首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了揭示炭化条件与生物炭产率之间的关系,以油菜秸秆为实验材料,通过无氧炭化法来研究炭化温度、炭化时间和炭化时的升温速度对生物炭产率的影响。结果表明:温度从300℃升高至900℃,产率从40.17%降低至19.40%;300℃、600℃和900℃炭化时间从5min增至150min,产率分别为42.58%~48.76%,27.32%~30.15%,18.55%~25.11%;600℃升温速度从50℃/h增至250℃/h,产率从29.00%~28.60%降低至26.04%~26.88%。可见,热解温度是影响油菜秸秆生物炭产率的重要因素,而炭化时间和升温速度对油菜秸秆生物炭的产率影响较小。  相似文献   

2.
本研究以竹片、山核桃壳、水稻及油菜秸秆等4种生物质为原料,通过热重分析研究各生物质材料性质与热解特性及生物炭产率之间的关系;并在300~700 ℃下热解6 h制备生物炭,分析生物炭的元素组成及官能团结构。结果表明,在低温段(300~400 ℃),生物质材料中的纤维素、木质素等组分对生物炭产率影响较明显,木质素含量高的材料产率较高;而400 ℃以上则是灰分含量对生物炭产率影响较大,水稻及油菜秸秆由于灰分含量高,其400 ℃以上的生物炭产率高于竹片及山核桃壳。随着炭化温度的升高,生物炭灰分含量增加,无灰基的碳含量增大,稳定性增强;仅水稻秸秆炭由于灰分含量较高,在高温(500~700 ℃)条件下仍有部分含氧官能团存在。综上,生物炭在一定温度下的产率取决于生物质材料来源,而生物炭的稳定性则主要由炭化温度决定,且温度越高,性质越稳定。  相似文献   

3.
[目的]探讨热解温度对制备不同类型秸秆生物炭及其吸附去除Cu~(2+)的影响。[方法]以玉米、水稻、芝麻3类秸秆为原料于400~700℃热解炭化制备生物炭,探讨热解温度对秸秆生物炭的结构官能团、比表面积、孔径分布等结构及理化性质的影响,并评价生物炭对Cu~(2+)的吸附性能。[结果]生物炭的pH和比表面积随热解温度的升高而逐渐增大,而产率却逐渐稳定,其中热解温度的变化对水稻和芝麻秸秆生物炭的影响更为明显;此外,生物炭对Cu~(2+)的吸附效率与生物炭的种类和热解温度有关,升高热解温度有利于提高生物炭对Cu~(2+)的吸附去除率,且水稻和芝麻秸秆生物炭的吸附效率明显高于玉米秸秆生物炭,其中700℃下热解所制备的水稻和芝麻秸秆生物炭对Cu~(2+)的去除率可达100%。[结论]该研究可为控制农业环境污染提供科学依据。  相似文献   

4.
畜禽粪便与秸秆混合热解制备生物炭研究   总被引:2,自引:0,他引:2  
以牛粪和猪粪为原料,玉米芯秸秆为辅料,采用管式反应器制备生物炭,研究热解温度(200、300、400、500℃)和秸秆添加量(20%、40%、60%、80%)对畜禽粪便生物炭产率和理化特性的影响。结果显示,随着热解温度的升高,混合料生物炭产率降低,挥发分含量逐渐降低,而灰分含量、pH、全磷和全钾含量均呈递增趋势,全氮含量呈先增后减趋势;添加秸秆有利于改善畜禽粪便生物炭的pH,调节养分含量;秸秆添加量为20%时,牛粪秸秆混合生物炭的孔隙特性在400℃表现最好,猪粪秸秆混合生物炭的孔隙特性较差。牛粪秸秆混合生物炭相比猪粪秸秆混合生物炭有更好的炭产率、pH和孔隙特性,其较好的孔隙特性有利于其作为吸附剂等使用,猪粪秸秆混合生物炭具有更好的养分特性,可作为磷肥生产辅料或土壤改良剂使用。  相似文献   

