首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 265 毫秒
1.
贺兰山天然油松林单株生物量回归模型的研究   总被引:6,自引:1,他引:5  
通过对贺兰山天然油松林分进行每木调查,应用相关分析方法,采用幂指数模型对贺兰山天然油松林单株生物量模型进行了模拟。结果表明:贺兰山天然油松林各器官生物量分配比率为树干>树枝>树根>树皮>树叶。分别以树高、胸径、1/2树高处直径和胸径平方乘树高为自变量,与各器官生物量拟合的预测模型中,树干、树枝和树根的生物量预测模型拟合效果较好,具有一定的实用价值;树叶的生物量预测模型拟合效果中等,树皮的生物量预测模型拟合效果较差;任一自变量与单株生物量拟合的预测方程适用性均较好。  相似文献   

2.
为了解新疆山区森林的主要阔叶树种疣枝桦与欧洲山杨各组织器官生物量分配的规律及准确预估其生物量,研究基于整株收获实测数据采用统计回归的方法分析了2树种生物量分配格局和估测模型。结果表明:整体上2树种地上生物量比例分别为76.52%、75.42%,平均根冠比分别为0.307和0.341,在不同林龄不同径阶各器官生物量分配疣枝桦和欧洲山杨均表现为树干比例最高,树叶最低,在幼龄林和胸径0~20cm树根大于树枝,但在中龄林和胸径20cm以上疣枝桦表现为两者接近而山杨表现为树枝大于树根;运用最小二乘法和根茎比方法建立了2树种地上和地下各器官生物量估测的单因子胸径模型和胸径、树高双因子结合模型,结果显示疣枝桦地上部分和树干生物量预估精度显著提高,尤其树干生物量胸径树高的双因子模型比胸径单因子模型预估精度提高了11.3%,但树冠、树枝和树叶生物量各评价指标改进效果不大,而欧洲山杨树干、树冠和树枝生物量评价指标改进显著,精度提高2%~4%,树叶生物量估测反而降低,地上总生物量估测精度几乎没变,2树种地下生物量模型估测精度分别是81.35%%和83.87%。2树种不同器官生物量分配均表现为树干树根树枝树叶,随着林龄和径阶的变化各器官生物量比例的变化趋势一致;优选出2树种各器官最优生物量模型,预估精度均在80%以上,可以满足日常生产需求。  相似文献   

3.
以2012年广东省森林资源连续清查资源数据中樟树Cinnamomum camphora的分布为基础,按2,4,6,8,12,16,20,26,32和38 cm共10个径阶伐倒90株樟树样木,获取树干、树皮、树叶、树枝、树根各器官生物量及含碳率数据,采用加权平均和总碳储量计算方法,计算了90株单木的碳储量。结果表明:广东樟树平均含碳率为0.509 6;树皮含碳率显著低于其他各器官(P < 0.05),树干、树叶、树枝、树根差异不显著;含碳率随年龄增加而增加,到近熟林和成熟林达到最高,到过熟林再下降;人工林的含碳率高于天然林;含碳率随着纬度增加而增加,随着海拔增加而降低;各器官碳储量在全树中的比例从大到小排列顺序为树干,树枝,树根,树皮,树叶;随着胸径增加树干碳储量比例变化的趋势先增加后下降,树皮碳储量比例前期稳定、后期下降,树叶、树根碳储量比例变化不大,树枝碳储量比例初期稳定、后期增加。拟合出樟树年龄(A),胸径(D)和D2H(H为树高)的最优碳储量(Ct)模型依次为Ct=0.019 4A2.652 0,Ct=0.011 8D2.937 6,Ct=0.001 6(D2H)1.268 6,R2值依次为0.602 9,0.943 2,0.910 5;经交叉检验,模型拟合效果显著(P < 0.01)。以胸径和D2H为变量的樟树碳储量模型拟合效果优于以年龄为变量的模型,模型应用中应优先选择胸径和D2H为变量的模型进行碳储量估算,当胸径和D2H不易测量且年龄易知时,方可使用年龄为变量的碳储量模型进行估算。  相似文献   

