首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 171 毫秒
1.
‘中梁22号’小麦抗条锈基因的遗传分析   总被引:1,自引:0,他引:1  
采用常规杂交方法,以陇南重要小麦生产品种‘中梁22号’作母本,感病品种‘铭贤169’作父本进行杂交,在F2代材料苗期分别接种条锈菌单孢菌系‘条中32号’、‘水14’、‘水7’和‘水4’.抗性遗传结果表明:对‘条中32号’,F2代植株抗感分离比为24∶390,符合理论比1∶15;对‘水14’,F2代植株抗感分离比为46∶341,符合理论比9∶55;对‘水7’,F2代植株抗感分离比为190∶225,符合理论比7∶9;对‘水4’,F2代植株抗感分离比为212∶151,符合理论比9∶7,经卡方测验上述结果均符合理论结果.据此推知‘中梁22号’对‘条中32号’的抗性由2对隐性抗性基因控制,‘水14’由2对显性抗性基因和1对隐性抗性基因控制,‘水7’由2对隐性互补抗性基因控制,‘水4’由2对显性累加抗性基因控制.  相似文献   

2.
意大利抗病小麦品种Pascal抗条锈性的遗传分析   总被引:5,自引:2,他引:5  
在2000~2003年,以我国陇南重要外引小麦品种Pascal作母本,铭贤169作父本进行杂交,子代材料苗期分别接种条锈菌单孢菌系条中29号、洛13-Ⅲ、条中31号、条中32号和水14,抗性遗传结果表明,对条中29号,F1代植株抗感分离比为5∶12,BC1代植株全部为抗病株,F2代植株抗感分离比为46:31,符合理论比9:7,卡方测验结果也符合这一结果;对条中32号,F1代植株抗感分离比为6∶5,BC1代植株抗感分离比为4:4,F2代植株抗感分离比为24:49,符合理论比1:3;对洛13-Ⅲ,F2代植株抗感分离比为10:48,符合理论比1:3;对条中31号,F2代植株抗感分离比为20:55,符合理论比1:3;对水14,F2代植株抗感分离比为6:69,符合理论比1:15.卡方测验值均符合理论值.据此推知pascal对条中29号的抗性由2对显性互补抗性基因控制,对洛13Ⅲ、条中31号、条中32号的抗性均由1对隐性抗性基因控制,对水14的抗性由2对隐性抗性基因控制.  相似文献   

3.
【目的】对2012年采自甘肃省和青海省大麦(青稞)上的条锈菌进行了专化型鉴定和致病类型测定,并选用甘肃省和青海省的16份大麦上的条锈菌和11份小麦上的条锈菌对27份大麦品种进行了苗期致病性测定.【方法】采用涂抹接种及撒孢子粉接种的方法.【结果】16份大麦条锈菌标样均为大麦条锈菌小麦专化型,其致病类型鉴定为贵22-9、贵22-56、贵22-82、贵22-91、水11-13、水11-13(中四感)、水11-102、水11-157、水11-200、水11-203和小麦条锈菌5个未归类型。大麦条锈菌对大麦品种‘果洛’‘藏青25’‘昆仑1号’‘康青3号’‘昆仑12号’的毒性频率分别为56.25%、37.50%、25.00%、62.50%、21.43%,小麦条锈菌对大麦品种‘果洛’‘藏青25’‘昆仑1号’‘康青3’‘昆仑12号’的毒性频率分别为36.36%、18.18%、54.54%、45.45%、9.09%.【结论】大麦品种‘果洛’‘康青3号’‘藏青25’‘昆仑1号’和‘昆仑12号’可被采自大麦和小麦上的条锈菌侵染,为共同感病寄主.  相似文献   

4.
条锈病是小麦生产的重要病害之一,为了确定普通小麦品系M67条锈病抗性基因所在的染色体,利用单体定位法对该品系苗期的条锈病抗性进行了遗传分析。M67与感病品种铭贤169和中国春杂交F1代均表现高抗条锈菌生理小种条中32,两个组合F2代抗病植株和感病植株的分离比例均符合3∶1。21个单体组合的F1均表现高抗条锈病,F2群体抗性调查结果表明,除中国春1BM×M67组合抗病植株和感病植株分离比例显著偏离3∶1外,其余20个组合的抗病植株和感病植株的分离比例均符合3∶1。结果表明,M67的条锈病抗性由位于1B染色体上的单显性基因控制。  相似文献   

