首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
生物炭对茶园酸性红壤氮素养分淋溶的影响   总被引:2,自引:1,他引:1  
福建省山地茶园水土流失严重,高坡度开垦茶园会造成土壤养分淋失,引起土壤酸化。为研究生物炭对茶园酸性土壤氮素养分淋溶的影响,采用室内土柱模拟试验,设置对照CK(C0N0)、单施常规量氮肥(C0N1)、单施两倍量氮肥(C0N2)、常规施氮肥增施2%生物炭(C1N1)、常规施氮肥增施5%生物炭(C2N1)5个处理,研究不同生物炭和氮肥添加处理下茶园酸性土壤氮素养分淋溶变化和规律。结果表明,常规施肥条件下,随着生物炭添加量增大,淋滤液体积显著降低,全氮、硝态氮、铵态氮的淋失量显著降低。添加生物炭处理土柱中NO-3-N和NH+4-N的淋溶开始时间均晚于未添加生物炭处理土柱,且NO-3-N的浓度峰值较NH+4-N的出现早。与C0N1相比,生物炭施用处理(C1N1和C2N1)显著提高了土壤pH,NO-3-N的淋溶量分别降低了60%和77%,NH+4-N的淋溶量分别降低了40%和39%。就不同氮素形态而言,C1N1和C2N1处理中均先检测到NO-3-N,说明生物炭对NH+4-N的固持能力大于NO-3-N。研究表明在茶园酸性红壤中添加生物炭可减缓氮素损失,提高土壤养分含量,结果为茶园酸性红壤的土壤改良提供理论依据和参考意义。  相似文献   

2.
小麦-玉米轮作期间不同施肥处理氮素的淋溶形态及数量   总被引:11,自引:4,他引:7  
利用大型回填土渗漏池研究了陕西关中平原小麦-玉米轮作年生长周期内塿土不同施肥处理氮素淋溶的动态变化.结果表明,小麦-玉米期间土壤淋溶的氮素以硝态氮(NO-3-N)为主,溶解性有机氮(DON)次之,铵态氮(NH+4-N)最低,占淋失总氮的比例平均分别为72.1%、26.2%和1.7%,说明除NO-3-N外,DON也是不可忽视的土壤氮素淋失形态.与施氮磷化肥(NP)相比,氮磷化肥和有机肥配施处理(NPM)明显降低了淋溶到100 cm深度土层的氮量;在小麦-玉米生长期间,NPM处理NO-3-N、DON和NH+4-N的累积淋溶量比NP处理分别降低了64.4%、42.9%和54.8%,这与配施有机肥后提高了土壤的持水保肥能力有关,说明有机肥与化肥合理配合施用可以降低氮素的淋溶损失.  相似文献   

3.
为探讨生物炭对北京郊区砂土持水力和氮素淋溶特性的影响,通过分层采集不同深度(0~90 cm)北京郊区沙化地土壤(砂土),模拟田间容重和含水量填装土柱,将生物炭分别按照炭土质量比0%、0.5%、1%、2%和4%施入0~20 cm土层,依据常规施氮肥量(0.56 t N·hm-2)和年平均降雨量(616.6 mm)施肥和滴灌,开展土柱淋溶试验。结果表明:在9次淋溶后,水和总氮的累积淋失量均随着生物炭添加量的增加而减小,与不加炭处理相比最高分别减小41.3%和22.7%。添加生物炭增加了0~20 cm土层总氮含量,最高显著增加158%(P0.05)。淋溶结束后加炭处理土柱土壤中的无机氮总量比不加炭处理高19.5%~91.9%。添加生物炭有利于减小可溶性有机碳的淋失,比不加炭处理最高减小22.8%。淋溶液pH值和电导率随生物炭添加量增加而增大。在9次淋溶过程中,生物炭添加量越大,0~20 cm土层土壤持水量越高。相关性分析表明,总氮淋失量与淋溶液淋失体积显著正相关(r=0.978,P0.01),而与淋溶液中的总氮浓度无正相关关系。生物炭主要通过提高京郊砂土的持水能力,减缓水和氮素向下淋溶的速度,从而减小水和氮素的淋溶损失,提高水肥利用率,降低污染地下水的风险。  相似文献   