4.
根据对蔡家川流域30块油松标准地的调查资料,对油松林木生物量进行了研究。结果表明:胸径能够较好地用于全株、树干和树枝的生物量测定,建立了以胸径为基础的林木全株及器官生物量估测模型;平均生物量表现为树干>树枝>树叶,树干平均值为63.82%,树枝平均值为26.47%,树叶平均值为9.72%;坡向影响油松地上部分总生物量,并且影响地上部分生物量的分配;冠幅面积对油松整株、树干、树枝、树叶生物量和树高胸径均有影响:树冠冠幅面积每增加1 m2,整株生物量增加1.842 kg、干生物量增加0.941 kg、枝生物量增加0.704 kg、叶生物量增加0.196 kg;树冠冠幅面积每增加1m2,胸径增加0.149 cm、树高增加0.08m;油松树冠冠幅面积对油松器官生物量分配无影响。  相似文献   

5.
银杏生物量分配格局及异速生长模型   总被引:3,自引:1,他引:2  
以苏北地区银杏人工林为研究对象,选取13株进行整株挖掘,分析不同器官生物量的分配格局,以及地上和地下生物量之间的关系;再分别以胸径(D)、树高(H)、D2H、DaHb为自变量建立银杏各器官生物量模型,选择调整决定系数(Radj2)、残差平方和(SSE)、平均偏差(ME)、平均绝对偏差(MAE)和平均相对误差(MPE)作为选择最优模型的检验指标,根据检验结果筛选出各器官的最优模型。结果表明:13株银杏的整株生物量变化范围为28.50~320.27 kg,树干生物量占总生物量的49.4%~56.6%,树枝生物量占总生物量的12.1%~18.9%,树叶生物量占总生物量的3.8%~5.5%,根生物量占总生物量的26%;地上部分生物量与地下生物量线性方程的斜率为0.35,具有显著的线性相关性(P<0.01);枝和叶生物量都集中于树冠中部,树冠上层和下层的枝、叶生物量明显低于树冠中层生物量(P<0.05),上层和下层生物量之间差异不显著(P>0.05),70%根生物量集中0~1.0 m的土层;枝水平上,基于基径和枝长的枝生物量模型解释量超过95%;在各器官生物量最优模型选择上,以D为自变量的W=aDb的叶、枝、地上部分生物量模型要优于其他模型;树干、根和全株生物量则是以W=aDbHc模型最优。银杏各器官生物量表现为干>根>枝>叶,枝和叶生物量垂直分配上,中冠层占最大比例;基于树高和胸径的相对生长模型可以实现对银杏各器官生物量的准确拟合,银杏生物量及碳储量的有效估算。   相似文献   

6.
林木竞争对红松人工林立木生物量影响及模型研究   总被引:5,自引:4,他引:1  
基于红松人工林生物量实测数据,研究立木总生物量与各分项生物量(树干、树根、树枝和树叶)分配特征,以 及林木竞争对生物量分配的影响,并建立红松人工林立木总量与各分项的生物量模型。结果表明:叶生物量主要 集中在树冠中、下层且在中、下层的分布无显著差异,枝生物量从上层到下层逐渐增加;林木竞争强度与胸径、树 高、树冠比、树干、树枝、树叶和树根生物量呈显著幂函数关系,随着竞争强度的增大,胸径、树高、树冠比、树干、树 枝、树叶和树根生物量均逐渐减小(P 0.05),而根茎比并不受林木竞争强度的影响;树干生物量占总生物量的百 分比有减小的趋势,树枝、树叶生物量占总生物量的百分比有增大的趋势,树根生物量占总生物量百分比与竞争强 度无显著相关性;本文建立了立木总量与各分项生物量模型,所有模型都能对红松立木生物量进行很好的估计。   相似文献   