5.
温度梯度对秸秆炭化物质产率及特性的影响   总被引:1,自引:0,他引:1  
在300~700℃温度区间,玉米秸秆、水稻秸秆以每100℃为间隔,大豆秸秆以200℃为间隔,研究炭化热解,量化对比产物。结果表明,秸秆热解炭比表面积、总孔容积、pH和碱式官能团随温度升高而增加,孔径和酸式官能团随温度升高而降低;热解液随热解温度升高,酸度降低;热解气中氢气和甲烷含量随温度升高而增加。热解温度平均每升高100℃,热解炭产率平均减少9.31%,热解液产率平均增加4.55%,热解气产率平均增加4.35%。玉米秸秆热解炭、热解液和热解气产率拐点分别为600、611和666℃,水稻秸秆热解炭、热解液和热解气产率拐点分别为666、600和666℃。量化参数可为优化秸秆炭化工艺提供技术支持。  相似文献   

6.
我国南方3种主要作物秸秆炭的理化特性研究   总被引:2,自引:0,他引:2  
以我国南方水稻(D)、棉花(M)和玉米(Y)3种主要作物秸秆为研究对象,研究了400、450、500℃温度下制备的作物秸秆炭的主要理化特性。研究结果表明:生物炭的出产率因热解温度和秸秆种类而异,一般低温出产率高,高温趋于稳定,3种物料灰分含量是DYM;生物炭p H值随热解温度升高而增大,且均呈碱性;比表面积总体上随温度增加而增加;有机碳和总氮含量随热解温度升高而降低,总磷和钾含量随热解温度升高而增加;不同秸秆炭所含官能团基本相同,-OH随温度升高呈减弱趋势,而芳香性结构增加。经综合对比,推选500℃下制备的生物炭较好。  相似文献   

7.
为评价茭白秸秆生物炭作为生物炭基肥的潜力,以及为茭白秸秆生物炭在农业土壤中的应用提供理论基础,现以茭白秸秆为原料,探索了不同热解温度对茭白秸秆生物炭性质的影响。结果表明,随着热解温度从300℃升至700℃,茭白秸秆生物炭的生产效率从39.8%降至24.1%;茭白秸秆生物炭的炭化程度和极性增加,其在土壤中的残留时间为308.5~1 204.2年;茭白秸秆生物炭的总碳和总养分(N+P2O5+K2O)含量(wt)分别为61.6%~71.4%和9.7%~10.9%,pH为9.4~10.3,总砷、总铅、总铬的含量分别为9.0~12.7、0~1.5、7.9~74.8 mg/kg,总汞和总镉未检出。参照NY/T 3618-2020的行业标准,热解温度300~500℃条件下的茭白秸秆生物炭性质满足其行业标准要求。  相似文献   

8.
热解温度对玉米秸秆生物炭稳定性的影响   总被引:1,自引:0,他引:1  
为了探究热解温度对生物炭稳定性的影响,选用玉米秸秆作为生物质原料,分别在300、500、700℃条件下热解制备生物炭。利用元素分析仪、傅里叶变换红外光谱(FTIR)和热重分析仪(TGA)表征生物炭的结构和性质,采用H_2O_2和K_2Cr_2O_7氧化法测定生物炭的抗氧化能力。结果表明,生物炭的C含量随热解温度的升高而增加,H和O含量以及H/C和O/C之比则随热解温度的升高而降低,说明了生物炭的芳香化程度增加,稳定性增强。FTIR结果表明,随着热解温度的升高,生物炭中的—OH、C—O—C和—CH等不稳定性集团减少甚至消失。TGA分析表明,随着热解温度的增加,生物炭质量损失由42.9%降低至14.67%,其700℃制备生物炭热稳定性最强。H_2O_2和K_2Cr_2O_7抗氧化结果表明,500℃条件下制备的生物炭的碳损失量最低,分别为7.19%和6.02%,其抗氧化能力最强。  相似文献   

9.
为了使柠条资源能够高效利用,研究活化前后的柠条生物炭制备工艺。本试验在不同的温度(400℃、500℃、600℃)下,分别用管式气氛炉CO2活化法和马弗炉高温热解法,并通过工业分析及元素分析、比表面积测定、傅里叶红外光谱(FTIR)等方法对制备的生物炭进行表征和对比分析。结果表明:随着热解温度的升高,产率都在下降;挥发分逐渐析出,马弗炉高温热解法的挥发分下降比率比较快,含氢和氧官能团及含碳物质逐渐分解,灰分含量逐渐增大,CO2活化后的生物炭灰分相对较小,马弗炉高温热解法下的固定碳比率逐渐增大,而CO2活化后固定碳比率先增大后减小,在500℃时值最高;没有活化的生物炭元素C含量相对较低,活化后最大为74. 103%; BC-G600芳香性最强,烷基基团随温度升高逐渐消失,碳结构更加稳定具有做吸附剂的潜力;马弗炉高温热解法下600℃生物炭有较大的比表面积和丰富的微孔结构,活化后的柠条生物炭在600℃时没有完全发生气化反应,比表面积相对较低,CO2活化柠条生物炭在高温区域有很大的研究潜力。因此,该研究为柠条制备生物炭的可行性提供数据支撑并具有参考意义。  相似文献   

