首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 109 毫秒
1.
牦牛和犏牛Dmc1基因序列分析及睾丸组织转录水平研究   总被引:3,自引:3,他引:0  
 【目的】研究牦牛和犏牛Dmc1基因编码区序列、结构和睾丸组织mRNA表达水平,探讨Dmc1基因与犏牛雄性不育的关系,为揭示犏牛雄性不育的分子机理提供参考。【方法】通过PCR扩增和克隆测序获得牦牛和犏牛Dmc1基因部分cDNA序列,运用生物信息学方法分析牦牛和犏牛Dmc1基因编码区序列、蛋白结构和进化关系,利用实时荧光定量PCR技术检测牦牛和犏牛睾丸组织中Dmc1基因mRNA表达水平。【结果】牦牛和犏牛Dmc1基因编码区序列全长均为1 023 bp,编码340个氨基酸,与黄牛Dmc1基因的同源性为100%,与哺乳纲其它物种的同源性在90%以上。牦牛和犏牛Dmc1蛋白含有RecA蛋白家族典型的第二结构域,且与人、鼠Dmc1蛋白结构域一致。系统发育分析显示牦牛、犏牛和黄牛首先聚为一类,后与家犬相聚;人、黑猩猩和猕猴聚为另一类,而与鸟纲动物相聚较远,与经典分类基本一致。定量结果显示犏牛睾丸组织Dmc1基因mRNA表达水平较低,与牦牛差异极显著(P<0.01),且犏牛表现出来的减数分裂障碍表型与小鼠Dmc1基因突变或敲除的表型一致。【结论】根据生物信息学分析结果推测牛Dmc1蛋白与人、鼠一样,在精母细胞减数分裂同源重组过程中发挥着重要作用;Dmc1基因在牦牛和犏牛睾丸组织中的表达量差异极显著(P<0.01),结合犏牛雄性减数分裂障碍表型,表明睾丸组织Dmc1基因可能与犏牛的雄性不育有一定的关系。  相似文献   

2.
【目的】了解牦牛和犏牛睾丸组织中DDX4基因mRNA表达水平和启动子区甲基化状态。【方法】采用real-time PCR技术检测牦牛和犏牛睾丸组织DDX4基因mRNA表达水平,采用克隆测序技术获得牦牛和犏牛DDX4基因启动子区序列,采用亚硫酸氢钠测序法检测牦牛和犏牛睾丸组织中DDX4基因启动子区甲基化状态。【结果】牦牛睾丸组织中DDX4基因mRNA表达水平极显著高于犏牛(P<0.01);牦牛和犏牛DDX4基因启动子区1 370 bp,含有核心启动子区(251 bp)和CpG岛(918 bp)。犏牛睾丸组织中DDX4基因启动子区甲基化水平(86.5%)极显著高于牦牛(67.0%)(P<0.01)。【结论】牦牛睾丸组织DDX4基因表达水平极显著高于犏牛,获得了牦牛和犏牛DDX4基因启动子区序列,且犏牛睾丸组织中DDX4基因启动子区甲基化水平极显著高于牦牛(P<0.01)。  相似文献   

3.
【目的】克隆黄牛、牦牛和犏牛Sycp2基因序列,了解牛Sycp2基因序列特征和组织表达特征,分析睾丸组织中Sycp2基因的表达水平。【方法】采用电子克隆和克隆测序技术获得黄牛、牦牛和犏牛Sycp2基因序列,利用生物信息学方法分析其序列特征;采用RT-PCR分析牛Sycp2基因的组织表达特征;采用real-time PCR技术检测黄牛、牦牛和犏牛睾丸组织Sycp2基因的表达水平。【结果】①黄牛、牦牛和犏牛Sycp2基因编码区序列全长均为4 365 bp,命名为b-Sycp2,编码蛋白含有1 454个氨基酸残基,并包含卷曲螺旋结构域等典型结构域;②b-Sycp2基因在睾丸组织中特异表达,黄牛和牦牛睾丸组织中b-Sycp2基因的表达水平显著高于犏牛(P<0.05)。【结论】成功克隆了b-Sycp2基因,b-Sycp2基因为睾丸组织的特异表达基因,且黄牛和牦牛睾丸组织b-Sycp2基因表达水平显著高于犏牛。  相似文献   

