首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
土壤团聚作用和土壤有机碳固定之间密切相关.对宁南山区不同植被恢复措施和年限下土壤团聚体粒径分布及稳定性、土壤团聚体中有机碳及其组分分布进行了研究,探讨了有机碳及其组分对植被恢复的响应.结果表明,不同植被恢复措施下,土壤团聚体粒径分布表现为“V”字分布:>5 mm和<0.25 mm这两个粒径的团聚体含量最多,5-2 mm、1-0.25 mm团聚体的含量次之,2-1 mm粒径的团聚体含量最少.坡耕地的平均重量直径(MWD)最低,为1.4,其他植被恢复措施下土壤的平均重量直径MWD在1.9-3.1之间.不同的植被恢复措施下,0-20 cm土层和20-40 cm土层全土有机碳含量在7.4-17.7 g/kg之间、微生物碳含量分布在50.3-664.7 mg/kg之间、腐殖质碳含量在0.9-2.5g/kg之间.胡敏酸碳含量分布在0.2-0.6 g/kg,富里酸碳含量在0.6-1.9 g/kg之间.全土有机碳、微生物碳、腐殖质碳、富里酸碳均为坡耕地最低,其他植被恢复措施的有机碳、微生物碳、腐殖质碳、富里酸碳含量分别是坡耕地的1.1-2.3倍、2.0-8.4倍、1.0-2.0倍、1.2-2.4倍.不同粒径团聚体有机碳相比较,大多呈现中间高两边低的变化趋势,最大值出现在中间粒径,即5-2 mm、2-1 mm、1-0.25 mm这3个粒径.逐步回归表明,5-2 mm团聚体和1-0.25 mm团聚体有机碳含量的提高有助于土壤水稳性团聚体的形成.研究结果表明,植被恢复提高了土壤团聚体有机碳含量,在碳形态上,富里酸碳和微生物生物量碳对不同植被恢复措施的敏感度较高,胡敏酸碳含量则相对稳定.  相似文献   

2.
选取燕山南麓不同林龄(4、8、12和16年)板栗林为研究对象,研究板栗林乔木层和土壤层碳储量及其分配格局随林龄的变化特征。结果表明,板栗林乔木层不同组分碳含量在429.6~465.4 g/kg之间;不同林龄树干碳含量之间有显著差异(P0.05),且随林龄的增长呈降低趋势;不同林龄树根、树枝和树叶碳含量无明显差异;在人工经营措施下,土壤层(0~100 cm)碳含量随林龄增长呈先降后升的变化趋势,并且随土壤深度的增加而降低。4、8、12和16年板栗林乔木层碳储量分别是0.27、3.83、8.09和8.95 Mg/hm2,随林龄的增长呈显著增加趋势(P0.05);除4年板栗林外,其他林龄不同组分碳储量大小排序表现为树干树根树枝树叶。4、8、12和16年板栗林生态系统碳储量分别为60.055、49.523、58.727和67.528 Mg/hm2,其中土壤层占生态系统总碳储量的99.6%、92.3%、86.2%和86.7%。在板栗林经营过程中,生态系统碳储量随林龄增长呈先降低后增加的变化趋势,土壤层是板栗林生态系统的主要碳库。  相似文献   