10.
针对愈发严重的水体重金属污染,通过灌溉重金属流入农田严重影响农产品质量安全的问题,以南方区域农业废弃物水稻秸秆(RSC)、谷壳(RHC)和中药渣(HRC)为原料制备生物炭,研究不同原料、不同热解温度(300,500,700℃)、不同热解时间(2,3,4 h)条件下制备生物炭的理化性质及其对重金属Cu~(2+)和Cd~(2+)的吸附效果。结果表明,热解温度对生物炭的理化性质及其对重金属Cu~(2+)和Cd~(2+)的吸附效果存在显著影响,而热解时间对其无显著影响。生物炭的灰分含量、pH和P含量均随着热解温度的升高而显著增加,产率和N含量显著降低;生物炭对重金属Cu~(2+)和Cd~(2+)的吸附量和去除率随着热解温度的升高显著提高;生物炭对重金属Cu~(2+)和Cd~(2+)的吸附量与其本身的灰分含量、pH以及P含量存在显著的正相关性。3种原料制备的生物炭对重金属Cu~(2+)和Cd~(2+)的吸附效果由大到小总体表现为:RSC、RHC和HRC,且对Cd~(2+)的吸附效果大于Cu~(2+)。综合来看,热解温度为700℃时制备的RSC对Cu~(2+)和Cd~(2+)的吸附效果好,最大去除率分别达99.88%和99.14%。  相似文献   

11.
明确动物粪便炭化后物料特性有利于促进农业废弃物多元化利用模式发展。以水稻秸秆(稻秆)为对照物料,初步探讨动物粪便(羊粪、牛粪、兔粪、猪粪)在炭化温度为300、600℃,炭化时间为3、5 h条件下物料的生物炭产率、碳含量、氮含量、pH值以及碳氮比(C/N)。结果表明:羊粪、牛粪、兔粪、猪粪的生物炭产率明显低于稻秆,随着炭化温度提高,各物料生物炭产率下降,在300、600℃分别降低2.64%~9.34%、4.33%~14.7%,且动物粪便生物炭产率的下降比例大于稻秆;同时,提高炭化温度有利于提高动物粪便炭化物料的碳含量、pH值和碳氮比,但物料氮含量降低;对生物炭产率影响不大,能够降低动物粪便物料碳含量,但从整体来看,对氮含量、碳氮比影响不大;改变炭化温度、炭化时间时,羊粪碳氮含量变化幅度最大,pH值变化则最小,而兔粪则正好相反,牛粪、猪粪则介于羊粪、兔粪之间。由结果可知,不同动物粪便特性(碳氮含量、pH值和碳氮比)对炭化温度和时间的响应存在一定差异。  相似文献   

12.
蛭石改性水稻秸秆生物炭在土壤中的短期降解   总被引:1,自引:0,他引:1  
稳定性是生物炭发挥固碳功能的基础,探究生物炭在土壤中的降解特征具有重要的现实意义。以水稻秸秆为生物质原料,在不同炭化温度和蛭石改性条件下制得一系列生物炭,探索其稳定性变化规律,并通过实验室恒温培养试验,研究了蛭石改性和未改性水稻秸秆生物炭在红壤、水稻土中的短期降解行为及其影响因素。水稻秸秆生物炭的碳含量随炭化温度的升高而增加,经蛭石改性后降低了20.3%~32.6%。当炭化温度从300℃升高至700℃时,生物炭的可溶性有机碳(DOC)含量表现为先增后减的变化趋势,在400℃时为最大值,700℃时为最小值。蛭石改性降低了所有生物炭的DOC含量。生物炭的H/C随炭化温度升高而降低,且经蛭石改性后有所降低。与300℃生物炭相比,700℃未改性和蛭石改性生物炭的热损失量分别降低了56.1%和56.8%。蛭石改性使生物炭的热损失量降低14.8%~45.6%。水稻秸秆生物炭的含碳官能团主要由芳香碳、烷氧碳与非取代脂肪烃组成,其中芳香碳含量最高;随着炭化温度的升高,生物炭中的芳香碳含量增加,烷氧碳与非取代脂肪烃含量下降;蛭石改性增加了生物炭中的芳香碳含量。与红壤相比,水稻土中生物炭的碳含量更低;与淹水条件相比,干旱条件下土壤中生物炭的碳含量更低。结果表明,蛭石改性在降低生物炭中碳含量的同时增加了生物炭的稳定性。相比于红壤,生物炭在水稻土中的碳降解速度更快;相比于淹水条件,干旱条件下生物炭的碳降解速度更快。综合来看,蛭石改性为显著影响生物炭在土壤中发生碳素降解的最主要因素,其次为土壤类型,水分状况的影响相对较弱。  相似文献   