4.
玉米生物炭和改性炭对土壤无机氮磷淋失影响的研究   总被引:5,自引:2,他引:3  
利用玉米秸秆为原料制作生物炭,并用氯化铁进行改性,考察了改性前后生物炭对硝态氮和磷的吸附等温和吸附动力学过程,将生物炭和改性炭制作3 cm厚的物理隔离层,施入土柱50 cm处,通过淋溶实验,研究生物炭改性前后对土壤无机氮磷淋失的影响。结果表明,炭化温度为500℃时,铁炭比为0.7的生物炭和改性炭对氮磷的吸附能力最强。吸附动力学和等温吸附曲线分析表明:生物炭改性后对硝态氮和磷的吸附增大,生物炭和改性生物炭对硝态氮的最大吸附量分别为0 mg·g-1和2.414 mg·g-1、对磷的最大吸附量分别为1.723 mg·g-1和16.062 mg·g-1。与对照相比,生物炭处理和改性炭处理硝态氮的淋失量分别降低11.2%和31.6%,磷的淋失量分别显著降低33.1%和82.9%,氨氮的淋失量分别显著降低44.3%和68.6%。淋溶试验后对土壤残留养分分析表明,隔离层的添加并不会对0~50 cm土层内NO-3-N、NH+4-N和PO3-4-P含量产生明显影响,同时改性生物炭能有效减少NH+4-N和PO3-4-P向更深土层中迁移,表明土壤中添加改性生物炭能够有效降低土壤无机氮磷的淋失风险。  相似文献   

5.
不同施氮量对茶园土壤氮淋失的影响   总被引:2,自引:0,他引:2  
为研究不同施氮量对茶园土壤氮淋失的影响,改良茶园土壤品质,采用室内土柱淋滤试验,研究不同施氮量对强酸性茶园土壤淋溶液pH、NH+4-N和NO-3-N淋溶量的影响。氮肥采用尿素,氮肥用量分别为N0(0kg·hm-2)、N1(150kg·hm-2)、N2(300kg·hm-2)、N3(450kg·hm-2)、N4(600kg·hm-2)。结果表明:施用氮肥降低了土壤pH和土壤淋溶液pH,降低幅度分别为0.08~0.32和0.35~0.81个单位,促进茶园土壤酸化;NH+4-N和NO-3-N的淋溶量均随施氮量的增加而提高;无机氮的淋失率为47.66%~71.31%,淋失量(Y)与施氮量(X)之间的线性回归方程为Y=0.708 X+145.27(R2=0.98);在整个淋洗过程中,NH+4-N和NO-3-N淋溶主要发生在前5次,且主要以NO-3-N的形式淋失,淋失比例为73.50%~89.21%。  相似文献   

6.
生物炭对灌淤土氮素流失及水稻产量的影响   总被引:8,自引:4,他引:4       下载免费PDF全文
针对宁夏引黄灌区氮素流失严重的现状,通过大田试验研究生物炭施于灌淤土对水稻产量、水稻生育期内氮素运移特征及氮素流失量的影响。在常规施肥条件下设置高量炭(C3N300:9000 kg·hm-2);中量炭(C2N300:6750 kg·hm-2);低量炭(C1N300:4500 kg·hm-2)和不施炭(C0N300:0 kg·hm-2)4个处理。研究结果表明,生物炭和氮肥配合施用,对稻田田面水和渗漏水中氮素动态有一定影响,表现为总氮(TN)和硝态氮(NO-3-N)浓度随生物炭用量增加而降低,铵态氮(NH+4-N)浓度升高;在对各层土壤氮素动态的影响上,表现为20 cm处渗漏水中氮素浓度受生物炭用量影响明显,但100 cm处氮素浓度受影响较小。对水稻生育期内氮素径流损失的影响表现为随生物炭施用量增加,田面水TN和NO-3-N径流流失风险下降,但NH+4-N径流流失风险增加;本研究条件下添加生物炭对NO-3-N和NH+4-N淋失没有表现出影响,TN淋失表现为随生物炭用量增加而降低,其中TN淋失量最小的是C3N300处理,整个生育期内淋失量为26.28 kg·hm-2,与常规施肥处理C0N300相比,减少9.45%。另外,添加生物炭增加水稻穗粒数和穗数,使水稻理论产量显著增加15.3%~44.9%,其中C3N300产量显著高于其他处理(P0.05)。生物炭用于灌淤土对水稻产量有促进作用,对降低稻田氮素淋失也表现出积极效果。  相似文献   

