015 and 2015–2016, respectively. The selected properties, soil microorganisms and enzymes, were significantly correlated with wheat yield and proved to be valuable indicators of soil quality. These results clearly demonstrated that the combined treatment(W2 N2) significantly improved soil microbiological properties, soil fertility and wheat yield on the Huanghuai Plain, China.  相似文献   

13.
Field experiments were carried out in split plot design during the dry and wet seasons for two years(two seasons each in 2016–2017 and 2017–2018) with two genotypes(SH4 and SUIN053), two plant geometry(30×15 cm and 45×15 cm main plots) and three levels of NPK(20 kg N ha~(–1), 40 kg P ha~(–1) and 40 kg K ha~(–1); 20 kg N ha~(–1), 60 kg P ha~(–1) and 60 kg K ha~(–1); 20 kg N ha~(–1), 80 kg P ha~(–1) and 80 kg K ha~(–1)) with an objective to study the relationship between fibre yield of sunhmep and thermal indices. The results indicated that the thermal units such as cumulative heat unit(CHU), photo thermal unit(PTU) and helio thermal unit(HTU) were the highest during dry seasons, while relative temperature disparity(RTD) was the highest during wet seasons irrespective of the genotypes, plant geometry and fertilizer levels. The combined analysis of variance showed that the suitability of sunnhemp genotypes for obtaining fibre and seed yields varied with season. The results further indicated that sunnhemp grew during dry seasons with longer photoperiod and higher values of growing degree days(GDD), HTU and PTU resulted in a higher fibre yield, while a higher seed yield and relatively longer, finer and stronger fibres were obtained during wet seasons with higher RTD values. Regression analysis indicated that CHU was positively related to fibre yield, while RTD was positively related to seed yield. CHU beyond 2 000 °C d reduced seed yield and favoured fibre production. In contrary to CHU, RTD values were positively related to seed yield and negatively related to fibre yield. Similarly, HTU had an inverse relationship with fibre yield while PTU had a positive relationship with fibre yield. The genotype SH4 produced a seed yield of 1 361 kg ha~(–1) during wet seasons, which was significantly higher than SUIN053, while a fibre yield of 990 kg ha~(–1)(significantly higher than that of SH4) was obtained for SUIN053 that required less CHU to attain the phenological events during dry seasons. The per unit area yields of seed and fibre with the closer spacing(30 cm×15 cm) by virtue of higher plant density were 17.0 and 14.9% higher than those with the spacing of 45 cm×15 cm, respectively. Higher doses of P and K resulted in higher seed and fibre yields.  相似文献   

14.
A field experiment was conducted to study the impact of tillage, crop residue management and nitrogen (N) splitting on spring wheat (Triticum aestivum L.) yield over 2 yr (2010-2012) in a rice (Oryza sativa L.)-wheat system in northwestern Pakistan. The experiment was conducted as split plot arranged in randomized complete blocks design with three replications. Treatments comprised six tillage and residue managements: zero tillage straw retained (ZTsr), zero tillage straw burnt (ZTsb), reduced tillage straw incorporated (RTsi), reduced tillage straw burnt (RTsb), conventional tillage straw incorporated (CTsi), and conventional tillage straw burnt (CTsb) as main plots and N (200 kg ha−1) was applied as split form viz., control (no nitrogen & no splitting, N0S0); 2 splits of total N, half at sowing and half at the 1st irrigation (i.e., 20 d after sowing (DAS)) (NS1); 3 splits of total N, 1/3 at sowing, 1/3 at the 1st irrigation, and 1/3 at the 2nd irrigation (NS2); 4 splits of total N, 1/4 at sowing, 1/4 at the 1st irrigation, 1/4 at the 2nd irrigation (45 DAS), and 1/4 at the 3rd irrigation (70 DAS) (NS3); and 4 splits of total N, 1/4 at the 1st irrigation, 1/4 at the 2nd irrigation, 1/4 at the 3rd irrigation, and 1/4 at the 4th irrigation (95DAS) (NS4) as sub plots. The results showed that the most pikes m−2, grains/spike, 1000-grain weight, grain yield, and N use efficiency (NUE) were obtained at zero tillage, straw retained and 4 splits application of total N (i.e., at sowing 20, 45 and 70 d after sowing). The results indicated that ZTsr with application of 200 kg N ha−1 in 4 equal splits viz. at sowing 20, 45 and 70 d after sowing is an appropriate strategy that enhanced wheat yield (7436-7634 kg ha−1) and N efficiency (28.6-29.5 kg kg−1) in rice-wheat system.  相似文献   

