首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Protein kinase injection reduces voltage-dependent potassium currents   总被引:8,自引:0,他引:8  
Intracellular iontophoretic injection of the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase increased input resistance and decreased a delayed voltage-dependent K+ current of the type B photoreceptor in the nudibranch Hermissenda crassicornis to a greater extent than an early, rapidly inactivating K+ current (IA). This injection also enhanced the long-lasting depolarization of type B cells after a light step. These findings suggest the involvement of cyclic adenosine monophosphate-dependent phosphorylation in the differential regulation of photoreceptor K+ currents particularly during illumination. On the other hand, conditioning-induced changes in IA may also be regulated by a different type of phosphorylation (for example, Ca2+-dependent).  相似文献   

2.
A magnesium current in Paramecium   总被引:3,自引:0,他引:3  
Recent reappraisals of the role of ionized magnesium in cell function suggest that many cells maintain intracellular free Mg2+ at low concentrations (0.1 to 0.7 mM) and that external agents can influence cell function via changes in intracellular Mg2+ concentration. Depolarization and hyperpolarization of voltage-clamped Paramecium elicited a Mg2(+)-specific current, IMg. Both Co2+ and Mn2+ were able to substitute for Mg2+ as charge carriers, but the resultant currents were reduced compared with Mg2+ currents. Intracellular free Mg2+ concentrations were estimated from the reversal potential of IMg to be about 0.39 mM. The IMg was inhibited when external Ca2+ was removed or a Ca2+ chelator was injected, suggesting that its activation was Ca2(+)-dependent.  相似文献   

3.
Endogenous phospholipase A2 activity of brain synaptic vesicles was Ca2+ -dependent and was increased by prostaglandin F2 alpha, calmodulin, adenosine 3', 5' -monophosphate, and adenosine triphosphate, whereas the activity was inhibited by prostaglandin E2 in the absence or presence of calmodulin. Light-scattering measurements demonstrated that stimulation of the enzyme's activity correlated with the induction of vesicle-vesicle aggregation. The effects of these compounds on endogenous synaptic vesicle phospholipase A2 activity may imply a common end point of their purported neuromodulatory actions, and indicate that synaptic vesicle phospholipase A2 may play a central role in presynaptic neurotransmission.  相似文献   

4.
The possibility that calcium is elevated in brain neurons during aging was examined by quantifying afterhyperpolarizations induced by spike bursts in CAl neurons of hippocampal slices from young and aged rats. The afterhyperpolarizations result from Ca2+-dependent K+ conductance increases and are blocked in medium low in Ca2+ and prolonged in medium high in Ca2+. The afterhyperpolarization and associated conductance increases were considerably prolonged in cells from aged rats, although inhibitory postsynaptic potentials did not differ with age. Since elevated intracellular Ca2+ can exert deleterious effects on neurons, the data suggest that altered Ca2+ homeostasis may play a significant role in normal brain aging.  相似文献   

5.
扶桑绵粉蚧钙调蛋白基因的克隆与生物信息学分析   总被引:1,自引:0,他引:1  
钙调蛋白(calmodulin,CaM)对生物体内多种Ca2+依赖的细胞功能和酶体系都有重要的调节作用。为研究扶桑绵粉蚧的信号转导受体蛋白,首次克隆了扶桑绵粉蚧钙调蛋白基因PsCaM的cDNA全长序列,其开放阅读框(ORF)包含447bp的片段,编码148个氨基酸。PsCaM基因由3个内含子和4个外显子组成。3个内含子的长度分别为73、81、72bp,分隔的4个外显子的长度分别为33、133、183、98bp。功能域分析结果显示:该蛋白具有2个EF-hand结构域,有13个Ca2+结合位点;该蛋白的理论等电点是6.21,属于稳定蛋白,且没有跨膜区域;通过同源建模获得了其蛋白的三维结构。多序列比较显示,PsCaM基因相对较保守。  相似文献   