7.
硫元素对蔬菜地土壤NO3-淋溶损失的影响   总被引:4,自引:0,他引:4  
通过温室盆栽淋洗试验,研究了硫元素对蔬菜地土壤NO-3淋溶损失和土壤无机氮含量的影响.结果表明在12周试验期间,与对照相比,在种葱和不种葱条件下,硫元素处理土壤NO-3-N累积淋失量均降低83%左右,NH+4-N累积淋失量分别增加20.3和24.9 mgpot-1,无机氮(NH+4-N+NO-3-N)淋失量则均降低60%左右;试验结束后,其土壤无机氮浓度分别增高82.7%和74.8%,且主要为NH+4-N.类似结果也在S2O2-3处理中发现,但SO2-4处理则无此现象.可见硫元素施入土壤后可抑制土壤氮的淋失,其作用机制是由硫元素氧化产生的S2O2-3作用所致.鉴于S2O2-3使用量是硫元素的1.4倍,而后者效果仍然比前者好,因此认为硫元素是适用于蔬菜土壤的硝化抑制剂之一,特别是有效硫较低的土壤.  相似文献   

8.
[目的]为了研究生物质炭对果园土壤氮素淋失、滞留的影响.[方法]基于土柱淋溶模拟试验,研究两种不同生物质炭——稻壳炭和苹果枝条炭的施用(11 mg/kg)及其与化肥(6.6 g/kg)混施对果园土壤氮素淋失速率和滞留量的影响.[结果]单独施用生物质炭对土壤氮素的淋失和滞留影响较小;生物质炭与化肥混施后,NH4+-N的淋失总量增加了39.3%~44.0%,在20~~40 cm土层的滞留量减少了21.7% ~28.8%;稻壳炭促使NO3--N的淋失量和20 ~40 cm土层的滞留量分别增加了18.0%、43.3%,苹果枝条炭促使NO3--N的淋失总量和20 ~40 cm土层的滞留量分别减少了13.4%、12.1%;施用生物质炭增加了土壤的持水能力.[结论]生物质炭本身对土壤氮素的动态影响较小;与化肥混施增加了NH4+-N的淋失风险,NO3--N的淋失和滞留与生物质炭的种类有关.  相似文献   

9.
生物炭对冻融黑土中铵态氮和硝态氮淋失的影响   总被引:4,自引:1,他引:3  
为了深入研究冻融条件下生物质炭对东北黑土中铵态氮和硝态氮淋失的影响效果,为解决冻融作用下黑土中无机氮素的淋失问题提供科学依据,采用室内模拟土柱淋溶实验方法研究了生物质炭对经过不同冻融循环次数处理土壤中铵态氮和硝态氮淋失的影响。研究结果表明:冻融会增加土壤氮素的淋失,且淋失量与冻融次数有关,施加生物质炭可以有效降低土壤因冻融作用引起的氮素淋失;玉米秸秆炭对无机氮素淋失降低率在76.15%~85.79%之间,树枝炭在55.26%~68.09%之间,可以看出玉米秸秆炭持氮效果较树枝炭更好;在冻融次数分别为3和1时,玉米秸秆炭和树枝炭持氮能力最强;两种生物质炭对铵态氮的固持能力均优于硝态氮。  相似文献   

10.
生物炭对盐碱土氮淋溶的影响   总被引:13,自引:6,他引:7  
生物炭对某些高度风化的热带土壤和温带酸性土壤有改善土壤结构,减少营养元素淋失的作用,但关于温带干旱区的盐碱土的改良效果却很少报道。以新疆绿洲盐碱土为对象,研究玉米秸秆生物炭对氮淋溶的影响。采用室内土柱淋滤试验,土柱包含炭土比(W/W)0%、1%、5%和10%四个处理,模拟大气降雨,定期收集淋滤液,分析其中的氮素指标。结果显示,5%和10%添加比例分别减少了土壤氨态氮的淋失量31.14%和52.43%,1%的添加比例增加了铵态氮淋失。对比空白,10%处理的铵态氮、硝态氮和总氮减少淋失量分别达到52.43%、50.01%和33.83%,1%和5%处理土柱的硝态氮和总氮在试验10 d内(降雨量140 mm)就基本淋失完,而10%处理土柱则显得较为平缓,几乎到25 d(降雨量290 mm)时才基本淋失完。四个土柱的铵态氮的淋失都较为平缓。另外,生物炭可以减少土柱的溶液淋失量(20.95%),增加土壤持水能力。上述结果表明,生物炭施用于干旱区盐碱土能明显减少硝态氮和总氮淋失并延长其在土壤中的停留时间,增强土壤的持续供氮能力。  相似文献   