4.
为了解DDX25基因的结构、功能及对犏牛雄性不育的影响。采用RT-PCR技术克隆获得牦牛和犏牛的DDX25基因,对核苷酸序列和氨基酸序列进行生物信息学分析,运用实时荧光定量PCR技术检测睾丸组织DDX25 mRNA的表达情况。结果表明,牦牛和犏牛DDX25基因编码区序列全长均为1 452bp,编码483个氨基酸,氨基酸存在19个磷酸化位点,无信号肽。牦牛睾丸组织DDX25基因表达水平显著高于犏牛,DDX25基因在犏牛睾丸组织的低表达与其雄性不育存在一定关系,该基因可作为研究犏牛雄性不育的候选基因。  相似文献   

5.
【目的】研究犏牛与黄牛、牦牛睾丸组织SNRPN基因DMR甲基化状态、mRNA表达水平的差异,为揭示犏牛雄性不育的表观遗传机制提供依据。【方法】根据黄牛SNRPN基因序列设计引物,通过克隆测序获得牦牛SNRPN基因5'端序列,采用亚硫酸氢钠测序法检测犏牛及其亲本睾丸组织中SNRPN基因5'端DMR的甲基化状态,并采用Real-time PCR检测犏牛及其亲本睾丸组织中SNRPN基因的表达水平。【结果】牦牛SNRPN基因5'端序列长为1137bp,与黄牛的同源性达98.2%;生物信息学分析发现含有YY1和SP1等甲基化敏感位点。犏牛SNRPN基因DMR的甲基化水平(42.22%)极显著高于黄牛(21.08%)和牦牛(20.81%)(P0.01)。黄牛和牦牛睾丸组织中SNRPN基因mRNA表达水平高于犏牛,但未达到显著水平(P0.05)。【结论】犏牛睾丸组织SNRPN基因DMR的甲基化水平极显著高于黄牛和牦牛,且mRNA表达水平低于黄牛和牦牛,说明犏牛SNRPN基因可能是通过DMR区的高甲基化抑制其mRNA表达来阻滞精子发生减数分裂过程。  相似文献   

6.
对犏牛、牦牛睾丸组织中生长素(Ghrelin)与生长激素促分泌素受体(GHSR)基因mRNA表达水平进行研究。运用荧光定量PCR方法,检测Ghrelin、GHSR基因在犏牛、牦牛睾丸组织中m RNA的表达水平差异,结果显示:在犏牛、牦牛睾丸组织中,Ghrelin基因m RNA相对表达量犏牛显著高于牦牛(分别为0.8177±0.0225、0.4656±0.0222,P0.05);GHSR基因mRNA相对表达量也是犏牛显著高于牦牛(分别为0.8622±0.0347、0.4722±0.0761,P0.05)。相对于牦牛睾丸组织,犏牛睾丸组织中Ghrelin与GHSR基因m RNA均高表达可能是犏牛雄性不育的原因之一。  相似文献   

