首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 218 毫秒
1.
基于Landsat 8的深圳市森林碳储量遥感反演研究   总被引:1,自引:0,他引:1  
以2014年Landsat 8遥感影像为数据源,研究了深圳市森林碳储量遥感反演模型的构建及其空间分布情况,对城市生态系统碳循环研究具有重要意义。采用分层随机抽样的方式布设168个样地,结合外业样地数据,从遥感影像中提取31个植被指数作为自变量,分别构建了多元线性回归模型、Logistic回归模型和Radical Basis Function(RBF)径向基函数神经网络模型,进而估算该地区的森林碳储量并比较分析。结果表明,RBF神经网络模型的估算精度最高,决定系数最大且均方根误差最小,分别为0.829t·hm~(-2)和9.131t·hm~(-2);Logistic回归模型估算精度次之,决定系数和均方根误差分别为0.523t·hm~(-2)和11.821t·hm~(-2);多元线性回归模型估算精度最低,决定系数最小,均方根误差最大,分别为0.438t·hm~(-2)和12.870t·hm~(-2)。可见,RBF神经网络模型能更好地模拟森林碳储量与各个因子之间的关系。研究区森林碳储量的空间分布特点表现为东南沿海部分碳储量大,中西部城市经济开发区碳储量小,与实际森林分布基本一致。  相似文献   

2.
  目的  采用遥感数据估算森林地上生物量仍存在一些不确定性问题,研究估算过程中的误差来源及其占比,对提高森林地上生物量的估测精度具有重要意义。  方法  从遥感影像提取因子,结合高山松Pinus densata外业调查数据,建立多元线性回归、梯度提升回归树、随机森林等3种地上生物量估测模型,对样地尺度与3种模型的不确定性进行分析和度量。  结果  ①高山松单株生物量模型不确定性为16.43%,样地尺度的不确定性为7.07%;②多元线性回归模型残差不确定性为34.86%,参数不确定性为21.30%,与样地不确定性合成后总不确定性为41.45%;③非参数模型中,梯度提升回归树估测高山松地上生物量的总不确定性为23.12%,随机森林为19.42%。  结论  3种遥感估算模型中,非参数模型的不确定性明显低于参数模型。相较于样地尺度,遥感估算模型的不确定性对地上生物量估算精度的影响较大。图3表3参26  相似文献   

3.
运用GF-1影像光谱和纹理信息构建森林蓄积量估测模型   总被引:1,自引:0,他引:1  
以GF-1遥感影像为数据源,研究区森林资源二类调查数据为样地实测数据,综合考虑光谱、地形、纹理特征,利用多元线性回归、BP神经网络、支持向量机和随机森林建立研究区森林蓄积量估测模型,并验证模型预测的性能。结果表明:4种模型预测评价指标的决定系数(R2)和均方根误差(RMSE)相近,但有一定的差异,多元线性回归模型R2和RMSE分别为0.446、39.979 6 m^3·hm^-2,BP神经网络模型R2和RMSE分别为0.474、39.703 9 m^3·hm^-2,支持向量机模型R2和RMSE分别为0.485、38.924 8 m^3·hm^-2,随机森林模型R2和RMSE分别为0.534、37.882 2 m^3·hm^-2;3种机器学习方法构建的蓄积量估测模型预测性能优于传统的多元线性回归模型,随机森林模型的预测性能最优。  相似文献   

4.
以石台县为研究地,结合Rapideye高分遥感影像和不同森林类型样地林木地上生物量调查数据,采用Pearson双变量相关分析方法筛选模型变量,分别用多元线性回归和随机森林算法建立不同森林类型的遥感地上生物量估测模型,并进行模型估测精度对比分析。结果表明,叶绿素红边模型(CRM)与叶绿素绿波模型(CGM)2个指数与针叶林、阔叶林生物量在0.01水平上的相关性极显著,且在其多元线性回归模型和随机森林模型中两者均被挑选为建模变量。另外,与生物量相关性较强的纹理特征主要集中的红光波段和红边波段,且仅MEAN、VAR、SM3个滤波对生物量估测贡献较大,可作为建模变量。阔叶林、针叶林和针阔混交林3种森林类型的地上生物量模型估测精度均表现为随机森林模型优于多元线性回归模型。随机森林模型生物估测绝对均方误差在12.8760~36.5363之间,相对均方误差在20.20%~45.95%之间;多元线性回归生物量估测绝对均方误差在22.0425~46.4494之间,相对均方误差在34.58%~58.42%之间。  相似文献   