6.
In neurons, individual dendritic spines isolate N-methyl-d-aspartate (NMDA) receptor-mediated calcium ion (Ca2+) accumulations from the dendrite and other spines. However, the extent to which spines compartmentalize signaling events downstream of Ca2+ influx is not known. We combined two-photon fluorescence lifetime imaging with two-photon glutamate uncaging to image the activity of the small guanosine triphosphatase Ras after NMDA receptor activation at individual spines. Induction of long-term potentiation (LTP) triggered robust Ca2+-dependent Ras activation in single spines that decayed in approximately 5 minutes. Ras activity spread over approximately 10 micrometers of dendrite and invaded neighboring spines by diffusion. The spread of Ras-dependent signaling was necessary for the local regulation of the threshold for LTP induction. Thus, Ca2+-dependent synaptic signals can spread to couple multiple synapses on short stretches of dendrite.  相似文献   

7.
Neuronal death induced by activating N-methyl-D-aspartate (NMDA) receptors has been linked to Ca2+ and Na+ influx through associated channels. Whole-cell recording from cultured mouse cortical neurons revealed a NMDA-evoked outward current, INMDA-K, carried by K+ efflux at membrane potentials positive to -86 millivolts. Cortical neurons exposed to NMDA in medium containing reduced Na+ and Ca2+ (as found in ischemic brain tissue) lost substantial intracellular K+ and underwent apoptosis. Both K+ loss and apoptosis were attenuated by increasing extracellular K+, even when voltage-gated Ca2+ channels were blocked. Thus NMDA receptor-mediated K+ efflux may contribute to neuronal apoptosis after brain ischemia.  相似文献   

8.
在等渗和等阴离子有效浓度条件下,Na^+和K^+的单效效应都使小麦幼苗叶片的质膜透性增大,且Na^+〉K^+,而Ca^2+的单独效应却使其减小;K^+和Ca^2+的单独效应都使小麦叶片组织TTC还原率增大,且Ca^2+〉K^+,而Na^+的单独效应却使其减小。  相似文献   

9.
用含2.4 mg.mL-1川芎嗪提取液对小鼠骨髓间充质干细胞(BMSCs)进行诱导,探讨川芎嗪体外诱导BMSCs分化为神经元样细胞的作用.应用EGTA(细胞外Ca2+螯合剂)、Nifedipine(L-型Ca2+通道阻断剂)和LY294002(PI3K阻断剂)等Ca2+阻断剂分别作用细胞,RT-PCR和Western blot技术研究Ca2+信号在川芎嗪诱导BMSCs分化为神经细胞过程中的作用.结果表明:川芎嗪作用不同时间的BMSCs均可见Nestin、β-Tubulin Ⅲ、NSE和Nurrl的表达;川芎嗪诱导后的细胞浆内Nestin和NSE蛋白表达呈阳性.EGTA、Nifedipine及LY294002分别阻断细胞外Ca2+、L-型Ca2+通道及PI3K后,NSE和Nurr1基因及NSE蛋白表达较川芎嗪诱导组显著上调.以上结果说明川芎嗪能使BMSCs定向分化为神经元样细胞,细胞内、外Ca2+的减少可促进川芎嗪诱导BMSCs向神经细胞的分化,Ca2+信号在川芎嗪诱导BMSCs向神经细胞定向分化过程中起负调控作用.  相似文献   

10.
Calmodulin plays a pivotal role in cellular regulation   总被引:129,自引:0,他引:129  
The role of calcium ions (Ca2+) in cell function is beginning to be unraveled at the molecular level as a result of recent research on calcium-binding proteins and particularly on calmodulin. These proteins interact reversibly with Ca2+ to form a protein . Ca2+ complex, whose activity is regulated by the cellular flux of Ca2+. Many of the effects of Ca2+ appear to be exerted through calmodulin-regulated enzymes.  相似文献   

11.
The role of troponin-I (the inhibitory subunit of troponin) in the regulation by Ca2+ of skeletal muscle contraction was investigated with resonance energy transfer and photo cross-linking techniques. The effect of Ca2+ on the proximity of troponin-I to actin in reconstituted rabbit skeletal thin filaments was determined. The distance between the cysteine residue at position 133 (Cys133) of troponin-I and Cys374 of actin increases by approximately 15 angstroms on binding of Ca2+ to troponin-C. Also, troponin-I labeled at Cys133 with benzophenone-4-maleimide could be photo cross-linked to actin in the absence of Ca2+, but not in its presence. These results suggest that troponin-I is attached to actin in the Ca2(+)-free or relaxed state of muscle, and that it detaches from actin on Ca2+ activation of contraction. Thus, troponin-I may function as a Ca2(+)-dependent molecular switch in regulation of skeletal muscle contraction.  相似文献   