3.
凤阳山不同植被恢复方式对土壤有机碳及其组分的影响   总被引:2,自引:0,他引:2  
以凤阳山自然保护区典型常绿阔叶林与杉木林、柳杉林与针阔混交林为研究对象,研究同一采样点不同植被恢复方式下土壤总有机碳、易氧化有机碳、稳定态有机碳的变化特征。结果表明:总体上,常绿阔叶林土壤总有机碳质量分数高于杉木林,柳杉林高于针阔混交林;常绿阔叶林0h≤60 cm层单位面积土壤总有机碳储量比杉木林高出10.76%,柳杉林比针阔混交林高出4.05%。常绿阔叶林0h≤20 cm、20 cmh≤40 cm层土壤易氧化有机碳质量分数分别为1 518.47和786.63 mg/kg,显著高于杉木林同层的1 302.94和655.74 mg/kg(p0.05);柳杉林0h≤20 cm、20 cmh≤40 cm层易氧化有机碳质量分数分别为1 342.36和540.35 mg/kg,显著低于针阔混交林同层的1 618.92和586.63 mg/kg(p0.05)。常绿阔叶林0h≤20 cm、20 cmh≤40 cm层土壤稳定态有机碳质量分数分别为2.23和1.60 g/kg,显著高于杉木林同层的1.52和1.10 g/kg(p0.05);柳杉林0h≤20 cm、40 cmh≤60cm层稳定态有机碳质量分数分别为2.36和1.31 g/kg,显著高于针阔混交林同层的1.84和1.02 g/kg(p0.05)。随着土层加深,土壤总有机碳、易氧化有机碳、稳定态有机碳质量分数整体呈逐渐降低趋势。  相似文献   

4.
以米楮林为试验树种,按照弱度(1800株/hm2)、中度(1500株/hm2)和强度(1200株/hm2)三种抚育强度为试验组,天然米楮林作为对照(CK),检测土壤容重、土壤有机碳密度和土壤有机碳存储量,筛选出适合人促米楮林的抚育强度。结果表明:在0~25cm土壤层,弱度抚育强度(1800株/hm2)土壤的容重为1.28 g/cm3,有机碳密度为21.82g/kg,有机碳存储量为21.82g/kg,有利于减少有机碳含量流失、调节土壤肥力和增强土壤排水性、土壤通气性的作用,促进土壤中水、肥、气、热的平衡。  相似文献   

5.
对安徽省四方湖自然保护区内湿地、林地、水产养殖地、耕地及撂荒地5种土地利用类型土壤表层(0~10cm)有机碳的含量进行测定。结果显示:湿地(19.94g/kg)>林地(10.63g/kg)>水产养殖地(8.84g/kg)>耕地(7.29g/kg)>撂荒地(4.68g/kg);湿地土壤表层有机碳含量极显著高于其它土地利用类型(P<0.01),湿地、林地土壤表层有机碳含量显著高于耕地与撂荒地(P<0.5);耕地土壤表层有机碳含量显著高于撂荒地(P<0.5);湿地土壤表层有机碳含量变异系数较小;受人为干扰强烈的水产养殖地和撂荒地土壤表层有机碳含量变异系数相对较高。  相似文献   

6.
李英升 《广东农业科学》2014,41(14):154-158
基于全国林业碳汇监测与计量体系的建立袁采用野外调查尧取样和室内实验分析相结合的方法袁研究了江西省4 种森林类型土壤碳贮量及碳汇能力分布特征袁结果表明院4种森林类型土壤有机碳含量与有机碳密度表现出 相似的规律袁从大到小依次为阔叶林跃杉木林跃针阔混交林跃松木林袁森林土壤平均有机碳密度15.69渊依10.28冤kg/m2袁低于我国森林土壤有机碳密度19.36 kg/m2的平均水平袁其中阔叶林的土壤有机碳密度最大袁其平均碳密度分别是另外3 种森林类型的1.2耀1.8 倍曰4 种森林类型土壤有机碳密度尧土壤有机碳含量及其差异程度均随土壤深度的增加而减少袁0耀30 cm 土层土壤有机碳密度分别占整个剖面的50%左右袁0耀10 cm 土层土壤有机碳含量为10耀30 cm 土层的 1.7~2.3 倍袁为30耀100 cm 土层的3~4 倍曰森林土壤碳贮量占整个森林生态系统总碳贮量的73.72%~79.08%袁在森林生态系统碳循环中具有重要的地位和作用遥  相似文献   