11.
密云水库上游流域地下水中氮素污染特征及影响因素   总被引:2,自引:1,他引:1  
为分析密云水库上游流域地下水中氮素的污染情况,于2014年7月和2015年1月进行了地下水样品的采集,应用域法和地质统计学方法等多元统计方法识别流域地下水中不同形态氮的时空分布特征,并解析土地利用类型、地下水埋深以及地表水对地下水中氮素的影响。结果表明:区域地下水的氮素污染不容乐观,29.73%的样品中硝态氮含量超标(10 mg·L-1≤NO_3~-≤20mg·L~(-1)),27.03%的样品出现严重超标(NO_3~--N≥20 mg·L~(-1))。从空间来看,地下水氮素具有空间自相关性,其中氨氮空间变异的随机性较大,硝态氮最小,硝态氮的污染主要发生在城镇人口密集区域;从时间来看,硝态氮污染呈逐年升高趋势,硝态氮的超标样品百分比从2008年的2.30%增长为2015年的25.71%,且年内变化表现为丰水期高于枯水期。各种土地利用类型中,城镇的氮污染最严重;硝态氮、亚硝态氮的含量随地下水埋深增加呈减小趋势;地下水氮污染浓度与流向有一定的联系,从上游至下游呈升高的趋势。  相似文献   

12.
不同硝化抑制剂对尿素转化的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
【目的】比较不同硝化抑制剂在石灰性土壤上对氮素转化的抑制效果,旨在选择石灰性土壤上较理想的硝化抑制剂,为进一步提高氮素利用率、减少环境污染提供依据。【方法】以单纯施用尿素为对照,采用室内土壤培养试验法,将硝化抑制剂3,4-二甲基吡唑磷酸(DMPP)、双氰胺(DCD)、2-氨基-4-氯-6-甲基嘧啶(AM)和硫脲(TU)施入土壤,在培养一定时间(1~50 d)后采样,测定土壤的NH4+-N、NO3--N、NO2--N含量及pH和电导率(EC)。【结果】硝化抑制剂DMPP、DCD和AM不仅能够有效延缓尿素的水解,显著抑制土壤中NH4+-N的氧化作用,而且能够较长时间保持较高的NH4+-N含量,使硝化作用延滞35~38 d。各硝化抑制剂(TU除外)处理明显推迟了NO3--N的释放高峰期,对硝化过程均表现出明显的抑制作用。各硝化抑制剂处理的NO3--N、NH4+-N、电导率和pH之间有显著的相关性,土壤NO3--N含量与EC值呈显著正相关(P<0.05),而与pH值呈显著负相关(P<0.05);土壤NH4+-N含量与EC值和pH值的相关性则与NO3--N相反。【结论】在本试验条件下,TU未表现出对石灰性土壤氮损失的抑制效果,其他3种硝化抑制剂的抑制能力强弱顺序为DMPP>DCD>AM(P<0.05)。  相似文献   

13.
张超一  樊小林 《中国农业科学》2015,48(14):2777-2784
【目的】探究不同铵硝配比条件下香蕉幼苗对铵态氮、硝态氮两种形态氮素的吸收特性以及两种氮源离子相互作用对香蕉氮素吸收动力学特征的影响,筛选最适于香蕉氮素吸收利用的铵硝配比,为香蕉氮素营养高效吸收提供理论依据。【方法】依据养分吸收动力学原理,利用改进的耗竭法研究不同铵硝配比营养液中巴西品种香蕉(Musa AAA Giant Cavendish cv. Brazil)幼苗对铵态氮、硝态氮以及总氮的吸收动力学特征。设7个处理:100%铵态氮(100%A)、90%铵态氮+10%硝态氮(90%A+10%N)、70%铵态氮+30%硝态氮(70%A+30%N)、50%铵态氮+50%硝态氮(50%A+50%N)、30%铵态氮+70%硝态氮(30%A+70%N)、10%铵态氮+90%硝态氮(10%A+90%N)和100%硝态氮(100%N)。每个处理设9个氮浓度梯度:0、0.1、0.2、0.5、1、1.5、2、3、4 mmol·L-1。【结果】不同铵态氮﹕硝态氮配合条件下,香蕉苗吸收铵态氮、硝态氮及总氮的规律均符合Michaelis-Menten酶动力学方程,其动力学方程达到极显著水平。NH4+-N比例在10%-70%时,随着NO3--N比例的增加,可以增加香蕉幼苗对NH4+-N的吸收速率。在NH4+-N比例为70%时,NH4+-N的最大吸收速率(Vmax)最大,为55.56 μmol·g-1·h-1,NH4+-N比例超过70%会降低香蕉幼苗对NH4+-N的吸收速率。香蕉幼苗对NO3--N的吸收速率呈现随营养液NH4+-N比例的增加而显著降低的规律。NH4+-N比例从10%增大到90%时,NO3--N的Vmax降低了2.62倍,增加NH4+-N的比例明显抑制香蕉幼苗对NO3--N的吸收。铵硝配比对香蕉根系与NH4+-N和NO3--N的亲和力影响无明显规律。在铵硝配比为3﹕7时香蕉总氮Vmax达到83.33 μmol·g-1·h-1,明显高于其他处理,最有利于香蕉吸收利用氮素。【结论】NH4+-N比例低于70%时,增加NO3--N比例可以促进香蕉幼苗对NH4+-N的吸收,NH4+-N比例高于70%时,增加NO3--N比例抑制NH4+-N的吸收。增加NH4+-N的比例明显抑制香蕉幼苗对NO3--N的吸收,铵硝配比为3﹕7最有利于香蕉吸收利用氮素。  相似文献   