12.
Calmodulin (CaM) is a major effector for the intracellular actions of Ca2+ in nearly all cell types. We identified a CaM-binding protein, designated regulator of calmodulin signaling (RCS). G protein-coupled receptor (GPCR)-dependent activation of protein kinase A (PKA) led to phosphorylation of RCS at Ser55 and increased its binding to CaM. Phospho-RCS acted as a competitive inhibitor of CaM-dependent enzymes, including protein phosphatase 2B (PP2B, also called calcineurin). Increasing RCS phosphorylation blocked GPCR- and PP2B-mediated suppression of L-type Ca2+ currents in striatal neurons. Conversely, genetic deletion of RCS significantly increased this modulation. Through a molecular mechanism that amplifies GPCR- and PKA-mediated signaling and attenuates GPCR- and PP2B-mediated signaling, RCS synergistically increases the phosphorylation of key proteins whose phosphorylation is regulated by PKA and PP2B.  相似文献   

13.
Y Saimi  K Y Ling 《Science (New York, N.Y.)》1990,249(4975):1441-1444
Calmodulin is a calcium-binding protein that participates in the transduction of calcium signals. The electric phenotypes of calmodulin mutants of Paramecium have suggested that the protein may regulate some calcium-dependent ion channels. Calcium-dependent sodium single channels in excised patches of the plasma membrane from Paramecium were identified, and their activity was shown to decrease after brief exposure to submicromolar concentrations of calcium. Channel activity was restored to these inactivated patches by adding calmodulin that was isolated from Paramecium to the cytoplasmic surface. This restoration of channel activity did not require adenosine triphosphate and therefore, probably resulted from direct binding of calmodulin, either to the sodium channel itself or to a channel regulator that was associated with the patch membrane.  相似文献   

14.
alpha-klotho was identified as a gene associated with premature aging-like phenotypes characterized by short lifespan. In mice, we found the molecular association of alpha-Klotho (alpha-Kl) and Na+,K+-adenosine triphosphatase (Na+,K+-ATPase) and provide evidence for an increase of abundance of Na+,K+-ATPase at the plasma membrane. Low concentrations of extracellular free calcium ([Ca2+]e) rapidly induce regulated parathyroid hormone (PTH) secretion in an alpha-Kl- and Na+,K+-ATPase-dependent manner. The increased Na+ gradient created by Na+,K+-ATPase activity might drive the transepithelial transport of Ca2+ in cooperation with ion channels and transporters in the choroid plexus and the kidney. Our findings reveal fundamental roles of alpha-Kl in the regulation of calcium metabolism.  相似文献   

15.
采取L16(215)正交设计试验,开展5周凡纳滨对虾养殖试验,分析养殖水体中K+及K+、盐度、Ca2+、Mg2+四因子间交互作用对凡纳滨对虾存活、生长及体内ATP酶的影响。结果表明:K+对凡纳滨对虾成活率、体长和体重增加及体内ATP酶活性均具有显著影响,K+浓度为150 mg/L时成活率最高,而K+浓度为50 mg/L时生长速度最快,Na+-K+-ATPase、Mg2+-ATPase、Ca2+-ATPase酶活也最高;K+、盐度、Ca2+、Mg2+四因子间交互作用对凡纳滨对虾存活、生长及体内ATP酶也具有显著影响。本试验因素水平组合中凡纳滨对虾成活率的最佳组合为盐度15、K+150 mg/L、Ca2+100 mg/L、Mg2+300 mg/L,生长速度的最佳组合为盐度15、K+50 mg/L、Ca2+100 mg/L、Mg2+100 mg/L,凡纳滨对虾体内Na+-K+-ATPase、Mg2+-ATPase、Ca2+-ATPase酶活的最佳组合为盐度5、K+50 mg/L、Ca2+100 mg/L、Mg2+100 mg/L。  相似文献   

