首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
结合黄土高原的特殊地形,为改善该区日光温室的温湿性能,提出了一种适于西北黄土高原的山体式日光温室。并监测了该温室和传统日光温室内温度、光照度、湿度30d的数据。9m跨度山体式和传统日光温室对比分析表明,山体式温室内日平均气温可提高3.5℃;日最低气温可提高3.8℃;日最低地温可提高3.5℃;空气相对湿度可降低11.9%。还对山体式8.5m、9m、9.5m三种不同跨度温室的温光性能做了对比,研究表明,9m跨度温室保温蓄热性能较好,日最低气温分别比8.5m、9.5m跨温室高0.8℃和1.7℃;光照强度分别比8.5m、9.5m跨温室高4.3%和4.0%。该研究结果对黄土高原及其他山地陡坡地日光温室的结构优化和新型温室结构推广有参考价值。  相似文献   

2.
不同跨度日光温室升温保温性能研究   总被引:1,自引:1,他引:0  
以酒泉市肃州区7m跨度砖墙日光温室为对照,研究了跨度为8、9、10和11m的4种石墙钢结构日光温室的升温保温性能.结果表明:跨度为8、9、10和11m的4种石墙钢结构日光温室的升温保温性能均优于对照温室,以10m跨度的温室性能最优.初冬(2012年11月中下旬),4种跨度石墙钢结构日光温室的平均温度较对照温室升高0.63~1.66℃;平均最高温度较对照温室降低4.84~7.17℃,平均最低温度较对照温室升高2.53~3.70℃.温室作物越冬期间(2012年11月至2013年2月),8、9、10和11m跨度石墙钢结构日光温室夜间最低温度在5℃以下持续1h以上的天数分别为2、1、0和8d;夜间最低温度在8℃以下持续1h以上的天数分别为20、20、14和41d.  相似文献   

3.
研究冷风挡帘结构对寒冷干旱地区日光温室内温度分布的影响。以内蒙古呼和浩特近郊农户生产中使用的日光温室为研究对象,分别对具有冷风挡帘的日光温室(试验温室)和无挡帘的普通温室(对照温室)内的气温进行连续测试,建立2种日光温室在自然通风时的计算流体力学模型。结果表明:在距地面0.1m高度(作物冠层),试验温室在0.6~7.0m范围内的气温显著高于对照温室(α=0.05),温差最大值为4.2℃,最小值为1℃。将近地表气温低于20℃的区域面积值作为评价指标,当通风口底端竖直高度为0.25 m、宽0.3 m,太阳辐射≥300 W/m2,室外风速≤1.2m/s时,冷风挡帘最优结构参数为迎风长度0.84m,倾斜角度76°,此时不同进口风速能满足大部分耕作区域地表气温在12:00时高于20℃的生产要求。  相似文献   

4.
针对现在日光温室建造成本高、破坏耕层结构、土地利用率低和不便拆装等诸多问题,课题组设计建造了一种新型装配式节能日光温室。该温室整体椭圆钢拱架结构采用柱脚固定,后墙和山墙覆盖保温被,并配备电动卷帘和自动防风设备,建造成本100~120元/m2。该温室建造方便,极大降低了对耕层结构的破坏,提高土地利用率且便于拆装。现已在河北省中南部地区推广应用,经测试,该温室在冬季室外-10℃的低温条件下,室内可以保持5℃以上,可越冬生产草莓、生菜和甘蓝等喜冷凉的果菜,经济效益显著。  相似文献   

5.
针对传统湿帘风机系统存在温湿度不均匀,无法调控冷空气温度;对温室密闭性要求较高,不适用于节能型日光温室等问题,借鉴国外半封闭温室降温方式,对日光温室正压式湿帘风机降温系统结构参数优化与应用效果进行研究。结果表明:最优的湿帘风机系统结构参数为,湿帘厚度150 mm,单位面积水流速4 L/(min·m~2),直径50 cm、均匀打孔、孔距20 cm、孔径1 cm、反光膜材料的通风筒;与对照温室相对,此系统最高可降温10℃,室内温度基本全天均低于室外,在距地面1.5 m水平面上各处的温差在2℃以内,湿度差在7%以内,垂直方向上距地面3 m以下的温差在3℃以内。此降温系统能够有效的降低夏季日光温室的温度,且温室各处的温湿度比较均匀,可以为我国节能型日光温室提供有效的夏季降温措施。  相似文献   