7.
【目的】犏牛作为牦牛与黄牛的种间杂交产物,具有优良的生产性能,但其杂种优势的进一步应用却受限于犏牛雄性不育。通过克隆犏牛PLZF,明确其在犏牛和牦牛睾丸组织和未分化精原细胞中的差异表达,并进一步揭示过表达该基因对犏牛未分化精原细胞活性的影响。为阐明犏牛生精停滞的作用机制提供理论基础。【方法】以24月龄公麦洼牦牛和F1代公犏牛为实验动物,通过RT-PCR法克隆得到了犏牛PLZF的CDS序列,并进行了生物信息学分析;通过RT-qPCR法分析PLZF在犏牛和牦牛睾丸组织中的差异表达;采用同源重组的方法构建了PLZF的表达载体,并利用RT-qPCR检测了PLZF过表达效率及其下游靶基因的表达;通过PDT、CCK-8、EdU和免疫荧光检测了过表达PLZF对犏牛未分化精原细胞增殖活性的影响。【结果】克隆获得了犏牛PLZF的CDS区,并通过生物信息学分析发现该基因编码的蛋白序列不包含跨膜结构域和信号肽序列,其三级结构以α螺旋和无规卷曲为主。系统进化树分析表明犏牛PLZF与黄牛PLZF的亲缘关系更近。三级结构预测发现,虽然犏牛、牦牛和黄牛的PLZF蛋白三级结构高度相似,但牦牛PLZF蛋白在531—54...  相似文献   

8.
 【目的】研究b-Boule基因5′调控序列的序列特征,以及牦牛、黄牛与犏牛睾丸组织b-Boule基因DMR甲基化状态的差异,为揭示b-Boule基因的表达调控和犏牛雄性不育的表观遗传机制提供依据。【方法】采用PCR扩增和克隆测序技术获得牦牛b-Boule基因5′调控序列,利用生物信息学方法分析b-Boule基因5′调控序列的序列特征,采用亚硫酸氢钠测序法检测牦牛、黄牛与犏牛睾丸组织中b-Boule基因DMR的甲基化状态。【结果】b-Boule基因5′调控序列长度为1 352 bp,核心启动子区含有SP1等甲基化敏感位点,5′端存在一个CpG岛。犏牛b-Boule基因DMR的甲基化水平(17.78%)高于牦牛(7.50%)和黄牛(6.94%)(P<0.01),特别是CpG位点33—35的甲基化水平差异更明显。【结论】犏牛b-Boule基因DMR的甲基化水平高于牦牛和黄牛,结合前期mRNA表达水平和组织学观察结果,认为DMR甲基化在b-Boule基因的表达调控中发挥关键作用,犏牛b-Boule基因可能是通过DMR区的高甲基化抑制其mRNA表达来阻滞精子发生减数分裂过程。  相似文献   

9.
【目的】研究b-Boule基因5′调控序列的序列特征,以及牦牛、黄牛与犏牛睾丸组织b-Boule基因DMR甲基化状态的差异,为揭示b-Boule基因的表达调控和犏牛雄性不育的表观遗传机制提供依据。【方法】采用PCR扩增和克隆测序技术获得牦牛b-Boule基因5′调控序列,利用生物信息学方法分析b-Boule基因5′调控序列的序列特征,采用亚硫酸氢钠测序法检测牦牛、黄牛与犏牛睾丸组织中b-Boule基因DMR的甲基化状态。【结果】b-Boule基因5′调控序列长度为1 352 bp,核心启动子区含有SP1等甲基化敏感位点,5′端存在一个CpG岛。犏牛b-Boule基因DMR的甲基化水平(17.78%)高于牦牛(7.50%)和黄牛(6.94%)(P<0.01),特别是CpG位点33—35的甲基化水平差异更明显。【结论】犏牛b-Boule基因DMR的甲基化水平高于牦牛和黄牛,结合前期mRNA表达水平和组织学观察结果,认为DMR甲基化在b-Boule基因的表达调控中发挥关键作用,犏牛b-Boule基因可能是通过DMR区的高甲基化抑制其mRNA表达来阻滞精子发生减数分裂过程。  相似文献   

10.
测定牦牛PRDX5基因序列,并比较其在牦牛和雄性不育犏牛睾丸组织中的表达差异,以探究该基因与犏牛雄性不育的关系。从牦牛睾丸组织中提取总RNA,采用RT-PCR技术克隆并测序获得牦牛PRDX5基因的c DNA序列;利用实时荧光定量RT-PCR技术检测该基因在牦牛与犏牛睾丸组织中的表达情况。结果表明:克隆获得的牦牛Prdx5序列长759 bp,包含长660 bp的CDS区,该序列与普通牛基因相差4个碱基,序列同源性为99.47%,相差的4个核苷酸导致推导的氨基酸序列存在3个氨基酸残基差异;Prdx5在牦牛和犏牛睾丸组织中均有表达,在牦牛睾丸组织中的表达量极显著高于犏牛(P0.01),是犏牛睾丸组织中表达量的6倍,提示Prdx5在犏牛睾丸组织中低水平表达可能与其雄性不育有关。  相似文献   

