首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
辽东地区日本落叶松人工林凋落物层的持水性能研究   总被引:2,自引:0,他引:2  
选择辽东地区不同林龄、坡向的日本落叶松人工林,采集林下凋落物,对其蓄积量和自然含水率、最大持水率、最大拦蓄率等持水性能进行研究,探索不同林型凋落物的持水性能。结果表明:林下凋落物蓄积量和持水性能都表现为半分解层大于未分解层。凋落物蓄积量为26.91~59.47t.hm-2,中龄林阴坡的蓄积量最大,幼龄林阳坡的蓄积量最小。林下凋落物的持水率为169.54%~292.57%,近熟林阴坡的林下凋落物持水率最大,幼龄林阳坡的林下凋落物持水率最小。对试验数据的细致分析和公式拟合,得到日本落叶松人工林凋落物的吸水速率与浸泡时间之间存在WA=atb的关系式。  相似文献   

2.
【目的】为了研究粤北地区不同林龄杉木人工林土壤层及枯落物层水源涵养能力情况,并对粤北 杉木人工林质量提升和生态改善提供依据。【方法】以广东韶关市 3 个林场中的杉木幼龄林(7~8 年)、中龄 林(16~18 年)、近熟林(23~25 年)为试验对象,采用环刀浸泡法和室内浸泡法对其林下土壤及枯落物持水 能力进行比较。【结果】0~30 cm 土层土壤容重大小表现为幼龄林(1.22 g/cm3)>中龄林(1.17 g/cm3)>近熟 林(1.14 g/cm3),毛管孔隙度大小表现为幼龄林(39.66%)>中龄林(34.04%)>近熟林(32.93%),土壤 有效持水量大小表现为幼龄林(650.70 t/hm2)>近熟林(627.60 t/hm2)>中龄林(619.78 t/hm2),但差异均不 显著。枯落物有效拦蓄量大小为中龄林(11.01 t/hm2)>近熟林(10.95 t/hm2)>幼龄林(4.04 t/hm2),且中龄 林显著高于幼龄林。回归分析表明枯落物在浸水 0.5 h 内吸水速率最大,其后迅速降低,至 12 h 时持水量达到 稳定;枯落物持水量与浸泡时间成对数关系(R2 > 0.92),其吸水速率与浸泡时间成幂函数关系(R2 > 0.97), 且吸水速率均表现为近熟林>中龄林>幼龄林。【结论】不同林龄杉木人工林土壤层持水能力表现为幼龄林> 近熟林>中龄林,枯落物层持水能力表现为近熟林>中龄林>幼龄林。  相似文献   

3.
运用野外实地测量和室内浸提法对4种套种雷公藤人工林凋落物持水量、持水率和吸水速率进行了研究。结果表明:4种林分的凋落物最大持水量大小为杉木林(11.66 t/hm2)马尾松林(6.81 t/hm2)厚朴林(5.90 t/hm2)纯林(4.28 t/hm2);在不同浸泡时间段,林分的凋落物持水率大小为厚朴林纯林马尾松林杉木林;凋落物最大持水率为厚朴林(205.12%)纯林(163.33%)马尾松林(139.33%)杉木林(120.96%);4种不同种植模式雷公藤林分的凋落物吸水速率大小为厚朴林纯林马尾松杉木,浸泡0.5 h后的吸水速率分别为2 630.05、2 407.32、2 035.09和1 592.14 g/kg/h。凋落物持水量与浸泡时间、凋落物持水率与浸泡时间呈现极显著的(P0.01)对数递增函数关系,凋落物吸水速率与浸泡时间呈现出极显著的(P0.01)递减幂数函数关系。  相似文献   

4.
采用枯落物林地调查和浸泡实验法,研究黄山地区不同林龄无患子人工林枯落物层的水文效应,建立枯落物持水量与浸水时间、吸水速率和浸水时间之间的回归关系。结果表明:同一人工林内3个龄级无患子林分枯落物持水特性差异显著,龄级与持水特性间呈多项式回归,第Ⅰ龄级林分枯落物的持水性能最佳,其自然持水量、自然持水率、最大持水量、最大持水率、最大净持水量均最大;不同龄级林分枯落物的吸水量与浸水时间呈现对数函数关系,相关系数 R2为0.9124~0.9194,吸水速率与浸水时间表现为幂函数关系,相关系数 R2为0.9860~0.9875;随着浸水时间的增加其吸水速率越来越低,浸水1 h 时吸水速率最大,达195.25 g/h,浸水2 h 后吸水速率降为109.81 g/h,浸水20 h 后吸水速率降为零。  相似文献   