7.
长汀红壤侵蚀区马尾松林生物量估算模型的构建   总被引:1,自引:0,他引:1  
以长汀红壤侵蚀区马尾松为研究对象,通过整株收获法获取34株马尾松立木材积和生物量,分析不同龄级、径级马尾松材积和生物量分配格局,采用胸径(D)、树高(H)等变量建立立木材积模型,采用材积量(V)、胸径(D)、树高(H)、冠长(C_l)等变量建立树干、树冠及地上生物量模型,进而拟合区域林分生物量模型,使用独立样本检验并比较优选模型估测效果。结果表明:34株马尾松的树龄变化范围为19~42 a,立木材积量和立木生物量变化范围分别为0.004 4~0.194 9、2.733 9~140.331 4 kg/株,树龄与材积量、生物量相关性不显著;各器官生物量分配为干材(57.67±8.28)%、树枝(24.15±7.33)%、树叶(10.79±3.17)%、干皮(7.38±1.39)%,全林分中3个径阶(8、10、12 cm)蓄积量、生物量均超过总量的50%;所有模型确定系数均大于93%,单木模型中,以胸径-树高组合为自变量的模型拟合效果更佳;马尾松立木材积、地上生物量、树干生物量、树冠生物量及林分生物量模型中,各优选模型预估精度均达77%以上,其中立木材积、地上生物量及林分生物量优选模型比已有模型估测值的总相对误差、平均相对误差均有所降低,估测值更接近实际值。因此,通过构建该区域马尾松生物量方程,补充了长汀红壤侵蚀区马尾松立木材积表及生物量表。  相似文献   

8.
徐州石灰岩山地侧柏人工林生物量及其影响因子分析   总被引:3,自引:0,他引:3  
生物量和生产力是评估森林生态服务功能的重要指标,也是人工林可持续经营的科学依据.对徐州石灰岩山地50年生的侧柏纯林生物量及其影响因子研究,结果如下:(1)单株侧柏的生物量为8.88~80.71 kg,各个器官生物量比例总体呈树干树枝树根树叶或树干树枝树叶树根的顺序;(2)侧柏各测树因子中,关系最密切的是地上生物量与单株总生物量,其次是树干生物量与地上生物量,各部分干重与胸径及D2H之间存在着紧密的相关性,与树高的相关性较弱;(3)8块侧柏人工林生物量的变动范围为28.92~75.42 t·hm-2,平均值为54.35 t·hm-2;(4)朝北指数与林分生物量显著相关,其他因子同林分生物量没有明显的相关关系;林分密度与林分生物量、林分密度与地上生物量都呈现出单峰曲线关系.当林分密度为2 600株·hm-2左右时,林分生物量和林分地上生物量数值接近最大.  相似文献   

9.
丁洪峰 《安徽农业科学》2016,44(30):136-138
[目的]研究杉木生物量及其分配的动态变化。[方法]以闽北杉木林为研究对象,在典型区域设置46块样地,采用收获法测定46株标准木的生物量,林龄为5~33年。[结果]建立了闽北杉木器官及整株生物量与测树指标(胸径和树高)的回归模型;除树枝和树叶外,其他器官(树干、地上和树根)及整株的回归效果良好;随着林龄的增加,器官及整株生物量逐渐增加,在林龄为40年左右时达到稳定,同时构建了林木生物量与林龄的回归模型;随着林龄的增加,树干生物量的比例逐渐增加,其他器官生物量的比例逐渐减小,并在林龄为25年左右达到稳定。[结论]随着林龄的增加,杉木生物量及其分配呈现可预测的动态变化。  相似文献   

10.
闽楠Phoebe bournei为中国特有树种,是国家Ⅱ级重点保护植物,具有重要的经济价值和生态价值。以江西安福县闽楠天然次生林为研究对象,通过标准地及生物量调查获取基础数据,分析闽楠生物量分配特征,并基于非线性度量误差法建立相容性生物量模型。结果表明:①不同枝径级(2,4,6,8 cm)的一级枝、次级枝、叶生物量占枝条生物量的比值均差异显著(P < 0.05),枝条生物量集中于树冠下层,且显著高于上层生物量(P < 0.05)。②各器官生物量占整株生物量的比值从大到小依次为树干、树根、树枝、树叶,不同胸径级(14,18,22,26,30 cm及以上)各器官生物量大小差异显著(P < 0.05),不同胸径级树根生物量占整株生物量的比值差异显著(P < 0.05),其余各器官生物量占比均差异不显著(P > 0.05)。③相容性生物量模型对全株、地上、根、树冠、干、枝和叶的拟合精度分别为91.8%,91.0%,90.2%,85.1%,91.6%,86.8%和71.0%,拟合效果较好。  相似文献   