6.
下沉式大跨度大棚型温室的设计及应用研究   总被引:4,自引:2,他引:2  
为更好的适应生产需要,提高经济效益,对日光温室结构进行技术改造。设计建造了无后墙的双屋面拱形钢架结构的下沉式大跨度大棚型温室,以普通日光温室为对照,对温湿度、建筑成本及经济效益进行比较分析。结果表明:无论晴天还是阴天,下沉式大跨度大棚型温室的气温和地温均高于对照温室,7d中2个温室的最高气温相差2.8℃,最低气温相差4.1℃,前者的最低地温较对照的最高地温还高0.6℃。2个温室相对湿度相差不大。下沉式大跨度大棚型温室的建筑成本和收益分别为220.4和72.2元/m2,建筑成本比对照温室减少65.1元/m2,且收益增加了11.1元/m2。下沉式大跨度大棚型温室是一种保温性能好,低投入高产出的温室类型,具有良好的应用前景。  相似文献   

7.
新型大跨度非对称塑料大棚内冬季温光变化特征研究   总被引:1,自引:0,他引:1  
【目的】研究大跨度非对称塑料大棚内冬季温光变化特征,为新型棚体的开发与设计提供思路。【方法】根据跨度和覆盖层数不同,选取5座大棚,分别为17m单层(17-1)、17m双层(17-2)、18m单层(18-1)、18m双层(18-2)和20m单层(20-1),并以塑料拱棚和日光温室为对照,对大棚进行连续气温监测及典型晴天、阴天、雪天条件下气温、土壤温度(20cm深)和光照环境的监测与比较。【结果】①2017-12-01至2018-01-31,18-1、18-2、17-1、17-2、20-1温室冬季平均最低气温分别为4.1,4.9,-1.9,0,-1.8℃,平均最高气温分别为31.7,27.8,32.6,31.9,33.9℃。②典型晴天条件下,18-1、18-2、17-1、17-2、20-1温室最低气温分别为4.4,5.0,-3.4,-2.6,-3.1℃,较室外分别高11.6,12.2,3.8,4.6,4.1℃,较塑料拱棚分别高10.5,11.1,2.7,3.5,3.0℃,较日光温室分别低6.3,5.7,14.1,13.3,13.8℃;典型阴天条件下,最低气温分别为6.3,7.5,1.0,1.6,1.7℃,较室外分别高8.4,9.6,3.1,3.7,3.8℃,较塑料拱棚分别高7.7,8.9,2.4,3.0,3.1℃,较日光温室分别低5.4,4.2,10.7,10.1,10.0℃;典型雪天条件下,最低气温分别为4.9,6.0,-2.7,-1.0,-1.4℃,较室外分别高10.7,11.8,3.1,4.8,4.4℃,较塑料拱棚分别高10.0,11.1,2.4,4.1,3.7℃,较日光温室分别低5.0,3.9,12.6,10.9,11.3℃。典型晴天条件下,18-1、18-2、17-1、17-2、20-1温室20cm深处土壤平均温度分别为12.2,12.3,10.0,11.1,9.6℃,较塑料拱棚分别高6.0,6.1,3.8,4.9,3.4℃;典型阴天条件下,土壤平均温度分别为11.9,12.1,9.5,10.6,9.6℃,较塑料拱棚分别高5.8,6.0,3.4,4.5,3.5℃;典型雪天条件下,土壤平均温度分别为11.2,11.4,9.9,10.5,9.5℃,较塑料拱棚分别高5.4,5.6,4.1,4.7,3.7℃。③对大棚内南北方向气温和光照分布进行比较可知,各试验温室内气温以中部最高,南北次之,分布差异大小排列为17-1温室18-1温室20-1温室18-2温室17-2温室;各试验温室南部光照最好,中部略低于南部,北部最差,透光率大小排序为18-1温室18-2温室20-1温室17-1温室17-2温室。【结论】综合考虑温光环境性能可知,18-2温室大棚的保温性能较好,平均最低气温和土壤平均温度高,无极端低温和高温情况,且南北方向气温、光照分布差异小,透光率高,更适合推广应用。  相似文献   