5.
杉木不同生长阶段凋落物持水性与养分储量   总被引:1,自引:0,他引:1  
通过对福建省将乐国有林场不同生长阶段杉木人工林凋落物现存量、持水性能以及养分储存量的测定与计算,得出不同生长阶段的杉木人工林凋落物总储量在4.38~31.73 t/hm2,成熟林阶段凋落物总储量达到最大值;运用对数函数回归凋落物持水量与浸泡时间之间的关系,呈极显著性;最大持水率在159.50%~200.33%,基本表现为随着林龄的递增而减小;有效拦蓄量变化为4.40~14.33 t/hm2,成熟林的有效拦蓄量最大;不同生长阶段的杉木凋落物中全氮、全磷和全钾的归还量都是在成熟林期间达到最大。综合杉木不同生长阶段凋落物持水性及养分归还的分析,杉木人工林的适宜釆伐期在成熟林期间,即26~35 a。  相似文献   

6.
不同年龄阶段杉木人工林枯落物层水文特征   总被引:2,自引:0,他引:2  
分析了不同年龄阶段杉木(Cunninghamia lanceolata)人工林林下枯落物储量及其持水特性,以期为杉木人工林的经营策略及发挥其水土保持功能提供科学依据。结果表明:杉木人工林幼龄阶段、中龄阶段、近熟阶段枯落物储量分别为5.37、15.50、23.31 t·hm-2;同一林分不同层次枯落物最大持水量差异明显;枯落物吸水速度随浸泡时间的延长而降低, 30 min内吸水速度最快,枯落物吸水速度与其浸泡时间相关性极高;随着林龄的增加,单位面积枯落物最大持水能力呈增长趋势,幼龄阶段、中龄阶段、近熟阶段分别为76.93、91.76、108.16 t·hm-2,枯落物最大持水能力相当于水深为6.14、8.04、9.39 mm。  相似文献   

7.
用浸水法对怒江州泸水县5种不同类型公益林凋落物的持水量、持水率和吸水速率进行研究。结果表明:5种类型公益林的凋落物储量、持水量、持水率和吸水速率均有差异,在0.5—8.0h范围,持水量和持水率随浸泡时间的延长而迅速增加;在8~12h范围,随浸泡时间的增加则缓慢增加;12h后,凋落物持水量基本达到饱和,持水量和持水率基本不随浸泡时间的增加而明显变化。与之不同的是,凋落物吸水率在0.5~8.0h范围随浸泡时间的延长急剧下降,此后缓慢下降。5种类型公益林凋落物持水量(WH)和浸泡时间(t)的关系按照对数方程变化,持水率(WR)与浸泡时间(f)可以用对数方程模拟,吸水速率(WA)与浸泡时间(t)的关系按照幂函数变化。  相似文献   

8.
不同林龄秃杉人工林凋落物储量及其持水特性   总被引:10,自引:0,他引:10  
对广西南丹山口林场不同林龄(8、14和28年生)秃杉(Taiwania flousiana)人工林凋落物的储量及其最大持水量、持水率和吸水速率等水分特征参数进行了测定研究。结果表明,秃杉人工林凋落物储量为1.31—7.39t·hm^-2,随林龄的增长而增大。各林分凋落物的最大持水量大小依次为28年生(22.35t·hm^-2)〉14年生(11.83t·hm^-2)〉8年生(3.54t·hm^-2)。8、14和28年生秃杉人工林凋落物的最大持水率分别为270.2%、292.8%和302.4%。3个林分凋落物的吸水速率均随浸泡时间的增长按方程WA=a+b·t^-1下降。  相似文献   