13.
为了研究花生壳生物炭的特征,评价其农业与环境领域应用价值与潜力,该研究分别在300,500,700℃下制备花生壳生物炭,测定其基础理化性质,以期了解花生壳生物炭特征及其随热解温度的变化规律。将花生壳原料放入马弗炉中,达到目标温度后低氧炭化2 h,然后对处理后样品进行理化性质的检测。结果表明,随着热解温度的升高,生物炭产率逐渐下降,土壤阳离子交换量(CEC)含量降低;大量矿质元素随着热解温度的升高含量增加,在500~700℃过程中,增幅较大;微量矿质元素中,B元素无明显变化规律,其他元素均随着热解温度的升高而增加;随热解温度的升高,花生壳生物炭表面的碱性官能团数量增加,酸性官能团的数量降低,花生壳生物炭的pH值由酸性变成强碱性,花生壳生物炭芳香化程度升高,稳定性增强;花生壳生物炭的孔隙度在高温(700℃)条件下比较发达,微孔和中孔均在较高温度下比较丰富,且微孔比重高于中孔。  相似文献   

14.
几种生物质热解炭基本理化性质比较   总被引:5,自引:1,他引:4  
生物炭由生物质材料在无氧或缺氧条件下经高温裂解形成,是土壤改良和废弃物处理的良好改良剂。选取五种生物质原料(大豆秸秆、玉米秸秆、水稻秸秆、稻壳和松针,均为农林废弃物),经300、400、500、600和700℃热解2 h,测定其结构及理化性质。研究结果表明,生物炭炭化结构良好清晰;生物质形成生物炭在BET比表面积、T-PLOT微孔容积、p H和阳离子交换量值方面均随热解温度升高而升高,大豆秸秆和玉米秸秆比表面积在700℃时达到最高;平均孔径随热解温度升高有一定程度下降;700℃下水稻秸秆和稻壳形成生物炭具有最高硅含量。除松针炭外,其余各生物炭呈碱性。  相似文献   

15.
皇竹草生物炭的结构特征及其对Cr(Ⅵ)的吸附性能   总被引:2,自引:0,他引:2  
以皇竹草茎秆为原料,在限氧控温(300、500、700℃)条件下制备生物炭,研究该生物炭的结构特征及其对Cr(Ⅵ)的吸附行为。结果发现,随着热解温度的升高,皇竹草生物炭的产率下降,而灰分、p H呈上升趋势;电镜扫描(SEM)观察可见不同热解温度下所制备的生物炭结构相似,均具多孔和管状结构,但在700℃条件下所制备的生物炭相对300℃下制备的生物炭孔壁变薄,且孔壁有附着物,切面有突起结构。三种温度下制备的皇竹草生物炭对溶液中的Cr(Ⅵ)都具有较好的吸附作用,且500、700℃下制备的生物炭比300℃下制备的生物炭具有更好的吸附效果。在0~1 h之间,三种热解温度下制备的生物炭对铬的吸附量均随着时间的延长而快速增加,当吸附至1 h时,基本达到饱和状态,随后吸附量无明显变化。  相似文献   

16.
为量化评价油菜秸秆生物炭用作缓释载体的潜力,采用高温裂解法,在不同磷酸体积分数(5%、10%、15%)、热解温度(450、550、650℃)和保温时长(40、80、120 min)下制备生物炭,探究其表面形态、官能团组成和理化特性的变化规律,在此基础上引入灰色关联法,综合评价其用作缓释载体的潜力。结果表明,随着磷酸体积分数、热解温度和保温时长的增加,生物炭的炭得率、含水率、挥发分逐渐减小,而灰分、固定碳逐渐增大。基于灰色关联度分析结果,综合考虑各因素对产率的影响,当磷酸的体积分数为10%、热解温度为450℃、保温时长为80 min时,制备的生物炭用作缓释载体的潜力最大。  相似文献   