11.
HSPA2在牦牛不同组织器官中的表达差异   总被引:1,自引:1,他引:0  
【目的】探索热休克蛋白70-2(heat shock 70kD protein-2, HSPA2)在牦牛不同组织器官中的表达差异。【方法】选取 3 头 1 岁龄的健康青海高原雄性牦牛为研究对象,在正常生理条件下,于 2013 年 9 月中旬采集不同组织器官(心脏、肝脏、脾脏、肺脏、肾脏、脑和睾丸)样本。(1)从牦牛不同组织器官中提取 RNA,将 RNA 反转录成第一链 cDNA,参照牦牛 HSPA2 和β-actin 基因序列(登录号为 KC790105.1和 DQ838049.1)设计特异性引物,首先采用 RT-PCR 来验证实时荧光定量 PCR(RT-qPCR)是否能应用于牦牛不同组织器官中 HSPA2表达差异的测定;然后采用 RT-qPCR 测定牦牛不同组织器官中 HSPA2相对表达量的差异。(2)将牦牛不同组织器官样本 4%多聚甲醛固定,制成石蜡切片,免疫组织化学法测定 HSPA2 在不同组织器官中的分布。采用 Image-Pro Plus 6.0 软件进行免疫组化图像分析,测定 HSPA2 阳性反应物的积分光密度,进行吸光度分析;通过 SPSS 19.0 统计软件,用单因素方差分析进行差异显著性测定。【结果】(1) RT-PCR 结果表明 RT-qPCR 法可用于牦牛不同组织器官中 HSPA2表达差异的测定。实时荧光定量 PCR 结果表明,HSPA2在睾丸中的相对表达量,分别是在脑、肾脏、心脏、脾脏、肺脏和肝脏中的 83.33、97.09、111.11、133.33、222.22和 285.71倍。(2)免疫组织化学结果显示,牦牛睾丸、肾脏、脑、心脏、肺脏、肝脏和脾脏中均有 HSPA2 的阳性表达。其中,在牦牛肾脏皮质肾小管、髓质肾小管,大脑皮质海马CA1区、小脑皮质,心肌细胞,肺泡上皮细胞,肝细胞,脾脏边缘区和红髓中有 HSPA2 阳性反应,着色深浅不等,大部分阳性反应位于细胞质,细胞核阳性反应极少;而在睾丸曲精小管中生精细胞细胞质和细胞核中均有 HSPA2 阳性反应,着色深浅不等;阴性对照组未观察到阳性反应。根据积分光密度值比较得出,HSPA2 蛋白的阳性表达量在睾丸中最高,脑、肾脏、心脏、肺脏和肝脏次之,脾脏最少。【结论】通过基因水平和蛋白水平两个层面的研究,发现 HSPA2 在牦牛各组织器官中存在表达差异;睾丸中 HSPA2 基因和蛋白表达量均高于脑、肾脏、心脏、脾脏、肺脏和肝脏,提示 HSPA2 可能与睾丸的生殖功能密切相关。  相似文献   