7.
岩溶区不同恢复方式下土壤有机碳组分及酶活性研究   总被引:4,自引:1,他引:3  
目的植被的自然恢复和人工重建是加速岩溶生态系统修复、提高土壤质量的主要措施。研究岩溶区不同恢复方式下土壤有机碳组分及酶活性可揭示不同恢复方式对土壤质量的影响,旨在为岩溶区植被恢复模式的筛选和恢复的效果评价提供科学依据。方法以云南省建水县岩溶区自然恢复的天然次生林、人工恢复的云南松针叶林、桉树阔叶林为研究对象,分析不同土层的土壤有机碳组分、碳库管理指数和酶活性分布特征及其相关关系。结果各植被恢复方式下土壤有机碳(SOC)含量为9.076~56.855 g/kg,可溶性有机碳(DOC)含量为822.311~1 175.778 mg/kg,微生物量碳(MBC)含量为332.933~2 035.244 mg/kg,易氧化有机碳(EOC)含量为2.381~6.094 g/kg。同一植被恢复方式下,除云南松林下的EOC含量外,各有机碳组分含量均随土层的加深而降低,局部土层深度出现波动。云南松林土壤亚表层(10~20 cm)的EOC含量显著高于表层(0~10 cm)和深层(20~30 cm)。不同植被恢复方式对DOC、EOC与SOC含量的影响大致均表现为:天然次生林>桉树林>云南松林,云南松林各土层的MBC含量始终显著高于桉树林。各有机碳组分与SOC均表现为极显著(P<0.01)或显著(P<0.05)正相关关系;不同植被恢复方式提升土壤碳库管理指数的能力大小为:天然次生林>桉树林>云南松林。SOC与CPI、CPMI呈极显著(P < 0.01)和显著(P < 0.05)正相关,EOC与CPAI、CPI、CPMI呈极显著(P<0.01)或显著(P<0.05)正相关。不同植被恢复方式通过增加土壤SOC、EOC等,从而提高了土壤碳库管理指数;整体上土壤酶活性随着土层的加深呈递减趋势,局部范围内有波动。不同植被恢复方式下土壤酶活性的变化不尽相同,过氧化氢酶和淀粉酶活性表现为天然次生林>云南松林>桉树林。各植被恢复方式下SOC、MBC、DOC、EOC含量与4种土壤酶活性均呈正相关关系,且多为显著或极显著水平。结论3种植被恢复措施在不同程度上提高了土壤各有机碳组分含量、碳库管理指数和土壤酶活性。其中,天然次生林对土壤整体质量的提升能力最高,桉树林在提升总有机碳及活性碳组分含量方面较为显著,而云南松林对过氧化氢酶和淀粉酶活性的提升能力更为显著。因此,应该加快岩溶区宜林土地管理方式的转变,优先考虑自然恢复,选择人工造林时要注重对阔叶树的利用和优化管理。   相似文献   

8.
 【目的】土壤碳库管理指数是表征土壤碳变化的重要量化指标,研究黄土丘陵区人工刺槐林土壤活性有机碳与碳库管理指数的变化过程对认识该地区生态恢复过程中土壤质量的演变及其效果评价具有重要意义。【方法】采用时空互代法,以典型侵蚀环境纸坊沟流域生态恢复过程中不同年限的人工刺槐林为研究对象,选取坡耕地和天然侧柏林为参照,分析了植被恢复过程中土壤有机碳(TOC)、活性有机碳(LOC)、非活性有机碳(NLOC)及碳库管理指数(CPMI)的演变特征,并运用相关和回归分析方法对生态恢复过程中碳库各组分和恢复年限进行拟合。【结果】营造刺槐林可以显著增加土壤碳库各组分含量,并随恢复年限呈显著线性关系,50 a时TOC、LOC、NLOC和碳库指数(CPI)分别较坡耕地增加271%、174%、467%和271%,其中NLOC增加速率略高于LOC,表明植被恢复增加的土壤碳素绝大多数以非活性形态贮存起来,而为了满足生物生长所必须的活性物质来源,土壤碳库必须维持一定的活度状态来满足碳素的动态转化平衡,碳库管理指数在营造刺槐林初期显著降低,随后先增加后降低,与刺槐林生长特性密切相关;但与天然林相比差距仍然较大,恢复50 a时TOC、LOC和NLOC仅为侧柏林的49%、34%和61%。【结论】侵蚀环境下的坡耕地由于人为干扰,土壤碳库含量偏低,并处于高速低效率物质转化过程中,人工刺槐林促进生态恢复可以依靠生物的自肥作用增加土壤碳库各组分含量,但要恢复到破坏前该地区顶级群落时的水平,还需要一个漫长的阶段,这个阶段可能需要上百年的时间。  相似文献   