8.
为了进一步优化下沉式日光温室结构,采用斜坡式南墙日光温室与直立式南墙日光温室对照试验的方法,研究斜坡式南墙对日光温室室内温光条件和黄瓜生长发育的影响。结果表明,在冬季阴、晴天2种天气条件下,处理温室比对照温室气温和地温提高,特别是晴天更明显有利于气温和地温的提高。在晴天条件下,处理温室内日平均气温、最低气温和最高气温比对照温室分别提高1.63℃、0.93℃和2.58℃,而在阴天条件下,处理温室内日平均气温、最低气温和最高气温分别比对照温室仅提高0.27℃、0.24℃和0.15℃。在晴天条件下,处理温室内0、5、10cm深处最高地温比对照温室分别提高3.59℃、2.90℃和1.33℃,最低地温也比对照温室分别高0.88℃、1.07℃和1.34℃,平均地温比对照温室分别提高1.71℃、1.80℃和1.34℃。斜坡式南墙日光温室可以缩短南立墙在地面的太阳阴影宽度,增强了温室南部区域的光照强度;在晴天测量时段内,处理温室平均光照度比对照温室增加达40.25%。斜坡式南墙日光温室黄瓜植株的净光合速率、气孔导度、胞间CO2摩尔分数和蒸腾速率也均高于对照温室,其中比对照净光合速率最大值提高13.88%。斜坡式南墙日光温室温光性能的提高,也促进了越冬茬黄瓜前期的生长发育,其中处理温室内黄瓜结果数比对照温室提高达40.00%。综上,斜坡式南墙日光温室能改善室内的温光条件,更有利于越冬茬黄瓜的生长发育。  相似文献   

9.
为减少夜间日光温室前屋面的热量损失,提高雨雪天气温室保温高于对照效果,以日光温室为对象,在2015年冬季采用保温被外覆无接缝PE黑膜的方法测试温室内温度变化,分析对温室保温性能的影响。结果表明,外设PE黑膜对冬季日光温室的增温效果明显,温室气温、0.05 m处地温显著高于对照。其中:晴天与阴天夜间,处理温室最低气温分别较对照提高0.9、0.5℃,最低地温提高0.7℃;晴天效果优于阴天。雪天夜间最低棚温较对照高2.2℃,最低地温提高1.3℃,且雪后1周处理温室降温幅度明显小于对照温室。试验期间处理温室旬平均气温均高于对照温室,节能效果优于对照。  相似文献   

10.
测试和田沙漠组装式温室的光热环境,尤其是温室的蓄放热量及保温能力,为和田地区日光温室性能做出评价,采用数据记录仪对温室内外环境的光热环境进行测定,结果表明,晴天光照度平均为18058 lx,空气温度可达40℃以上,且土层越深,地温越稳定;地面蓄热时平均热流密度为47.85 W/m2,放热时平均热流密度为16.91 W/m2;土壤表面温度和空气平均值分别为15.47、15.30℃;最大值可达37.90、45.00℃;墙体吸热时平均热流密度为13.91 W/m2,放热时平均热流密度为5.40 W/m2;墙体表面温度和空气温度平均值分别为15.76、14.61℃,最大值可达72.10、55.30℃;地面白天最大蓄热量为2.03 MJ/m2,地面最大放热量为1.35 MJ/m2,墙体白天最大蓄热量为0.76 MJ/m2,墙体最大放热量为0.40 MJ/m2.从温光特性方面来看,沙漠组装式温室各环境因子变化较大,温室内部空气温度、墙体温度、地表温度波动较大,热稳定较差;地面是主要的蓄放热体,温室墙体蓄热量、放热量很小,难以起到稳定温室夜间温度的作用.  相似文献   

11.
不同墙体材料日光温室的保温性能   总被引:2,自引:0,他引:2  
为明确秸秆块墙体日光温室和土墙体日光温室的保温性能,本文以秸秆块墙体日光温室和土墙体日光温室为研究对象,分析了两种墙体结构温室中墙体温度、土壤温度、室内空气温度分布以及晴天和阴天时空气温度变化.结果显示,厚度0.6m的秸秆块墙体日光温室与平均墙厚4.0m土墙体日光温室相比,晴天时温室内空气温度和土壤温度差异不显著,清晨和阴天时秸秆块墙体温室内空气温度略低;秸秆块墙体内侧变温层厚度为15 cm,土墙体内侧变温层厚度为45 cm;秸秆块墙体日光温室中40 cm以内土壤层温度[(15.4±1.0)℃]与土墙体日光温室[(16.1±2.0)℃]无显著差异(P>0.05);夜间秸秆块墙体日光温室空气温度低于土墙体日光温室空气温度(P<0.05),白天两者差异不显著(P>0.05);试验期间,两种墙体结构日光温室中空气温度最低为8.2℃,能满足常规蔬菜反季节栽培对设施保温性能的要求.  相似文献   