9.
3种人工林凋落物的持水特性   总被引:7,自引:0,他引:7  
用浸水法对2个常绿阔叶混交林和1个杉木林凋落物的贮量、持水量、持水率和吸水速率进行了研究.结果表明,每公顷常绿阔叶混交林1、常绿阔叶混交林2和杉木林的凋落物干质量分别为2 220、898和1 255 kg.3种林分中常绿阔叶混交林1的凋落物最大持水量较大,达6.8×103 kg·hm-2杉木林居中,为4. 1×103kg·hm-2,常绿阔叶混交林2较小,为3.3×103kg·hm-2.在浸泡不同时间后,林分的凋落物持水率均呈现常绿阔叶混交林2>杉木林>常绿阔叶混交林1.常绿阔叶混交林1、常绿阔叶混交林2和杉木林的凋落物最大持水率分别为403%、462%和423%.常绿阔叶混交林2的凋落物吸水速率居首位,常绿阔叶混交林l中等,杉木林最小.凋落物持水量和凋落物持水率随着浸泡时间的增长按照对数关系增加,吸水速率则随着浸泡时间的增长按照乘幂关系下降.  相似文献   

10.
对宝天曼自然保护区不同林龄锐齿栎林下枯落物层蓄积量、自然含水量和持水过程进行了研究.枯落物蓄积量幼龄林、中龄林、成熟林分别为14.61,15.60,13.99 t·hm-2;不同林龄枯落物中占比重最大的均是叶,其次是枝;各林龄林分枯落物最大持水量均是未分解层小于半分解层,未分解层最大持水率是200% ~ 219%,半分解层最大持水率是216% ~ 279%;3种林龄林分枯落物层最大持水量排序为中龄林>幼龄林>成熟林;3种林龄枯落物层有效拦蓄深分别为2.50,2.83,2.21 mm.  相似文献   

11.
万丹  丁晨曦  欧伟  喻武  张博 《安徽农业科学》2010,38(23):12910-12912
[目的]研究森林枯落物对水源涵养的作用。[方法]在色季拉山林分内选择具有代表性的部位设置样方,采集样方内的枯落物,记录枯枝落叶层和半分解层厚度,称量样品的湿重和干重,计算干物质蓄积量,并测定枯落物的持水量和吸水速率。[结果]枯枝落叶层和半分解层单位面积贮水量为56.89和116.89t/hm2。用浸泡法处理5min时,枯落物的吸水速率最大,未分解层和半分解层的吸水速率分别为1956和1896g/(kg.h)。0~10min内半分解层的吸水速率小于未分解层,而10min后则大于未分解层。枯落物未分解层和半分解层的最大持水量分别为89.77和73.51t/hm2,有效拦蓄量分别达62.38和164.06t/hm2。[结论]云杉枯落物具有显著的蓄水作用。  相似文献   

12.
杉木人工林林下植物的消长规律   总被引:16,自引:2,他引:14  
对不同林龄、地位指数和连栽代数杉木林下植物的生长发育规律进行初步调查分析 ,结果表明 :林下植物种类平均数量表现出成熟林 >幼龄林 >中龄林的趋势 ;不同地位指数、不同林龄和不同连栽代数的杉木林下植物生物量、杉木凋落物积累量和林下植物凋落物积累量存在明显差异 ;林下植物的物种丰富度指数、各多样性指数和均匀度指数均表现出成熟林 >幼龄林>中龄林的趋势  相似文献   

13.
  目的  探讨间伐和林分类型对森林凋落物储量及土壤持水效能的影响,为提高不同林分类型水源涵养功能提供科学依据。  方法  以浙江省建德市3个小流域的间伐与未间伐杉木Cunninghamia lanceolata林和阔叶林为对象,野外采集凋落物与土壤(0~10、10~30、30~60 cm)样品,测定凋落物的储量、持水率和持水量以及土壤的容重、孔隙度和持水量。  结果  杉木林间伐较未间伐的凋落物储量降低了25.2%(P<0.05),而凋落物最大持水率和有效拦蓄率分别增加了24.4%和47.1%(P<0.05);间伐对阔叶林凋落物储量无显著影响,但凋落物最大持水量和有效拦蓄量分别比未间伐的增加了42.5%和42.2%(P<0.05);凋落物持水性能总体表现为间伐林分高于未间伐林分。间伐显著提高了杉木林10~60 cm土壤非毛管孔隙度和非毛管持水量(P<0.05);间伐显著增加了阔叶林30~60 cm土层土壤非毛管孔隙度(P<0.05)及0~10、30~60 cm土层土壤非毛管持水量(P<0.05);间伐杉木林各土层土壤最大持水量均显著高于间伐阔叶林(P<0.05),并且间伐杉木林0~60 cm土层土壤最大持水量(3 775.19 t·hm?2)高于其他林分。  结论  间伐显著提高了森林凋落物的持水能力和土壤的持水性能,其中间伐杉木林凋落物及土壤整体的水源涵养功能最强。图3表5参考24  相似文献   