9.
小流域梯田土壤有机碳含量及其固碳潜力   总被引:1,自引:0,他引:1  
以内蒙古赤峰市敖汉旗黄花甸子流域梯田土壤为研究对象,选取玉米地0~20、20~40、40~60 cm土层土壤,运用描述性统计分析、差异性分析以及土地利用方式对比法探究样地土壤有机碳含量状况及其固碳潜力。研究表明:(1)黄花甸子流域梯田土壤有机碳含量从表层到底层逐渐减少,具有表聚现象。梯田60 cm深度土壤平均有机碳含量为6.67 g/kg,转换为有机质是11.50 g/kg,处于中等水平。(2)梯田土壤退耕还林后,各层土壤固碳潜力由大到小表现为耕层中层底层,耕层是梯田土壤中最具固碳潜力的部分。在以后的农作活动中,应该着重保护表层土壤,增加耕层土壤碳累积,充分发挥农田的固碳功能。(3)土壤60 cm深度的现实固碳潜力为0.024 32×10~6 t。  相似文献   

10.
百花山典型林分土壤有机碳储量及垂直分布特征   总被引:3,自引:0,他引:3  
针对百花山落叶阔叶混交林、华北落叶松林、桦木林3种典型林分土壤有机碳储量及垂直分布特征进行研究。结果表明,不同林分类型下的土壤有机碳含量存在明显差异,桦木林最高(33.87g/kg±2.82g/kg),华北落叶松林次之(27.42g/kg±2.21g/kg),落叶阔叶混交林最低(26.24g/kg±1.91g/kg),桦木林土壤有机碳的密度为(26.06±1.88)kg/m2,落叶阔叶混交林为(19.81±1.70)kg/m2,华北落叶松林为(18.94±1.50)kg/m2,土层间有机碳密度为(1.57~7.22)kg/m2,且随着土层深度的增加呈现减少的趋势;不同林分中0~20cm土层有机碳储量占整个剖面有机碳总储量的百分比均达到50%以上,0~20cm土层有机碳含量变化总趋势为下坡位>中坡位>上坡位。  相似文献   

11.
采用样方收获法,利用实测数据,研究了湖南桃江血水草的生物量、碳含量、碳贮量及其分配特征。结果表明,血水草生物量为1744.70 kg/hm2,其中以地下根系生物量最高,为1278.63 kg/hm2,占血水草生物量的73.9%,且地下根系部分生物量与地上叶、茎部分生物量比值为2.74。血水草各器官平均碳含量为450.54 g/kg,从高到低排序为叶>茎>根。土壤层有机碳含量为6.63-38.50 g/kg,各层次碳含量分布不均,表层(0-15cm)土壤碳含量较高,并随土壤深度的增加而逐渐下降。生态系统碳贮量为101.19 t/hm2,碳库的分布格局为土壤层>植被层>枯落物层。植被层的碳贮量为0.79 t/hm2,占整个生态系统总碳贮量的0.78%;在植被层中,地下根系碳贮量为0.57 t/hm2,占植被层总碳贮量的72.2%,是植被层的主要碳库。枯落物层碳贮量较少,为0.22 t/hm2,仅占整个生态系统的0.22%,它是维系植物体地上碳库与土壤碳库形成循环的主要通道。血水草生态系统中的碳贮量绝大部分集中在土壤中,土壤层碳贮量可观,为100.18 t/hm2,占系统总碳贮量的99.0%,是血水草生态系统中的主要碳库。研究结果,可为深入研究亚热带地区草本植物的生态功能提供参考。  相似文献   