12.
日光温室蔬菜种植生产中温室的保温性能是冬季重要限制因子,采用双膜覆盖是温室增加保温性能的有效方法。对双膜日光温室和单膜日光温室内部气温、土温进行监测、分析。结果表明,在冬季最冷时间段(12月21日—次年1月9日),双膜日光温室的气温较单膜日光温室在08:30—15:30,最高气温温差为3.7℃,最低气温温差为0℃;在15:30—次日08:30,最高气温温差达13.5℃,最低气温温差为3.9℃,尤其在温室的东西两端2个温室的夜间温差更加明显,达到8.5℃。双膜日光温室的土温较单膜日光温室在8:30—15:30,最高温差为3.5℃,最低温差为0℃;在15:30—次日08:30,最高温差达到5.5℃,最低温差为2.3℃。并且在夜晚时段双膜日光温室的气温、土温降温速度低于单膜日光温室,各点的温度差相对较小。双膜日光温室良好的保温能力,为大庆市冬季日光温室正常生产提供了保障。  相似文献   

13.
[目的]确定日光温室建设中合理的墙体厚度。[方法]在山西晋中市选取3种日光温室,北侧墙体底部分别为6.6m(下凹式日光温室)、2m(粘土墙)、0.5m(砖混结构墙体),温室内部跨度分别为15.00m、10.00m、9.25m,在墙体1.5m高度的地方,从室内往外每隔5cm设定一个测点,分别测定墙体冬春季节的温度变化(每0.5h自动记录一次数据),通过各测点的日较差分布区段将墙体划分为不同的层次,并分析其温度拐点的变化。[结果]结果表明:虽然墙体结构、厚度不同,但热交换规律基本一致。根据日较差的变化大小将墙体划分为热交换层、热缓冲层和热稳定层,分别位于墙体从内向外的0~15cm、15~25cm和25cm以后,相对应的日较差变化范围分别为5℃以上(有时达25℃)、2~5℃和0~2℃;通过线性回归计算求得温室墙体内部热交换层与热稳定层的拐点(即热缓冲层)位于17~22cm之间,且拐点处的日较差差异不大,这与墙体的热交换方式(传导放热)有关;从冬到春,墙体内部的拐点位置并没有显著变化,但日较差在降低,这与太阳高度角的变化及通风有关。[结论]经本文分析认为,山西晋中地区日光温室北侧墙体的适宜厚度为30cm。  相似文献   

14.
为探究日光温室土壤温度偏低的原因,以传热学对流换热理论为基础,以土壤蓄热温差占温室垂直方向上最大空气温度与地面温度之差的比例(温差比例)为研究对象,针对日光温室垂直方向上的温度分布开展研究。在位于山东泰安的日光温室内,选取温室中部后墙南5.4m,距离地面0,0.1,1.1,2.1,3.1,4.27,4.37m高度处为测点,分别设置温度传感器T1~T7,地面设置热流板H1;选取试验期间土壤蓄热量高、中等、低3天试验数据,对不同高度各测点温度之间的关系进行研究;计算垂直高度上的最高空气温度,计算不同太阳辐射情况下的温差比例。试验数据验证了温室空气温度自下而上逐渐升高,然后逐渐降低;温室空气存在逆温层和对流层,存在逆温现象;逆温层上部空气密度小于下部空气密度,上部高温空气不能流动到地面,逆温层两端温差较大。计算结果表明:不同太阳辐射情况下垂直方向上最大空气温度积分与地面温度积分之差分别为890℃、770℃、175℃,土壤蓄热温差积分分别为310℃、200℃、68℃,温室散热温差积分分别为120℃、20℃、27℃,土壤蓄热时间分别为6h 55min、4h 50min、2h 20min;后墙南5.4m处逆温层、对流层高度分别为0~3.1m、3.1~4.37m;试验期间不同太阳辐射情况下温差比例分别为34.8%、26%、38.9%。结果表明:太阳辐射强度高时土壤蓄热温差和蓄热时间多于太阳辐射强度低时的土壤蓄热温差和蓄热时间;对流层空气产生自然对流,温室热量向温室外部大量散失;逆温现象造成的温差比例偏小是造成土壤总体蓄热量少、土壤温度偏低的主要原因。  相似文献   

15.
生态日光温室是1种集太阳能辅助加温、燃池辅助加温、雨水回收利用、沼气综合利用等多位一体的新型现代化温室。研究的生态日光温室以合理的日光温室结构为主体,利用太阳能集热器加热水,并在地下散热水管中循环散热直接对温室内土壤进行加热,以达到降低耗能量、提高温室内温度的目的。根据日光温室的结构和传热特点,利用稳态传热理论和室内热量收支平衡原理,对温室的热量平衡进行建模计算,通过计算机编程解算平衡方程,分析太阳能辅助加温系统对日光温室内温度的影响;经连续试验,应用面积为20m2集热器可提高室内温度1.68℃。试验结果表明,太阳能辅助加温系统具有明显增加室温的效果。  相似文献   