14.
燕山山地典型森林枯落物持水特性   总被引:3,自引:0,他引:3  
【目的】探讨不同森林类型枯落物持水特性的差异。【方法】以燕山山地典型天然次生林、华北落叶松人工林和油松人工林作为研究对象,在林下设置标准地,测定枯落物厚度和蓄积量,通过室内浸泡法测定持水特性。【结果】枯落物有效拦蓄量、最大拦蓄量和蓄积量的顺序一致:华北落叶松人工林>典型天然次生林>油松人工林;自然含水量和饱和持水率:典型天然次生林>华北落叶松人工林>油松人工林;枯落物持水量与浸水时间呈对数关系,吸水速率与浸水时间呈幂函数关系。【结论】森林枯落物层发挥水文功能由持水能力与蓄积量共同决定,在森林经营过程中应充分考虑到包括树种组成和搭配、林分密度等诸因子的影响。  相似文献   

15.
为了比较热带季节雨林和橡胶林2种植被类型凋落物层的持水能力差异,在云南西双版纳选取了这2种森林,收集了地表凋落物,对比研究2种植被类型的凋落物地表现存量、持水率、持水速率、最大持水量和有效持水量等持水特性的差异。结果表明:橡胶林凋落物地表现存量(3.79 ±0.34)t· hm-2显著高于热带季节雨林(2.19 ±0.14)t·hm-2(独立样本t检验,P=0.012);橡胶林凋落物的最大持水量(12.50 t·hm-2)显著高于热带季节雨林(5.53 t·hm-2)(独立样本t检验,P=0.000);同时,橡胶林和热带季节雨林凋落物的有效最大持水量分别为10.63和4.71 t·hm-2,橡胶林具有显著更高的有效最大持水量(独立样本t检验,P=0.000)。因此,橡胶林凋落物无论在数量上还是持水能力上都优于热带季节雨林,橡胶林凋落物具有相对较好的生态持水效果。  相似文献   

16.
林分密度对枯落物层持水特性的影响   总被引:2,自引:0,他引:2  
【目的】探讨林分密度对枯落物层持水特性的影响。【方法】以燕山山地不同林分密度(650(40年生),1 400(35年生),1 850(38年生)株/hm2)的油松人工林为研究对象,在其下设置标准地,测定枯落物层厚度和蓄积量,并将枯落物带回,采用室内浸泡法测定不同林分密度下枯落物层的持水特性。【结果】3种密度油松人工林枯落物层蓄积量为26.62~49.79 t/hm2;在林龄相差不大的情况下,650,1 400和1 850株/hm2油松人工林枯落物层蓄积量与林分密度呈现正相关关系。油松人工林枯落物层自然含水量随林分密度变化不明显,在50%左右;3种密度林分的饱和持水率无明显的规律性。枯落物层持水量与浸水时间呈对数关系;吸水速率与浸水时间呈幂函数关系。枯落物层对降雨的拦蓄能力与其林分密度呈正相关关系。【结论】对于林龄接近、立地条件相似的油松人工林而言,密度越大,其林下枯落物总蓄积量越大,枯落物层对于降雨的拦蓄作用也越强。  相似文献   