5.
为明确西科麦6号对小麦条锈菌流行小种的抗病性和抗病遗传规律,用小麦条锈菌生理小种CYR31、CYR32、CYR33、Su11-4和V26。在2015年3月,对西科麦6号和铭贤169及其杂交后代F1、F2、F3进行成株期接种,作抗病遗传分析,结果表明:西科麦6号对小麦条锈菌CYR31的抗病性由2对显性基因和1对隐性基因控制;对CYR32的抗病性由3对显性基因(其中2对表现累加作用)控制;对CYR33的抗病性由1对显性基因和1对隐性基因控制;对Su11-4的抗病性由1对显性基因和1对隐性基因重叠或独立控制;对条锈菌V26抗病性由1对显性基因独立控制。从西科麦6号在试验和生产上的良好表现,多年抗病鉴定及本研究的遗传分析证明,西科麦6号对小麦条锈菌具有良好的抗性,并且这种抗性的遗传性较稳定,是一个综合性状优良的种质资源和抗源材料;可以进一步进行分子标记及定位研究,以期为小麦抗病育种提供新的抗条锈病亲本做出贡献。  相似文献   

6.
以小簇麦代换系V 2的衍生后代N 9434作父本,辉县红、阿勃和阿勃20个单缺体系作母本分别进行杂交,F1和亲本苗期接种条锈菌单孢菌系条中32号,所有F1和9434表现为高抗条锈病,辉县红和阿勃表现为高感和感染条锈病.辉县红/N 9434及阿勃/N 9434的F2代植株抗感分离比为71∶33和73∶26,卡方测验结果符合理论比3∶1.所有单体F1自交后代中,除了9434/阿勃1 BN的F2抗感分离偏离3∶1外,其余均符合3∶1.表明该抗条锈种质对条中32的抗锈性由单个显性基因控制,位于1 B染色体.经推导分析认为,该抗性基因可能为Yr26.  相似文献   

7.
为研究4个春小麦种质资源的抗条锈病特点和抗性遗传规律,采用7个条锈菌生理小种(菌系)对4个春小麦资源进行苗期抗条锈性评价和抗条锈性遗传分析。抗性评价结果表明,4个春麦资源都具有抗条锈性,且表现有抗性小种专化性,各个春麦资源的抗病谱也不同。遗传分析结果表明,春麦资源‘MY005846’对CYR33的抗性由一显一隐2对基因独立作用,对CYR32的抗性由1对隐性基因作用,对CYR27的抗性由2对显性基因独立作用,对CYR25和CYR23的抗性都是由单显性基因作用,对Sun11-6的抗性由2对显性基因共同作用;春麦资源‘ZM018858’对CYR32的抗性由2对显性基因共同作用,对CYR27和CYR25的抗性都是由2对显性基因独立作用,对CYR23和Sun11-4的抗性都是由1显1隐2对基因共同作用;春麦资源‘YJ003412’对CYR33的抗性由1显1隐2对基因共同作用,对CYR32和CYR25的抗性都是由1对隐性基因作用,对CYR23的抗性由1显1隐2对基因独立作用;资源‘YJ003417’对CYR23和CYR25的抗性都由1对显性基因作用。  相似文献   

8.
为了研究抗麦长管蚜品系‘J-31’‘J-48’的抗性遗传,采用穗部接虫法对抗蚜品系‘J-31’‘J-48’和感蚜品系‘J-39’及其F1代和F2代分离群体(‘J-31’בJ-39’和‘J-48’בJ-39’)进行了抗蚜鉴定,并用蚜量比值法评价了麦长管蚜的抗性.结果表明,‘J-31’‘J-48’F1代都表现为抗蚜,经χ2测验其F2代群体抗感分离经比为3∶1,(χ2c=3.272 7,P>0.05;χ2c=1.058 6,P>0.05)符合孟德尔理论的比例.据此认为:春小麦抗蚜品系‘J-31’‘J-48’的抗蚜性为质量性状遗传,其抗性各由一对显性单基因控制.  相似文献   

9.
冬小麦品种兰天17号抗条锈性遗传初步分析   总被引:1,自引:1,他引:0  
以冬小麦品种兰天17号和铭贤169及其杂交后代为研究对象,采用目前我国小麦条锈菌流行小种CYR32、CYR33和SU11-7对供试群体进行苗期接种,分析了杂交后代的抗病性.结果表明,兰天17号对CYR32、CYR33和SU11-7均表现免疫,抗病性均由1对显性抗性基因控制,抗性遗传均属细胞核遗传.  相似文献   

10.
农家品种红秃麦抗条锈性遗传分析   总被引:2,自引:1,他引:1  
2003-2006年,以农家品种红秃麦为母本、感病品种铭贤169为父本进行杂交,子代材料苗期分别接种条锈菌单孢菌系条中29号和条中31号,进行抗性遗传分析。结果表明,对条中29号,F1群体均为抗病株,BC1也全为抗病株;F2植株抗感分离比为152:49,符合理论比3:1。对条中31号,F1群体抗感比为5:7,近似于理论比1:1,F2群体抗感分离比为49:168,符合理论比1:3。推知红秃麦对条中29号的抗性由1对显性基因控制,对条中31号的抗性由1对隐性基因控制。  相似文献   