12.
【目的】研究牦牛细胞周期蛋白D2(Cyclin D2,CCND2)基因序列特征及其在牦牛不同发情时期卵巢中的表达。【方法】以牦牛为研究对象,提取卵巢的总RNA进行反转录为第一链c DNA,根据Gen Bank中黄牛CCND2的m RNA序列(Gen Bank登录号:NM_001076372.1),使用Primer 5.0软件设计引物。应用PCR方法对CCND2基因扩增克隆,并测序获得CCND2基因完整的CDS区序列及部分5′端和3′端UTR区。使用Protparam、SOPMA、SWISS-MODEL及SMART分别对牦牛CCND2蛋白的理化性质、二级结构、三级结构及结构域进行预测分析,并进行同源性分析和系统进化树构建,利用半定量PCR方法对CCND2基因在牦牛各组织中的表达进行检测;同时采用实时荧光定量PCR技术分析CCND2基因在牦牛不同发情时期(卵泡期、红体期、黄体期)卵巢中的相对表达量。【结果】克隆获得牦牛CCND2基因序列为909 bp,其中包含可编码289个氨基酸残基的长为870 bp的CDS区。与黄牛相比,牦牛CCND2的CDS区存在5个碱基突变,导致其中一个氨基酸改变。牦牛CCND2基因CDs序列与野牦牛、黄牛、印度水牛、绵羊、野猪、马、家犬、猫、人类的进行比对同源性分别是99.54%、99.31%、99.31%、98.16%、94.81%、90.46%、90.80%、91.49%、88.62%,物种之间同源性较高,与进化树分析显示的亲缘关系远近一致,表明CCND2基因编码区在进化中较为保守。对CCND2蛋白预测分析知牦牛CCND2基因编码蛋白的分子式为C1445H2315N377O440S18,相对分子质量约为32.59k D,理论等电点为4.75,总平均亲水性为-0.107,不稳定指数为44.56,属亲水不稳定的酸性蛋白,该蛋白无跨膜区和信号肽;二级结构主要包含α-螺旋和无规卷曲,且与三级结构分析结果一致。蛋白含位于第26—152位氨基酸处的Cyclin_N和位于第154—257位氨基酸处的Cyclin_C两个结构域。CCND2基因在牦牛各组织中均有表达,其中在胃、卵巢和脑中表达相对较高;q RT-PCR结果显示在牦牛不同发情时期卵巢中CCND2 m RNA均有表达,且卵泡期卵巢中的表达水平最高(P0.01),在红体期和黄体期卵巢中表达水平无差异(P0.05)。【结论】成功获得了牦牛CCND2基因的CDS区全长序列和组织表达谱,对其进行生物信息分析及蛋白功能结构分析为该基因在牦牛繁殖调控中的进一步研究提供理论依据;在牦牛不同发情时期卵巢中CCND2m RNA表达水平存在差异,可能与卵泡发育过程中颗粒细胞增殖分化、卵泡发生波及卵巢内分泌有关,为进一步研究牦牛卵巢发育机制及改善牦牛繁殖效率提供了基础资料。  相似文献   

13.
 【目的】哺乳动物乳铁蛋白(Lactoferrin,LF)在抗菌、抗病毒、抗肿瘤、调节免疫等方面起着重要作用。本试验对天祝白牦牛乳铁蛋白基因的编码区进行克隆和分子特征分析。【方法】以处于干乳期的天祝白牦牛乳腺组织为材料,通过RT-PCR克隆了包含LF基因编码区的cDNA序列(GenBank收录号为EU547252);将克隆获得的天祝白牦牛LF基因的cDNA与奶牛相应序列进行比对;对天祝白牦牛LF蛋白(GenBank收录号为ACB29795)与其它物种LF蛋白进行序列比对和进化树分析;对牦牛LF蛋白的特性和结构进行预测。【结果】克隆获得天祝白牦牛LF基因cDNA片段长度为2 344 bp,其中LF基因编码区全长2 124 bp,编码708个氨基酸;序列分析显示,克隆获得的牦牛cDNA序列与奶牛该序列存在15个碱基的变异,其中位于LF基因编码区的变异有12个,这些突变造成4个氨基酸变异;天祝白牦牛LF蛋白与奶牛、人、小鼠、山羊、绵羊、猪、狗、马、骆驼、猩猩、鸡LF蛋白氨基酸相似度分别为99.4%、69.5%、63.5%、92.4%、91.5%、72.9%、69.1%、72.6%、75.3%、69.5%和50.9%;各物种LF蛋白进化树符合物种进化规律;同源建模预测LF 3D模型显示,LF为多肽链在二级结构基础上折叠形成2个极相似的、对称的球状叶,即N叶和C叶,中间由1段对蛋白酶敏感的α-螺旋连接,呈“二枚银杏叶型”结构。【结论】从天祝白牦牛克隆获得LF基因编码区全长序列并揭示了其分子特征,为牦牛LF蛋白基因工程和蛋白质功能的研究奠定了基础。  相似文献   