12.
辽宁仙人洞典型林分森林土壤碳氮分布特征   总被引:1,自引:0,他引:1  
以辽宁省仙人洞自然保护区内阔叶混交林、红松林、日本落叶松林、针阔混交林、赤松林以及栎类林6种典型林分为研究对象,分析了不同林分类型下土壤有机碳的含量、有机碳储量、全氮含量、碳氮比(C/N)及有机碳含量与全氮、速效磷、速效钾的相关关系。结果表明:随着土壤剖面深度的增加,不同林分的土壤有机碳、全氮含量逐渐降低,且不同土壤层次间呈现出显著性差异;不同林分土壤有机碳含量平均值为15.11~47.07 g/kg;不同林分土壤全氮含量为2.83~11.17 g/kg;不同林分的C/N为9.27~28.23,平均值大小为栎类林红松林赤松林日本落叶松阔叶混交林针阔混交林;不同林分0~50 cm土层的土壤有机碳储量大小为针阔混交林(230.64 t/hm~2)日本落叶松(210.46 t/hm~2)阔叶混交林(136.26 t/hm~2)赤松林(122.84 t/hm~2)红松林(97.84 t/hm~2)栎类林(68.55 t/hm~2);在0~10 cm土层,各个林分土壤有机碳含量与土壤全氮、速效磷、速效钾呈显著正相关(P0.05),在10~20 cm土层,各个林分土壤有机碳含量与土壤全氮、速效磷呈显著正相关(P0.05),土壤有机碳与速效钾不存在显著相关性。  相似文献   

13.
【目的】 研究天山云杉林不同更新方式对土壤碳氮的影响,了解碳、氮的生物地球化学循环。【方法】 采用典型样方法,研究新疆天山云杉林不同更新方式对土壤碳氮含量的影响。【结果】 不同更新方式下林地土壤有机碳、全氮含量均随着土层加深呈逐渐下降的趋势。不同更新方式间土壤有机碳含量的差异主要在0~25 cm土层。与老龄云杉林相比,更新后,天然更新林、人促更新林和人工更新林0~10 cm土层土壤有机碳含量分别下降21.08、27.83 和53.2 g/kg, 10~25 cm土层分别比老龄云杉林下降9.09、13.88和13.83 g/kg,且与老龄云杉林差异均达到显著水平(P < 0.05);而不同更新方式间全氮含量的差异主要在0~10 cm土层,分别比老龄云杉林下降0.44、0.71和0.98 g/kg,且与老龄云杉林差异均达到显著水平(P < 0.05)。不同更新方式对林地土壤有机碳及全氮储量的影响不同,75 cm深土壤有机碳及全氮储量的大小顺序依次为,天然更新林>人促更新林>人工更新林。【结论】 不同更新方式对林地土壤碳氮影响程度不同,人工更新林土壤碳氮含量比天然更新林土壤下降的更为明显,其中表层土壤反映最为敏感,下降最快。  相似文献   