16.
The Ca2+-activated protein phosphatase calcineurin induces apoptosis, but the mechanism is unknown. Calcineurin was found to dephosphorylate BAD, a pro-apoptotic member of the Bcl-2 family, thus enhancing BAD heterodimerization with Bcl-xL and promoting apoptosis. The Ca2+-induced dephosphorylation of BAD correlated with its dissociation from 14-3-3 in the cytosol and translocation to mitochondria where Bcl-xL resides. In hippocampal neurons, L-glutamate, an inducer of Ca2+ influx and calcineurin activation, triggered mitochondrial targeting of BAD and apoptosis, which were both suppressible by coexpression of a dominant-inhibitory mutant of calcineurin or pharmacological inhibitors of this phosphatase. Thus, a Ca2+-inducible mechanism for apoptosis induction operates by regulating BAD phosphorylation and localization in cells.  相似文献   

17.
【目的】进一步探明盐胁迫条件下营养元素K+、Ca2+和Mg2+对苗期不同水稻基因型耐盐性的影响差异,为明确作物耐盐胁迫的生理机制、提高作物耐盐胁迫能力提供参考。【方法】于2009年1—4月在严格控制水、温、光和营养元素供应的国际水稻研究所人工气候室进行水培试验,比较研究营养液中K+、Ca2+和Mg2+浓度的变化对不同水稻基因型苗期耐盐性的影响。【结果】在盐胁迫条件下(100mmol·L-1NaCl),耐盐基因型(FL478和IR651)与盐敏感基因型(IR29和Azucena)相比,植株体内有较低的Na+含量和Na+/K+、Na+/Ca2+、Na+/Mg2+比,有较高的K+含量,这些都是耐盐基因型耐盐胁迫能力高于盐敏感基因型的内在原因。盐胁迫条件下提高营养液中Ca2+和Mg2+的含量(60mg·L-1),可显著降低植株体Na+含量和Na+/K+、Na+/Ca2+、Na+/Mg2+比,明显减轻盐胁迫的危害,增强水稻耐盐胁迫能力,且Ca2+处理的效果优于Mg2+处理;而提高营养液K+含量对以上指标的影响远远小于Ca2+处理和Mg2+处理,这也是K+处理对水稻耐盐性影响相对不明显的内在原因。【结论】K+、Ca2+和Mg2+在植株体内的含量及其与Na+的比值变化都会影响水稻苗期耐盐性;适当提高水稻生长环境的Ca2+和Mg2+浓度可以明显增强植株耐盐胁迫能力,营养元素Ca2+的效果比Mg2+明显;而K+对水稻耐盐性的影响相对不明显。  相似文献   

18.
19.
Calcium-activated potassium channels mediate many biologically important functions in electrically excitable cells. Despite recent progress in the molecular analysis of voltage-activated K+ channels, Ca(2+)-activated K+ channels have not been similarly characterized. The Drosophila slowpoke (slo) locus, mutations of which specifically abolish a Ca(2+)-activated K+ current in muscles and neurons, provides an opportunity for molecular characterization of these channels. Genomic and complementary DNA clones from the slo locus were isolated and sequenced. The polypeptide predicted by slo is similar to voltage-activated K+ channel polypeptides in discrete domains known to be essential for function. Thus, these results indicate that slo encodes a structural component of Ca(2+)-activated K+ channels.  相似文献   

20.
Calcium ion (Ca2+) influx through voltage-gated Ca2+ channels is important for the regulation of vascular tone. Activation of L-type Ca2+ channels initiates muscle contraction; however, the role of T-type Ca2+ channels (T-channels) is not clear. We show that mice deficient in the alpha1H T-type Ca2+ channel (alpha(1)3.2-null) have constitutively constricted coronary arterioles and focal myocardial fibrosis. Coronary arteries isolated from alpha(1)3.2-null arteries showed normal contractile responses, but reduced relaxation in response to acetylcholine and nitroprusside. Furthermore, acute blockade of T-channels with Ni2+ prevented relaxation of wild-type coronary arteries. Thus, Ca2+ influx through alpha1H T-type Ca2+ channels is essential for normal relaxation of coronary arteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号