11.
  目的  探究不同林分的生物量及林下植被多样性差异,为营建亚热带人工林筛选适生的珍贵乡土阔叶树种。  方法  以四川农业大学崇州基地同质园试验中大叶樟Cinnamomum platyphyllum、油樟C. longepaniculatum、天竺桂C. japonicum、樟树C. camphora、桤木Alnus cremastogyne、香椿Toona sinensis、红椿T. ciliata 等7个阔叶树种林分为研究对象,通过测定各树种平均树高、平均胸径、林下植被多样性等指标,量化树种对生物量及林下植被多样性的影响。  结果  不同树种全株生物量存在显著差异(P<0.05),大叶樟的生物量最高,其次是桤木和红椿,天竺桂最低。树种各器官生物量存在显著差异(P<0.05),整体表现为干>根、枝>叶,并且大叶樟各器官生物量均最高,天竺桂各器官生物量均最低。各器官生物量占全株生物量比例在树种间存在显著差异(P<0.05),但树种大小排序无一致性规律。不同功能群之间的全株、叶、枝及干生物量无显著差异,但常绿树种的根生物量、根生物量占比和根冠比显著高于落叶树种(P<0.05),枝和干生物量占比则相反。落叶树种林分林下草本多样性显著高于常绿树种林分(P<0.05),并且红椿、桤木和香椿林分林下草本的Simpson指数显著高于天竺桂、樟树、大叶樟和油樟林分,红椿林分的林下草本Shannon-Wiener指数显著高于其他6个林分(P<0.05)。  结论  研究区培育落叶树种有利于人工林的物质循环和生物多样性保育,并且相较于其他乡土树种,选择桤木和红椿作为培育树种更有利于亚热带人工林的可持续经营与管理。图6表2参37  相似文献   

12.
[目的]探索择伐留竹密度和施肥量对巨龙竹新竹生长和生物量积累及分配特征影响,为巨龙竹高效培育和科学经营管理提供依据.[方法]以滇西南巨龙竹为研究对象,设计择伐留竹密度(7、15、25、35株/丛)和有机肥施用量(0、40、80、120 kg/丛)的2因素4水平正交试验,通过每木检尺和破坏性收获调查23种新竹生长形态、生...  相似文献   

13.
云南松不同家系苗木生物量分配及其异速生长   总被引:1,自引:0,他引:1  
  目的  旨在探明不同家系云南松苗木器官生物量分配格局及其异速生长现象,了解苗木的个体发育规律及适应策略。  方法  对10个家系310株云南松苗木的生长及生物量相关指标进行调查,利用单因素方差分析比较不同家系苗木的生物量及其分配差异,并采用标准化主轴分析法对其异速生长关系进行分析。  结果  (1)不同家系苗木生物量的积累与分配存在差异,但各器官生物量的分配均表现为叶 > 茎 > 根。苗木个体越小,叶生物量占比越大,随着个体大小的增加,倾向于将更多的生物量分配到茎。(2)苗木器官生物量间及器官生物量与个体大小间的异速生长关系在不同家系中不尽相同,总体表现为等速生长。(3)地上生物量与根生物量间及茎生物量与根生物量间具有共同的异速生长指数,分别为1.054和1.209。不同家系苗木既存在等速生长又具有异速生长现象,异速生长关系并不一致。  结论  异速生长关系在不同的家系中并不唯一,既有趋同适应又存在差异,反应了苗木的生长与适应策略。   相似文献   

14.
  目的  探究不同灌溉方式对杨树Populus细根生长和分布的影响,为滴灌培育人工林提供理论和技术依据。  方法  以5年生欧美杨107 Populus × euramericana ‘Neva’为研究对象,在滴灌和沟灌栽培的人工林中选取标准木,分别在株间、对角和行间方向距树干20、50、100和150 cm处采用根钻法取样,比较其细根生物量密度、细根根长密度、细根比根长的差异。  结果  滴灌条件下株间方向的细根生物量密度与沟灌的差异随水平距离增加而增大(P<0.05),对角和行间方向随水平距离增加其差异减小。滴灌下细根生物量密度在株间方向距树干50 cm处最大,对角和行间方向在距树干20 cm处最大。滴灌下株间方向的细根根长密度与沟灌的差异随水平距离增加而增大(P<0.05),对角和行间方向的差异随水平距离增加而减小。滴灌下细根根长密度在株间方向距树干50 cm处最大,对角和行间方向在距树干20 cm处最大。滴灌和沟灌下0~40 cm土层的细根生物量分别占0~60 cm土层的81%和73%,细根根长分别占0~60 cm土层的85%和80%。滴灌和沟灌下的比根长随水平距离增加而增大,且均表现为沟灌大于滴灌,不同方向比根长的差异在距树干20 cm处最大,在距树干50 cm处最小。  结论  滴灌能促进杨树人工林细根的生长和周转,影响细根的空间分布,提高林地生产力。图4表1参28  相似文献   