15.
Fruit yield, yield components, fruit mineral content, total phenolic content, antioxidant activity and irrigation water use efficiency (IWUE) of summer squash responses to different irrigation quantities were evaluated with a field study. Irrigations were done when the total evaporated water from a Class A pan was about 30 mm. Different irrigation quantities were adjusted using three different plant-pan coefficients (Kcp, 100% (Kcp1), 85% (Kcp2) and 70% (Kcp3)). Results indicated that lower irrigation quantities provided statistically lower yield and yield components. The highest seasonal fruit yield (80.0 t ha−1) was determined in the Kcp1 treatment, which applied the highest volume of irrigation water (452.9 mm). The highest early fruit yield, average fruit weight and fruit diameter, length and number per plant were also determined in the Kcp1 treatment, with values of 7.25 t ha−1, 264.1 g, 5.49 cm, 19.95 cm and 10.92, respectively. Although the IWUE value was the highest in the Kcp1 treatment (176.6 kg ha−1 mm−1), it was statistically similar to the value for Kcp3 treatment (157.1 kg ha−1 mm−1). Total phenolic content and antioxidant activity of fruits was higher in the Kcp1 (44.27 μg gallic acid equivalents (GAE) mg−1 fresh sample) and in the Kcp2 (84.75%) treatments, respectively. Major (Na, N, P, K, Ca, Mg and S) and trace (Fe, Cu, Mn, Zn and B) mineral contents of squash fruits were the highest in the Kcp2 treatment, with the exception of P, Ca and Cu. Mineral contents and total phenolic content were significantly affected by irrigation quantities, but antioxidant activity was not affected. It can be concluded that the Kcp1 treatment was the most suitable for achieving higher yield and IWUE. However, the Kcp2 treatment will be the most suitable due to the high fruit quality and relatively high yield in water shortage conditions.  相似文献   

16.
The accurate representation of surface characteristic is an important process to simulate surface energy and water flux in land-atmosphere boundary layer. Coupling crop growth model in land surface model is an important method to accurately express the surface characteristics and biophysical processes in farmland. However, the previous work mainly focused on crops in single cropping system, less work was done in multiple cropping systems. This article described how to modify the sub-model in the SiBcrop to realize the accuracy simulation of leaf area index(LAI), latent heat flux(LHF) and sensible heat flux(SHF) of winter wheat growing in double cropping system in the North China Plain(NCP). The seeding date of winter wheat was firstly reset according to the actual growing environment in the NCP. The phenophases, LAI and heat fluxes in 2004–2006 at Yucheng Station, Shandong Province, China were used to calibrate the model. The validations of LHF and SHF were based on the measurements at Yucheng Station in 2007–2010 and at Guantao Station, Hebei Province, China in 2009–2010. The results showed the significant accuracy of the calibrated model in simulating these variables, with which the R~2, root mean square error(RMSE) and index of agreement(IOA) between simulated and observed variables were obviously improved than the original code. The sensitivities of the above variables to seeding date were also displayed to further explain the simulation error of the SiBcrop Model. Overall, the research results indicated the modified SiBcrop Model can be applied to simulate the growth and flux process of winter wheat growing in double cropping system in the NCP.  相似文献   

17.
The sustainability of the wheat-maize rotation is important to China's food security. Intensive cropping without recycling crop residues or other organic inputs results in the loss of soil organic matter (SOM) and nutrients, and is assumed to be non- sustainable. We evaluated the effects of nine different treatments on yields, nitrogen use efficiency, P and K balances, and soil fertility in a wheat-maize rotation system (1991-2010) on silt clay loam in Shaanxi, China. The treatments involved the application of recommended dose of nitrogen (N), nitrogen and phosphorus (NP), nitrogen and potassium (NK), phosphorus and potassium (PK), combined NPK, wheat or maize straw (S) with NPK (SNPK), or dairy manure (M) with NPK (M1NPK and M2NPK), along with an un-treated control treatment (CK). The mean yields of wheat and maize ranged from 992 and 2 235 kg ha-1 under CK to 5 962 and 6 894 kg ha-1 under M2NPK treatment, respectively. Treatments in which either N or P was omitted (N, NK and PK) gave significantly lower crop yields than those in which both were applied. The crop yields obtained under NP, NPK and SNPK treatments were statistically identical, as were those obtained under SNPK and MNPK. However, M2NPK gave a significant higher wheat yield than NP, and MNPK gave significant higher maize yield than both NP and NPK. Wheat yields increased significantly (by 86 to 155 kg ha-1 yr-1) in treatments where NP was applied, but maize yields did not. In general, the nitrogen use efficiency of wheat was the highest under the NP and NPK treatments; for maize, it was the highest under MNPK treatment. The P balance was highly positive under MNPK treatment, increasing by 136 to 213 kg ha-1 annually. While the K balance was negative in most treatments, ranging from 31 to 217 kg ha^-1 yr^-1, levels of soil available K remained unchanged or increased over the 20 yr. SOM levels increased significantly in all treatments. Overall, the results indicated that combinations of organic manure and inorganic nitrogen, or retuming straw with NP is likely to improve soil fertility, increasing the yields achievable with wheat-maize system in a way which is environmentally and agronomically beneficial on the tested soil.  相似文献   