17.
热解温度对畜禽粪便生物炭产率及理化特性的影响   总被引:13,自引:3,他引:10  
以鸡粪、猪粪渣和牛粪为原料,采用室内密闭低氧制备生物炭,研究不同温度(350、450、550、650、750 ℃)下,畜禽粪便生物炭的产率和理化特性.结果表明,随着热解温度的升高,畜禽粪便生物炭灰分、pH、电导率、盐分、全P和全K含量逐渐增加,而炭化产率、挥发分含量、固定碳产率、全N含量逐渐降低,同时生物炭表面超微结构粗糙程度加剧.综合分析确定,获得高炭化产率和低氮损失的适宜热解温度为450 ℃,该温度下生物炭品质优劣依次为牛粪、猪粪渣、鸡粪.畜禽粪便生物炭具有较高pH和总养分含量,可作为酸性土壤调理剂和有机肥生产辅料.  相似文献   

18.
原料和温度对热带农林秸秆生物炭多环芳烃的影响   总被引:1,自引:0,他引:1  
【目的】多环芳烃(PAHs)对人体健康存在危害,而生物质裂解过程中可产生PAHs,了解温度和原料对生物炭性质及PAHs影响具有重要实践意义。【方法】选取热区海南5种典型农林秸秆(椰壳、香蕉秆、橡胶杆、水稻秆和荔枝杆)在不同温度下(300、500和700℃)缺氧裂解制备生物炭,探讨原料和温度对生物炭基本属性以及PAHs的影响。【结果】(1) 5种生物炭产率都随温度升高而下降,700℃平均产率为33%; pH和碳氢比随温度升高而增大,700℃时生物炭pH均值为9.8;木质原料生物炭碳氢比高于草本原料; 500℃下各秸秆生物炭含碳量最高,均值为61.6%。(2)原料和温度主要影响生物炭中多环芳烃浓度而非种类,各生物炭中都以萘浓度最高,其次为菲、芴和蒽等。700℃下制备的生物炭中PAHs浓度相对较低,对应的原料为橡胶杆和椰壳;(3)各生物炭中多环芳烃浓度都未超标准,可以合理生产施用。【结论】研究结果可为热区生物炭制备和推广应用提供数据支持。  相似文献   

19.
以新疆棉花秸秆为原料,研究炭化温度和炭化时间、升温速率对棉秆基生物炭产量和理化性质的影响。选择300℃、400℃、500℃、600℃为最高炭化温度,5℃/min、10℃/min、15℃/min、20℃/min为升温速率,30 min、60 min、90 min、120min为炭化时间。棉秆生物炭的最高固定碳为63%。原料的热解特性在惰性气体N2保护下进行TG-DTG分析。对棉秆生物炭的元素成分、PH值、固定碳、灰分和碳含量进行研究,同时进行了SEM,FT-IR表征。随着炭化温度的增加,生物炭pH值、灰分含量、碳稳定性及总碳的含量也逐渐增加,而生物炭产量、挥发分、H、O、N、S元素的含量减少。比表面积结果显示高温制备生物炭的孔隙率有所增加,但增加幅度并不大。研究发现加热时间和升温速率对棉秆生物炭性质的影响不显著,炭化温度对棉秆生物炭性质的影响显著。  相似文献   

20.
试验以水稻、小麦、玉米、油菜和棉花秸秆为研究对象,考察不同保温时间对5种秸秆生物炭的炭产率、组成成分、pH、电导率和孔隙结构的影响,并对不同生物炭理化特性的相关性进行分析。结果表明,保温时间和原料种类对秸秆生物炭肥料化利用的理化特性均有显著性影响(P0.05)。秸秆生物炭产率为41%~61%、碳转化率为53%~65%。保温时间从0 min增加到120 min,炭产率减少而生物炭的固定碳含量增加,pH和电导率增加,孔壁变薄孔径增大。保温时间与秸秆生物炭的炭产率、H、O和挥发分含量呈显著的线性负相关,与固定碳含量呈显著线性正相关。保温时间为60~90 min时,秸秆生物炭的H/C1,芳香化程度较高,性质稳定。生物炭表面光滑,内部具有较大的空腔,且生物炭的pH、电导率较高,挥发分含量低,是一种较好的炭基肥添加剂材料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号