14.
[目的]研究浑善达克沙地不同龄级人工沙柳灌丛土壤有机碳分布规律,为进一步研究干旱区群落演替过程中碳收支以及生态恢复过程中的植被类型选择提供科学依据。[方法]对浑善达克沙地不同龄级(2、4、6、8 a)人工沙柳灌丛土壤p H、容重、有机碳、碳密度进行研究。[结果]土壤p H在7.34~7.60,且与土壤有机碳的变化无明显相关性。同一龄级植被垂直分布上,表层土壤容重较底层低,与土壤有机碳含量的变化呈负相关。土壤有机碳在0.44~1.10 g/kg,不同龄级沙柳灌丛不同土层土壤有机碳含量均随林龄的增加出现先减低后升高的趋势,同一龄级沙柳灌丛不同土层的土壤有机碳含量无明显的变化规律。表层土壤碳密度随着龄级的增大呈先降低后增加的趋势。8 a沙柳灌丛土壤碳密度最高,为9.59 kg/m~2;随着土层的加深土壤碳密度不断增大。[结论]沙柳灌丛对沙地植被恢复、土壤碳库有重要作用。  相似文献   

15.
侵蚀环境人工灌木林土壤活性有机碳与碳库管理指数演变   总被引:1,自引:0,他引:1  
采用时空互代法,以黄土丘陵区纸坊沟流域生态恢复过程中不同年限的人工柠条和沙棘林为研究对象,选取坡耕地和天然侧柏林为对照,分析了植被恢复过程中土壤有机碳(TOC)、活性有机碳(LOC)、非活性有机碳(NLOC)及碳库管理指数的演变特征。结果表明,侵蚀环境下的坡耕地由于人为干扰,土壤碳库含量偏低,退耕营造柠条林可以显著增加土壤碳库各组分含量,并随恢复年限呈显著线性关系,25 a时TOC、LOC和NLOC分别较坡耕地增加271%、144%和204%,仅为侧柏林的32%、30%和29%,碳库指数和碳库管理指数较坡耕地明显增加,增幅分别达到144%和108%,仅为侧柏林的28%和43%;不同灌木林对土壤碳库管理的改善作用不同,恢复年限相同的沙棘林土壤碳库组分含量和管理指数明显高于柠条林,坡耕地营造灌木林后土壤经营和管理水平得到了显著改善,土壤系统向着良性方向转变。相关性分析表明有机碳、活性有机碳、非活性有机碳、碳库指数、碳库管理指数与土壤主要肥力因子相关性极其密切,可以作为反映生态恢复过程土壤质量演变的指标。  相似文献   

16.
林地抚育对黔中地区杉木人工幼林生态系统碳储量的影响   总被引:3,自引:2,他引:1  
林地抚育(松土、割灌、锄草)是提高人工林林分成活率,促进林木生长的重要措施,但对其固碳功能的影响研究仍鲜见报道。本研究以杉木人工林为研究对象,分析了林地抚育(松土、割灌、锄草)对黔中地区杉木人工幼林生态系统碳储量及其组分(植被层、枯落物层、作为主根系层的0~60 cm土壤层的碳储量)的影响。结果表明:林地抚育使得杉木人工林林木的保存率、林分郁闭度、林木胸径、树高等均显著高于对照林分,林木单株生长的固碳能力大幅提高,其碳储量是对照林分的4.93倍。抚育杉木人工幼林生态系统的总碳储量(106.37 t/hm2)显著高于对照(78.61 t/hm2),其中植被碳库储量(26.07 t/hm2)是对照(4.64 t/hm2)的5.62倍,抚育后枯落物碳储量较对照高0.38 t/hm2。但是,林地抚育后表层土壤(0~10 cm)有机碳含量较对照下降5.44 g/kg,而10 cm以下土层较对照均表现为增加,土壤碳储量较对照总体增加3.30 t/hm2。因此,造林初期林地抚育可促进林木生长,提高植被、土壤和生态系统的碳储量,显著增强杉木幼龄林的碳汇功能。   相似文献   