18.
晋南冬小麦“矮、密、早”高产栽培技术研究   总被引:6,自引:2,他引:4  
针对晋南麦区光、温资源特点和水地麦田一年两茬高产的需要,通过1992~1997年5年的研究,创立了本区小麦“矮、密、早”高产栽培技术。“矮”指选用矮秆品种及矮化管理;“密”指选用多穗型品种及靠穗多夺高产;“早”指选用早熟品种和促早管理,以保证两茬均高产。其关键技术是:以选用矮秆早熟多穗型品种为中心,确保成穗750万穗/hm2左右,加强中后期管理,提高穗粒重  相似文献   

19.
Lodging stress results in grain yield and quality reduction in wheat. Uniconazole, a potential plant growth regulator significantly enhances lignin biosynthesis and thus provides mechanical strength to plants in order to cope with lodging stress. A field study was conducted during the 2015–2016 and 2016–2017 growing seasons, to investigate the effects of uniconazole sole application or with micronutrient on the lignin biosynthesis, lodging resistance, and production of winter wheat. In the first experiment, uniconazole at concentrations of 0(CK), 15(US1), 30(US2), and 45(US3) mg L~(-1)was applied as sole seed soaking, while in the second experiment with manganese(Mn) at concentration of 0.06 g L~(-1)Mn, 0.06 g L~(-1)Mn+ 15 mg L~(-1)uniconazole(UMS1), 0.06 g L~(-1)Mn+30 mg L~(-1)uniconazole(UMS2), and 0.06 g L~(-1)Mn+45 mg L~(-1)uniconazole(UMS3), respectively. Uniconazole sole application or with micronutrient significantly increased the lignin content by improving the lignin-related enzyme activities of phenylalanine ammonia-lyase, cinnamyl alcohol dehydrogenase, tyrosine ammonialyase, and peroxidase, ameliorating basal internode characteristics, and breaking strength. The spike length, spike diameter, spikes/plant, weight/spike, yield/spike, and grain yield increased and then decreased with uniconazole application at a higher concentration, where their maximum values were recorded with UMS2 and US2 treatments. The lignin accumulation was positively correlated with lignin-related enzyme activities and breaking strength while, negatively correlated with lodging rate. Uniconazole significantly improved the lignin biosynthesis, lodging resistance, and grain yield of winter wheat and the treatments which showed the greatest effects were uniconazole seed soaking with micronutrient at a concentration of 30 mg L~(-1)and 0.06 g L~(-1), and uniconazole sole seed soaking at a concentration of 30 mg L~(-1).  相似文献   

20.
Incorporation of compost in soil will not only protect the environment, but also take advantage of the nutrients and organic matter contained in the compost to enhance soil fertility and crop production. Field experiments were carried out during the 2006/2007 and 2007/2008 growing seasons at the College of Food and Agriculture Farm, United Arab Emirates University. The experiments were established in randomized complete block design (RCBD) with four replications. The plot dimension was 3.2m×2.8 m, with four rows per plot. The treatments were designed to study the effect of compost rates on the potato production and soil fertility properties. Five rates of compost were investigated (control, 40, 80, 120 ton compost per hectare; and inorganic fertilizers (250 kg N·ha−1, 250 kg P2O5·ha−1 and 300 kg K2O·ha−1)). Results of the first growing season 2006/2007 showed that marketable tuber yield, plant height and specific gravity were greater in compost amended soil than in non-amended soil even if inorganic fertilizers were added. Application of 120 ton compost per hectare gave the highest total tubers number, marketable tuber yield, height and specific gravity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号