5.
目前遥感技术是估测区域森林生物量的有效手段。基于TM影像和样地数据,分析了从TM影像中提取的17个自变量与森林生物量的相关性,并用多元逐步回归法建立森林生物量模型,用于估算2009年北京山区森林生物量。提取的17个自变量中红光波段(TM3)、土壤校正植被指数(SAVI)和主成分分析的第三分量(PC3)为较好的解释变量,据此建立的生物量模型的相关系数较高(R2=0.869),估算得到北京山区森林生物量总计达1 088.38万t,平均生物量密度为35.2 t.hm-2。北京山区多数地方的森林生物量介于20-30 t.hm-2,大于30 t.hm-2的森林生物量主要分布在北部山区,表明北京森林质量不高,但提高的潜力很大。  相似文献   

6.
城市绿地地上生物量的定量估算为城市碳循环研究提供重要依据。以杭州市辖区为研究区,选取Landsat 8OLI影像,提取影像的原始波段及植被指数信息,基于199个样地实测数据,建立研究区绿地地上生物量估算模型,反演研究区生物量,并与同时期Landsat 7ETM+遥感影像生物量估算结果进行对比分析。结果表明,基于OLI影像建立的逐步回归和随机森林模型R2分别为:0.643、0.514;城市绿地生物量主要集中在5~15、35~55t·hm~(-2),城区内绿地主要以带状、块状分布,其值偏低,中部公益林及城郊马尾松林生物量值较高;基于OLI影像估算的研究区生物量平均值为32.520t·hm~(-2),相应的ETM+估算结果为34.454t·hm~(-2),两者估算结果的差值基本上以0为中心,差值的平均值为-1.934t·hm~(-2),2种影像估算结果的Pearson系数为0.901,显著性0.001;总体上,2景影像的生物量估算结果差异较小,可通过线性关系相互补充利用。  相似文献   

7.
以65块云南省普洱地区思茅松人工林圆形样地数据和sentinel-2多光谱影像数据为研究对象,利用林分平均高与林分密度(每公顷株数、林分疏密度、植被覆盖度、叶面积指数)估测思茅松人工林林分地上生物量。分析思茅松人工林林分地上生物量与林分密度指标的相关性;采用参数模型(不变参数模型和可变参数模型)和非参数模型(包括支持向量机、随机森林和BP神经网络)探索平均高和林分密度等变量估测林分思茅松人工林地上生物量。结果表明:思茅松人工林林分地上生物量与每公顷株树、林分疏密度、植被覆盖度、叶面积指数呈显著正相关(r>0.5);在构建思茅松人工林地上生物量的所有模型中,每公顷株数-林分平均高构建的可变参数模型(R2=0.966 0,RMSE=10.05 t·hm^-2)效果最优,林分平均高-林分疏密度构建的RF模型(R2=0.901 7,RMSE=19.37 t·hm^-2)次之,林分平均高-植被覆盖度构建的RF模型(R2=0.748 4,RMSE=33.36 t·hm^-2)最差;林分密度-平均高的地上生物量模型与实测地上生物量的相关性较高(R2=0.966 0),反演误差值较低(RMSE=10.05 t·hm^-2);叶面积指数比植被覆盖度对林分地上生物量变动有更好的解释能力,每公顷株数对林分地上生物量变动的解释能力好于林分疏密度。  相似文献   