11.
多分蘖矮秆水稻‘tdr(t)’是在半矮秆籼稻品系‘E20’中发现的一份突变体.与野生型‘E20’相比,‘tdr(t)’主要表现为植株矮化,分蘖增多,育性降低,各节间所占株高比例与野生型基本一致,属于矮秆突变体中的dN型.用5个株高正常的半矮秆水稻品种(系)与其杂交,对F1、F2、和BC1F1的遗传分析表明,‘tdr(t)’矮生性是由一对隐性核基因控制.‘tdr(t)’表现矮秆和多分蘖,是研究株高与分蘖发育机理关系的一份较好的材料.  相似文献   

12.
陆地棉分子遗传图谱的构建   总被引:2,自引:0,他引:2  
利用SSR引物对具有抗黄萎病性状的F2群体进行分子遗传图谱构建研究.结果表明:2 000对SSR引物在对新陆中10号和军棉1号的多态性筛选中,共筛选到73个稳定的SSR多态性位点.对73个多态性位点在F2群体中进行了验证,χ2 测验表明有6标记位点明显偏分离,67个标记符合χ2 测验,其中共显性标记为61个,显性标记6个;利用Mapmaker/EXP(version 3.0 b)对67个标记构建了连锁群,其中47个标记位点被分配到14个不同的连锁群上,20个标记位点没有分配到连锁群上;14个连锁群总的长度542.7 cM,覆盖棉花基因组的12.2;.首次N1211标记定位在A01染色体上,将N1187标记定位在D08染色体上.  相似文献   

13.
水稻品种广亲和基因等位关系的遗传分析   总被引:18,自引:0,他引:18  
 通过双列杂交研究了8个广亲和水稻品种广亲和基因的等位关系。研究表明:品种Calotoc、Cpslo-17、Ketan Nangka、02428和轮回422之间相互杂交F#-1代的花粉育性和小穗育性均达到正常育性水平。F#-2代分离不明显,推测这些品种间广亲和基因相互等位,品种02428轮回422的广亲和性受S#-5位点的广亲和基因S#+n#-5控制。 广亲和品种Ketan Nangka与Aus373或Dular杂交,F#-1花粉均出现部分不育现象。轮回422与Aus373杂交,F#-1花粉和小穗育性均显著低于正常水平;与Dular杂交的F#-1花粉育性接近正常水平,但小穗育性显著偏低。以上组合F#-2代群体均出现明显的育性分离,可育株与部分不育株的分离符合7∶2的分离比,说明品种Aus373和Dular的广亲和性在遗传上受与S#-5位点不等位基因的控制,表现配子体不育的遗传特点。在品种Aus373和Dular分别与Calotoc、Cpslo-17、02428之间的杂种F#-1育性正常,F#-2代有少数半不育株出现。推测在这些组合中,杂种育性的表达除了受主基因控制以外,还有微效基因参与作用。  相似文献   

14.
RAPD标记构建辣椒分子连锁图谱研究初报   总被引:5,自引:0,他引:5  
以辣椒属长椒变种的两个自交系杂交所得的F1代经自交获得F2 代的 93个单株为作图群体 ,利用RAPD技术开展了辣椒分子遗传图谱的构建研究 :选用Operon公司的 3 2 0个随机引物对亲本进行了RAPD多态性检测 ,通过多次重复筛选 ,获得了 3 3个多态性引物 ,得到 49个具有较好重复性和稳定性的RAPD标记 ,其中 11个标记表现为偏分离标记 ;利用MAPMAKER/expversion 3 .0软件初步构建了辣椒的分子连锁图谱 ,该图谱由 11个连锁群组成 ,含有 2 8个RAPD标记 ,总长度为 2 82 .41cm。  相似文献   

15.
在福州(26.05°N)自然条件下,用3个不感光的不育系:V_(20)A,宁A和珍鼎28A;3个基本不感光的恢复系:5460,IR_(30)和明恢63分别与两个感光的恢复系:印尼矮禾和红田谷杂交,共配制13个组合,调查其抽穗期表现,结果表明:13个组合中,除2个组合F_1表现为感光性不完全显性,F_2呈1:2:1分离外,其余组合均表现为感光对不感光或基本不感光显性,F_2分离为3感光:1不感光或基本不感光。表现为1对主效感光基因的差异。  相似文献   

16.
 以籼稻品种93-11为轮回亲本,与粳稻品种日本晴杂交并回交的高世代分离群体为研究材料,选用104个多态性的SSR标记对水稻的落粒性基因进行定位。结果表明,在BC4F2群体中,6个标记的基因型来自于日本晴;在BC4F3定位群体中,难落粒植株数与易落粒植株数的分离比例为3:1,落粒性受1对显性基因控制,命名为SH1;分子标记与落粒性共分离分析将SH1定位在SSR标记RM5389和RM1068、RM1387之间,与3个标记的遗传距离分别为0.7cM、5.5cM和13.1cM,此结果为该基因的分子标记辅助选择奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号