17.
该研究通过对海南西部不同林龄橡胶人工林土壤剖面进行有机碳含量实测,估算土壤有机碳储量,结果表明4种不同林龄橡胶人工林生态系统土壤有机碳含量为6.20~14.36 g/kg;橡胶人工林土壤有机碳碳含量随土壤层的增深而逐渐减少,除33 a胶林0~60cm各层土壤有机碳含量差异显著外,其他同一林龄橡胶人工林不同土壤层间差异不显著,不同林龄橡胶人工林在同一土壤层间有机碳含量差异显著,土壤有机碳集中于0~30 cm土壤层;5、10、19和33 a橡胶人工林生态系统土壤有机碳储量分别为76.85、74.48、81.74和85.31 t/hm2。气候条件、土壤质地、凋落物量累积与分解、林龄大小和胶林经营管理是影响橡胶人工林土壤有机碳蓄积的主导因子。  相似文献   

18.
以贵州普定县陈家寨小流域为对象,探讨5种不同土地利用方式0~20 cm土层各活性有机碳组分的差异特征及其与土壤总有机碳间的关系。结果表明:贵州陈家寨喀斯特小流域0~20 cm土层土壤总有机碳含量为42.03(±25.08)g/kg,其中灌木林地有机碳含量最高为77.44(±28.38)g/kg,是耕地有机碳含量的3.5倍;土壤水溶性有机碳的含量表现为灌木林地荒草地人工林果园耕地,游离活性有机碳的含量表现为灌木林地人工林荒草地果园耕地,易氧化有机碳的含量表现为灌木林地人工林荒草地耕地果园;土壤总有机碳含量与各活性碳组分间均有显著相关关系,其中与游离活性有机碳的相关系数最高。不同土地利用方式下土壤有机碳含量不同,各活性有机碳组分既有相同之处,又存在差异,说明土壤活性有机碳的复杂性,因此不同活性有机碳的表征指标无论数值还是变化趋势不能直接比较。  相似文献   

19.
利用有机碳密度分组法,研究了青海省高寒农区退耕还林(草)前后4种土地利用方式(农田、人工林、林草间作、原生样地)下的土壤总有机碳、轻组含量和轻组有机碳的变化趋势。结果表明土壤总有机碳含量由高到低依次为林草间作原生样地人工林农田,其含量分别为2416.78、2167.08、1556.20、1137.08g/m2,林草间作与人工林、农田2组样地间差异显著(P0.05);土壤轻组有机碳由高到低依次为原生样地林草间作人工林农田,其含量分别为403.95、368.27、232.21、130.14g/m2,原生样地与人工林和农田间差异显著(P0.05);比较轻组含量,其序列依次为原生样地林草间作人工林农田,其含量依次为19.25、16.45、10.01、6.66g/kg。原生样地的开垦会导致土壤总有机碳和轻组有机碳的下降,而农田退耕为林草间作和人工林后有利于土壤固碳能力的增加。退耕后形成的林草间作样地的土壤总有机碳较农田增加了112.54%,人工林较农田增加了36.86%;轻组有机碳则分别提高了210.4%和182.98%。因此,可以认为在干旱少雨的青海高寒农区,退耕还林措施的实施不仅有利于改善当地水土流失现状,更能提高土壤固碳能力,使这一区域的生态环境和生态效益同时得到提升。  相似文献   

20.
林宝珠  王琼 《安徽农业科学》2013,41(15):6681-6683
[目的]探讨科尔沁沙地半干旱区樟子松疏林草地土壤有机碳及其稳定性。[方法]通过分析林内0~5、5~10、10~20和20~30cm层土壤有机碳(SOC)、土壤微生物量碳(MBC)以及土壤易氧化有机碳(Clab)含量,揭示樟子松疏林草地SOC含量及其稳定性。[结果]樟子松疏林草地SOC含量随土层深度的增加而降低,由表层(0~5 cm)的6.77 g/kg降到深层(20~30 cm)的3.51 g/kg,下降了约48%;MBC在土壤空间分布上表现为先降低后增加,Clab含量呈相同的变化趋势。[结论]随着土层深度的增加,樟子松疏林草地Clab含量升高,表明樟子松疏林草地SOC的稳定性随土壤深度的增加而降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号