15.
为了解干热河谷地区造林树种在不同恢复模式下生物量及其分配的差异,进而评价该地区树种的混交效益.以元谋干热河谷9年生印楝Azadirachta indica和大叶相思Acacia auriculiformis为研究对象,对印楝纯林、大叶相思纯林及印楝与大叶相思混交林林木生物量及其分配特征进行了研究.结果表明:①混交林内印楝单株生物量(5.713 kg·株-1)比纯林印楝(4.898 kg·株-1)高16.6%;大叶相思(14.943 kg·株-1)比纯林大叶相思(17.377 kg· 株-1)低14.0%,但差异均未达到95%显著水平(P>0.05).混交林林分生物量(16.525 t·hm-2)介于印楝纯林(7.837 t·hm-2)和大叶相思纯林(27.802 t·hm-2)之间.②在纯林和混交林恢复模式下,印楝各器官生物量大小顺序分别为干>根>枝>皮>叶和干>枝>根>叶>皮;大叶相思分别为枝>干>根>叶>皮和干>枝>根>叶>皮.混交林印楝根冠比(0.280)较纯林(0.400)小(P<0.05),而混交林大叶相思(0.163)较纯林(0.132)大(P>0.05).(③印楝和大叶相思各器官之间及其与测树因子(D或D2H)均呈异速生长关系,不同恢复模式下印楝和大叶相思各器官之间异速生长速率差异较小,印楝表现现为枝>叶/干>根,地上部分>地下部分;而大叶相思为枝>干/根>叶,地上部分>地下部分.干热河谷印楝和大叶相思混交种植9a后,提高了印楝生物量,而大叶相思生物量有所下降,不同恢复模式下同一树种器官生物量分配大小也发生了变化.  相似文献   

16.
杨梅人工林相容性单株生物量模型构建   总被引:1,自引:0,他引:1       下载免费PDF全文
  目的  构建杨梅Myrica rubra一元相容性单株生物量模型,为杨梅人工林可持续经营及生物量精确估测提供理论依据。   方法  基于48株杨梅标准木实测数据,在以地径、树高、冠幅为自变量建立独立单株生物量模型基础上,运用非线性误差变量模型法,对浙江仙居县杨梅人工林相容性单株生物量模型进行研究。   结果  拟合出的独立单株生物量模型中,以地径(x1)为自变量的幂函数模型决定系数为最大,叶片生物量(y1)、枝干生物量(y2)、根系生物量(y3)及总生物量(y0)模型分别为y1=0.004x12.795、y2=0.003x13.048、y3=0.002x13.141和y0=0.010x12.995。以地径、树高、冠幅构建的3个相容性单株生物量模型拟合效果均较好,其中又以地径为自变量的模型决定系数和预估精度最大,模型最优,相关参数c0、b0、r1、r2、r3和r4分别为0.084 0、2.162 7、0.780 0、0.779 9、0.224 3和0.204 5。随地径、树高和冠幅增大,叶片、枝干、根系生物量的分配规律基本相似,枝干、根系生物量占总生物量的比例呈上升趋势,叶片生物量则逐渐下降。各组分生物量随杨梅林龄增大从大到小快速演变为枝干、根系、叶片。   结论  在运用杨梅一元相容性单株生物量模型进行估算时,以地径为自变量的幂函数模型决定系数最大,且模型决定系数和预估精度最大。地径是最适合用于估算杨梅生物量的变量。 图1表4参31  相似文献   