8.
以吉林省延边朝鲜族自治州汪清县的主要针叶纯林树种为研究对象,结合Landsat 8 OLI数据和地面调查数据,通过提取半径为15 m圆形样地林分尺度下的遥感特征变量实现对地上生物量的估算。首先提取128块样地内的34个遥感特征,其次采用随机森林特征重要性分析遥感特征的贡献率,再利用BP神经网络算法的2种训练算法、SVM支持向量机的3种核函数构建地上生物量模型,最后利用32个测试样本评价模型的估算精度。结果表明,BP神经网络的L-M训练算法和贝叶斯正则化训练算法的R2分别为0.602 9、0.672 1,RMSE分别为5.096 9、4.263 7,MAE分别为4.166 9、3.211 8;SVM支持向量机的线性核函数、RBF核函数、多项式核函数的R2分别为0.585 8、0.561 9、0.487 7,RMSE分别为5.859 4、5.600 9、5.763 7,MAE分别为4.24、3.89、4.176。以贝叶斯正则化训练算法构建地上生物量模型的估测精度最佳;BP神经网络算法比SVM向量机更适用于本研究;同一种机器学习算法不同的训练函数存在差异性。  相似文献   

9.
为了探究机载LiDAR数据结合极端梯度提升(XGBoost)算法估算森林地上生物量的可行性和适用性,寻求更优的森林地上生物量的监测和估算模型的建模方法。根据125块地面样地调查数据和机载激光雷达提取的点云特征变量,结合根据皮尔森相关系数和递归特征消除筛选变量,采用多元线性回归(MLR)、随机森林(RF)、支持向量机(SVM)和极端梯度提升(XGBoost)算法,建立4种不同算法的地上生物量估测模型并进行对比分析。结果表明:在训练集中,RF模型表现最好(RMSE=9.98 t·hm-2,R2=0.93,MAE=5.69 t·hm-2),其次是XGBoost模型(RMSE=10.80 t·hm-2,R2=0.89,MAE=7.24 t·hm-2);在测试集中,采用XGBoost算法建立的模型表现(RMSE=12.20 t·hm-2...  相似文献   

10.
以河南西峡县2013年Landsat 8影像及同期217块森林资源连续清查固定样地数据为信息源,以9个植被指数、3个地形指数为自变量,建立多元线性回归、决策与回归树、装袋算法、随机森林4种遥感估测模型;采用十折交叉验证,及相关系数、绝对误差、均方根误差、相对误差、相对均方根误差5个指标,对遥感估测模型进行精度评价,在此基础上,对研究区域2013年的森林地上部分生物量进行遥感估测和空间分析。结果表明:在4种遥感估测模型中,随机森林综合性能最高,装袋法次之,多元线性回归最低;在12个自变量中,地形(海拔、坡度)、土壤(亮度指数、湿度指数)、植被生长状况(垂直植被指数、有效叶面积指数)6个因子是影响研究区域森林地上部分生物量的重要环境变量;2013年,研究区域单位面积森林生物量为38.56 t/hm2,其中低(40 t/hm2)、中(40~60 t/hm2)、高(60 t/hm2)的面积分别占59.92%、24.30%、15.78%;研究区域森林地上部分生物量较高的区域,主要分布在交通不便、森林茂密、人类干扰活动较少的北部石质山区,而较低的区域,主要分布在交通发达,人口密度大,坡度较为平缓的南部鹳河谷地。  相似文献   

11.
针对传统k-最近邻法(k-nearest neighbor,k-NN)在搜索最近邻单元时赋予特征变量相等的权重,缺少对特征变量加权优化等不足问题,在云南省香格里拉市,以高山松Pinus densata为研究对象,基于49块实测标准地,116株高山松样木和Landsat 8/OLI影像,在前期进行基于遗传算法(genetic algorithm,GA)优化的k-NN模型实现的基础上,对k-NN的3个参数(k,t和d)进行反复测试优化组合,在像元尺度上对研究区高山松地上生物量进行遥感估算。结果表明:基于遗传算法优化的k-NN模型精度优于传统的k-NN模型,优化前均方根误差为30.0 t·hm-2,偏差为-0.418 t·hm-2,相对标准误差百分比(RMSE)为54.8%;优化后均方根误差为24.0 t·hm-2,偏差为-0.123 t·hm-2,RMSE为43.7%。基于优化k-NN模型的研究区高山松地上生物量总储量估测结果为0.89×107 t。  相似文献   