14.
牦牛CYGB基因CDS区克隆与生物信息学分析   总被引:7,自引:0,他引:7  
【目的】丰富牦牛CYGB基因研究的基础数据,对牦牛CYGB基因的CDS区进行克隆和生物信息学分析。【方法】提取牦牛大脑海马区组织的总RNA并运用RT-PCR技术反转录为cDNA,并根据GenBank中普通牛CYGB基因cDNA序列(GenBank登录号:DV874786.1),使用Primer3.0在线软件设计特异性引物,运用PCR扩增技术、TA克隆技术和核酸测序技术获得CYGB基因的完整CDS区序列及部分5′端和3′端UTR区,并使用ProtParam、PredictProtein、SWISS-MODEL等在线分析软件与Lasergene7.1软件包分析CYGB的一级结构、二级结构、三级结构与理化性质,并进行同源性分析及构建系统进化树;利用PyMol软件修饰并输出三维结构;使用在线亚细胞定位工具PSORT II Prediction预测蛋白质的亚细胞定位;使用Protfun软件对蛋白质的功能进行预测分析。【结果】克隆获得牦牛CYGB基因650 bp,包括CDS区573 bp(GenBank登录号:KF669898),碱基组成为A 20.59%、T 16.40%、G 33.33%、C 29.67%,编码190个氨基酸残基组成的蛋白质。与普通牛比对,牦牛CYGB基因在CDS区存在4个碱基突变,同源性为99.3%,这个突变未导致氨基酸序列的改变,4个突变均属同义突变。牦牛CYGB基因编码蛋白的分子式为C964H1513N263O278S7,分子量约为21.5 kD,理论等电点(pI)为6.32,消光系数为24075,不稳定系数为48.43,疏水指数为83.63,平均亲水性为-0.301,属不稳定可溶性酸性蛋白质,在哺乳动物网织红细胞内的半衰期为30 h。二级结构以α-螺旋和无规卷曲为主,其中α-螺旋占64.21%,无规卷曲占35.79%,属全α类蛋白质。三级结构是一个呈“three-over-three”三明治夹心型的α-螺旋折叠结构。亚细胞定位CYGB分布在细胞质(65.2%)、细胞核(17.4%)、线粒体(13.0%)、分泌系统的囊泡(4.3%)中,主要在细胞质,推测可能在能量代谢和辅因子的生物合成过程中发挥信号转导和转录因子调控的作用。牦牛CYGB氨基酸序列与普通牛、绵羊、家犬、小鼠、褐家鼠、原鸡、猴、黑猩猩、人的CYGB氨基酸序列的同源性分别为100%、98.9%、97.8%、95.3%、93.7%、78.8%、98.4%、95.8%和96.8%,物种之间同源性较高,系统进化情况与其亲缘关系远近一致,说明CYGB基因编码区在进化过程中比较保守。【结论】通过RT-PCR与TA克隆技术及核酸测序技术获得了牦牛CYGB基因全长573 bp的CDS区,并对其核苷酸序列和编码蛋白氨基酸序列及其蛋白结构和功能进行了分析,得知牦牛的CYGB是一个由190个氨基酸残基构成的可溶酸性蛋白质,在能量代谢和辅因子生物合成过程中发挥重要作用。CYGB基因编码区在长期生物进化过程中具有较强的保守性。该基因的成功克隆及分析为揭示牦牛CYGB基因的遗传特性提供了理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号