17.
本文通过对宁夏六盘山不同森林类型的凋落动态与林下枯落物层的厚度、贮量及其持水特性的研究,揭示了该区不同森林类型林下枯落物层在不同时期的水文生态功能。结果表明:不同森林类型在生长季末期的凋落都具有明显的周期性规律,凋落比率随时间变化的规律一致,凋落从8月下旬开始,红桦与椴树混交林的凋落在10月中旬结束,华北落叶松纯林和白桦与糙皮桦混交林的凋落在10月下旬结束,而辽东栎纯林的凋落会持续到次年;林下枯落物层的厚度在2.0 cm~6.0 cm之间,贮量在10.72 t/hm2~28.73 t/hm2之间;除华北落叶松林林地枯落物在浸泡6h时达到最大持水量外,其余3种落叶阔叶林林地的枯落物各层次均在浸泡3h时就达到最大持水量;枯落物未分解层的最大持水率在2.81~4.47之间,半分解层的最大持水率在3.80~4.32之间。经分析拟合,得到枯落物未分解层与半分解层持水量、持水速率与浸泡时间之间的关系分别为Q=ktn和S=ktn。  相似文献   

18.
系统估算云南省森林植被的碳储量和碳密度,为研究区域尺度的森林碳储量提供科学依据。以云南第9次森林资源清查数据为基础,采用生物量-蓄积量转换模型法和平均生物量法,结合不同树种的含碳率,分析乔木林中不同优势树种、林种、起源和龄组的碳储量分布特征。结果表明:1)云南不同森林类型的总碳储量为1.05×109 t,平均碳密度44.96 t·hm-2;2)乔木林中不同龄组的总碳储量大小排序为幼龄林>中龄林>近熟林>成熟林>过熟林;3)云南省天然乔木林碳储量为9.07×108 t,占乔木林总碳储量的90.76%;4)天然林的平均碳密度为62.44 t·hm-2,近人工林的3倍。云南省森林碳储量、碳密度与林龄结构和起源关系密切,表现出森林碳密度随林龄增长而增加,森林碳储量随林龄增长而减少的趋势,天然林碳密度和碳储量均远远大于人工林,该研究为区域尺度的森林碳储量提供了科学依据。  相似文献   

19.
天宝岩不同类型长苞铁杉林枯落物持水特性   总被引:4,自引:0,他引:4  
为了解长苞铁杉林枯落物的持水特性以及水文变化过程,进一步揭示长苞铁杉林幼苗天然更新困难的内在机制,以天宝岩国家级自然保护区4种类型长苞铁杉林为对象,对其枯落物层持水特性进行研究.结果表明:(1)4种类型长苞铁杉林枯落物层平均厚度在19~34 mm,枯落物蓄积量为10.22~24.98 t·hm~(-2),枯落物蓄积量以长苞铁杉和猴头杜鹃为建群种的类型Ⅰ最大;(2)枯落物最大持水率为149.94%~223.47%,最大持水量为11.91~34.42 t·hm~(-2),最大拦蓄量为15.32~48.84 t·hm~(-2),有效拦蓄量为8.38~18.43 t·hm~(-2);(3)不同林分类型枯落物持水量与浸泡时间以及吸水速率与浸泡时间的动态变化规律基本一致,枯落物浸泡6 h后,其持水量基本达到最大值,吸水速率明显减缓;(4)枯落物的持水量与浸泡时间呈明显的对数关系(R20.96),吸水速率与浸泡时间呈明显的幂函数关系(R20.99).  相似文献   

20.
江西省不同森林类型下枯枝落叶的数量、节律与组成   总被引:3,自引:0,他引:3  
经过对全省范围内主要林区广泛面上调查和在井冈山自然保护区的定位研究发现:(1)江西省森林枯枝落叶的凋落量因林型不同差异极大。表现为阔叶林>混交林>杉木林,其中落叶是主要的形式。(2)不同森林类型其枯枝落叶的凋落节律表现出明显的差异。(3)枯枝落叶每年归还到土壤的植物营养元素数量最多的是N,其次是Ca,Mg和P,K,Mn。(4)不同林型的枯枝落叶归还到土壤的养分元素的数量表现出阔叶林>混交林>杉木林。(5)不同林型下地表保存的枯枝落叶层的构型、数量和各种营养元素贮量有极大的差异,表现为阔叶林>混交林>杉木林。值得注意的是,杉木林下的枯枝落叶层中N,P,K,Ca,Mg的贮量仅分别为阔叶林中这些养分贮量的21.64%,25.11%,11.97%,21.68%和24.25%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号