12.
宝天曼自然保护区栎类群落细根生物量的研究   总被引:1,自引:1,他引:0  
通过土柱取样法对宝天曼国家自然保护区4种栎类群落细根生物量及其垂直分布进行了研究.研究结果表明,不同栎类群落细根生物量差异明显,锐齿栎林细根生物量最高(4.657 t·hm-2)、其次为短柄袍林(4.450t·hm-2)、栓皮栎林(4.421 t·hm-2)和茅栗林(4.351 t·hm-2).从不同土壤层次中细根所占的比例看,栎类群落细根总生物量的60%左右分布在0~10 cm土层,85%以上分布在0~20 cm土层.随着土层深度的增加而减少,分析0~x cm土层细根生物量.回归分析表明负指数模型和双曲线模型效果较好.  相似文献   

13.
辽宁冰砬山不同年龄落叶松人工林生物量和生产力的研究   总被引:1,自引:0,他引:1  
森林生物量和生产力直接关系到森林生态系统的固碳能力.以冰砬山4个年龄阶段的长白落叶松(Larix olgensis)人工林为研究对象,采用标准木收获法建立生物量与胸径的相对生长方程,推算各林龄的生物量、生产力及其分配规律.结果表明:幼龄林、中龄林、近熟林和成熟林的群落生物量分别为154.04t· hm-2· a-1、179.29t· hm-2· a-1、229.40t·hm-2· a-1和254.78t· hm-2· a-1,其中乔木层生物量占群落生物量的比例达94%以上.不同年龄阶段的落叶松人工林乔木层的年平均净生产力均较高,并随着林龄的增大而下降,幼龄林乔木层的生产力可高达16.71t· hm-2· a-1,比成熟林的生产力高出近1倍.在所有不同年龄阶段,各器官的生产力占总生产力的比例平均为:叶(46%)>树干(39%)>根(10%)>枝(5%).  相似文献   

14.
以黑龙江省区域小兴安岭地区遥感影像和130块2005年小兴安岭二类调查数据及土壤数据为基础,选择各个波段的灰度值、不同波段灰度值之间的线性和非线性波段组合、纹理信息以及非生物因子栅格化后所形成的辅助波段等为自变量,选择与碳密度相关性显著的自变量,采用郁闭度碳密度联立方程组模型,对黑龙江省区域小兴安岭森林生态系统的碳密度进行估算、精度评价。结果表明:黑龙江省区域小兴安岭的南部和中部地区,森林碳密度主要集中在200~250 t·hm-2;北部地区大部在250~300 t·hm-2。黑龙江省区域小兴安岭森林生态系统碳密度,具有从西向东、从南向北,逐步升高的趋势。模型平均拟合精度85.1%,均方根误差=31.27 t·hm-2;平均检验精度84.7%,均方根误差=33.61 t·hm-2。  相似文献   

15.
生物量是林业和生态应用研究的重要信息,森林生态系统地上生物量估算的遥感技术引起了国内外学者的广泛关注。总结与探讨不同数据源与估算方法能够为森林地上生物量的估算提供指导。本文首先总结并探讨单传感器遥感数据,包括光学遥感、合成孔径雷达与激光雷达数据在森林地上生物量估算中的应用,以及协同使用多源遥感数据估算森林地上生物量的优势;然后论述森林地上生物量估算的传统模型估算法与机器学习估算方法(决策树法、K最近邻法、人工神经网络、支持向量机、最大熵)。多源遥感数据集成能够结合不同数据的优势,能够为森林地上生物量估算提供丰富的特征信息,结合机器学习估算方法,是提高森林地上生物量估算的准确性的发展趋势。   相似文献   

16.
基于Landsat-8遥感影像结合同期的野外调查样地数据,建立青海省西宁市南北山森林生物量估测模型。通过对Landsat-8遥感数据6个原始波段的灰度值和4个常用植被指数(DVI、NDVI、EVI、SAVI),开展主成分分析后得到主分量PCA1、缨帽变换得到BRIGHT、GREEN、WET,分析遥感信息与生物量的相关性,运用逐步回归分析法建立研究区森林生物量回归估测模型:B=119.495+3.704E-24eDVI+0.026OLI-52-3.478OLI-5(R2=0.554,p<0.01),经检验模型的平均相对误差为13.509%,反演得到西宁市单位面积森林生物量为5.227 t/hm2,总森林生物量为998 991.768 t。结合西宁市遥感影像,绘制了西宁市森林生物量分布图。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号