17.
  目的  探究石漠化生境丛枝菌根真菌共生对白枪杆Fraxinus malacophylla生长及光合特征的影响,为植被恢复选取优势菌种提供参考。  方法  设置摩西斗管囊霉Funneliformis mosseae+农林生物肥(MN)、幼套近明球囊霉Claroideoglomus etunicatum+农林生物肥(YN)、根内根孢囊霉Rhizophagus intraradices+农林生物肥(GN)、农林生物肥(ck)共4个处理,测定不同处理下白枪杆生长(树高、胸径、根和叶生物量、叶面积、叶片色素及叶绿素)及光合特征(净光合速率、气孔导度、胞间二氧化碳摩尔分数、蒸腾速率、水分利用效率等)的变化。  结果  ①接种丛枝菌根真菌显著促进了白枪杆的生长与叶、根生物量积累(P<0.05)。②接种摩西斗管囊霉和根内根孢囊霉显著提高了白枪杆叶绿素a、叶绿素b、叶黄素的相对含量(P<0.05),提升率达6%~67%。③接种丛枝菌根真菌显著提高了白枪杆的净光合速率、气孔导度、蒸腾速率与水分利用效率(P<0.05),显著降低了胞间二氧化碳摩尔分数(P<0.05)。④主成分分析表明:气孔导度、树高、叶黄素是提高净光合速率的主控因子,平均贡献率达45.81%,叶绿素b、生物量和总叶绿素的影响次之。  结论  丛枝菌根真菌共生主要通过促进植株生长、光合色素含量,显著提高白枪杆净光合速率,其中摩西斗管囊霉为最优菌种。图5表2参33  相似文献   

18.
长白落叶松人工林灌丛生物量的调查与分析   总被引:2,自引:1,他引:2  
通过对长白落叶松人工林不同密度的成熟林、郁闭前不同阶段的林分及郁闭后不同年龄阶段林分林冠下灌木和草本生物量的研究。结果表明:不同密度的50年生长白落叶松人工林在灌木叶和根方面有显著差异(P<0.050),而在灌木枝、草本地上和地下部分生物量均无显著差异(分别为P=0.151、P=0.640、P=0.162);不同林龄的未郁闭长白落叶松人工林在灌木叶、枝、根和草本地下部分生物量均有显著差异(P<0.010),而在草本地上部分生物量无显著差异(P=0.614);不同林龄的郁闭长白落叶松人工林在灌木叶、枝、根和草本地上部分生物量均有显著差异(P<0.050),而在草本地下部分生物量无显著差异(P=0.468)。给出了长白落叶松人工林灌木叶、枝、根和草本地上部分和地下部分生物量的预测方程。  相似文献   

19.
水肥耦合效应对栓皮栎苗木生长的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
  目的  探讨栓皮栎Quercus variabilis当年生苗木的苗高、地径、单株叶面积、根干质量、生物量积累对水肥耦合的响应规律,并确立最佳的灌溉施肥组合。  方法  采用4因素5水平二次回归通用旋转组合设计(RCCD),建立各指标与土壤含水率、施氮量、施磷量和施钾量回归模型,分析各因子的主效应、单因素和耦合效应对生长的影响。  结果  ①对苗高、地径、单株叶面积、根干质量、生物量的方差分析表明,各指标的不同处理间存在显著差异(P<0.05),处理8、处理16、处理18苗木生长情况较好。②模型检验结果表明:土壤含水率和施氮量对5个指标均有显著正效应,施磷量对地径无显著效应,施钾量对各指标均无显著效应,主效应从大到小依次为土壤含水率、施氮量、施磷量和施钾量。③单因素效应表明:各指标随着施肥量的增加均呈现出类似“抛物线”的变化趋势,生长速率随着土壤含水率的增加而增加,到一定程度时速率减缓。④耦合效应表明:土壤含水率×施氮量对苗高、生物量、叶面积、根干质量有显著正效应,土壤含水率×施磷量对苗高、地径、根干质量、生物量有显著正效应,土壤含水率×施钾量对生物量有显著正效应,施氮量×施磷量对叶面积、根干质量、生物量有显著正效应,施氮量×施钾量对地径有显著负效应,水肥间的耦合效应大于肥料间的耦合效应。  结论  栓皮栎苗期水肥需求量从大到小依次为土壤含水率、施氮量、施磷量和施钾量,适宜的水分和施肥配比可促进苗木生长。高水、高氮、高磷、低钾条件下苗木生长情况更好。水肥调控的最佳组合为:土壤含水率为田间最大持水量的79%,氮、磷、钾用量分别为215.3、46.0、18.1 mg·株?1,苗木的苗高可达到45.14 cm,地径达到4.40 mm,根干质量达到6.30 g,生物量达到11.70 g,单株叶面积可达460.83 cm2。图3表2参30  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号