16.
近年来,托克逊县大力发展设施农业,并采用钢结构高后墙短后屋面跨度为9m的无立柱高效节能日光温室。该种温室具有良好的采光和保温性能,在冬季比普通温室最低温度提高2~4℃,  相似文献   

17.
为提高日光温室冬季保温蓄热的能力,同时推动日光温室的快速建造,设计3种新型墙体结构的日光温室:相变固化土主动蓄热温室(G2)、模块化素土主动蓄热温室(G3)、现浇混凝土被动蓄热日光温室(G4)。测定3种温室室内环境,以传统主动蓄热温室(G1)为对照温室进行对比分析。结果表明:4种温室在典型晴天条件下夜间的平均温度分别为15.7、16.4、17.8、16.6℃;在典型阴天情况下夜间的平均温度分别为12.4、13.8、13.8、13.1℃;在连续雪天情况下最低平均温度分别为7.3、8.3、8.8、7.8℃。G3即模块化素土主动蓄热温室在夜间和连续低温条件下都表现出了较好的保温性能,能够在室外温度较低时给室内作物提供更好的生长环境,且建造方便,在适宜日光温室发展的地区具有一定的推广价值。  相似文献   

18.
日光温室与露地红玛瑙甜樱桃光合特性比较   总被引:1,自引:0,他引:1  
以甜樱桃品种红玛瑙为试材,在日光温室内和露地条件下对其光合特性进行研究。结果表明,日光温室与露地栽培红玛瑙的光补偿点分别为29.6,32.97μmol(/m2.s),光饱和点分别为2 200,2 283.3μmol(/m2.s),说明温室红玛瑙对光强的适应范围变小了,但对弱光的光能利用率却增强了;日光温室与露地栽培红玛瑙的CO2补偿点分别为51.88,60.61μmol/mol,饱和点分别为1 933,1 822μmol/mol;这说明温室与大田比较,红玛瑙光合利用CO2浓度的范围较大,较高浓度CO2有利于温室红玛瑙的光合作用;日光温室与露地栽培红玛瑙樱桃净光合速率日变化均呈双峰曲线,但峰值出现的时间略有不同,且温室红玛瑙日变化2次高峰值均低于露地栽培。  相似文献   

19.
磷酸氢二钠相变墙板在温室中的应用效果   总被引:5,自引:0,他引:5  
为改善日光温室热环境,以十二水磷酸氢二钠为相变材料,依据普通温室墙体夜间累计放热量计算出相变材料的用量为16.7kg/m2,在此基础上制备了十二水磷酸氢二钠相变蓄热墙板。建造后墙结构为"80mm相变蓄热板+40mm×60mm×2.5mm方钢+80mm菱镁聚苯保温板"日光温室,与"240mm红砖+100mm聚苯板+240mm红砖"后墙温室比较。结果表明:典型晴天时,相变蓄热板温室的气温波动幅度比对照小4.2℃,最低气温高1.5℃,最高气温低2.7℃,平均气温高1.2℃,相对湿度增加3%,墙体夜间累计放热量略大于对照;典型阴天时,相变蓄热板温室的平均气温比对照高1.6℃,相对湿度提高2.6%,墙体夜间累计放热量增加0.16MJ/m2。与此同时相变蓄热板墙体造价比对照低22元/m2,土地利用率提高4.2%~12.2%。综合保温蓄热性能和建造成本,相变蓄热墙板是一种有推广价值的温室墙体类型。  相似文献   

20.
蓟春型与普通型日光温室温湿度特性的比较   总被引:1,自引:0,他引:1  
蓟春型日光温室在结构上与普通型目光温室有很大不同,为双层骨架,保温被内置于骨架之间。这种结构不仅解决了普通型日光温室保温被易受雨雪浸湿的问题,而且在采光、保温、通风等性能方面表现出许多新的特点。本试验通过对蓟春型与普通型日光温室的气温、地温和湿度等环境因子的比较,分析了蓟春型目光温室的温湿度特性,为该类型温室的改进与推广利用提供参考。测量结果表明:1月中旬,晴天蓟春型日光温室最低气温比普通型高2.5℃;阴天最低气温比普通型高1.7℃左右;最低地温无论晴天还是阴天均高于普通型0.8℃;蓟春型日光温室内空气相对湿度偏高,平均最低湿度比普通型日光温室高7.2%左右。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号