14.
近年来再生水逐渐成为城市景观河流的主要用水来源,但再生水含有较高氮元素,容易造成水体与地下水污染。河床底泥对NO3--N有一定的截留与去除作用,本实验通过河槽装置模拟潮白河河床,探究低、中、高3种NO3--N质量浓度水平下河槽系统中底泥对NO3--N的去除效果。结果表明:水体中NO3--N质量浓度为5、10、20 mg·L-1时NO3--N去除率分别为67.8%、63.0%、55.0%。河槽10 cm处和下部70 cm处对NO3--N去除效果较好。底层排出水中pH与NO3--N质量浓度相关性较强,底泥中50 cm与70 cm处反硝化作用强度与溶解氧质量浓度紧密相关;随着温度降低,溶解氧质量浓度升高,反硝化作用减弱,NO3--N去除效果变差。底泥中NO3--N的去除主要通过土壤淋溶作用、同化作用、反硝化作用与异化还原作用等共同作用;部分氮素以同化作用形成的有机氮和异化还原作用形成的NH4+-N留存于底泥中。研究表明,河床底泥对再生水河道具有一定的净化效果。  相似文献   

15.
采用黄瓜、菠菜、大豆幼苗进行水培试验,研究其在NaCl胁迫下对氮素的吸收和累积。结果表明,NaCl胁迫下,黄瓜和菠菜幼苗的生长受到显著抑制,吸收和累积NO-3的量显著下降;而大豆几乎不受影响。以NH+4-N为氮源时,大豆对NH+4的吸收受到抑制。3种作物吸收Cl-和Na+的速率远高于吸氮速率。  相似文献   

16.
鸡粪锯末好氧堆肥过程中硝化细菌动态变化   总被引:3,自引:1,他引:2  
用鸡粪与锯末为原料进行高温好氧堆肥试验,研究不同初始含水率及堆肥方式下鸡粪锯末堆肥中铵态氮及硝化细菌动态变化,以期减少堆肥过程中氮素的损失,为优化堆肥提供理论依据。结果表明:1)硝化细菌存在于整个堆肥过程,且在堆肥腐熟期硝化细菌群落结构均发生了较大的变化。2)铵态氮浓度与硝化细菌群落物种丰富度与稳定性有关,可能是铵态氮会诱发硝化细菌生长。3)含水率是导致硝化细菌群落结构变化的关键因素。4)通过分析T-RF150、169和343bp对堆肥环境的适应性较强,且多数属于是不可培养的细菌菌属。5)通过分析可知T3处理有助于硝化细菌群落生长与稳定。  相似文献   

17.
氮肥用量对小麦开花后根际土壤特性和产量的影响   总被引:7,自引:1,他引:6  
【目的】明确小麦开花后根际土壤特性动态特征及其与产量和籽粒氮素积累量之间的关系,能够为生产上合理施肥、提高氮肥利用效率和减轻环境污染提供理论依据。【方法】2014—2015和2015—2016年在小麦季设置4个氮肥水平(0,CK;150 kg N·hm~(-2),N150;240 kg N·hm~(-2),N240和300 kg N·hm~(-2),N300)并于小麦开花期、灌浆中期和成熟期分层(0—20 cm和20—40 cm)测定小麦根际和非根际土壤铵态氮、硝态氮、蔗糖酶、脲酶,同时测定根、茎、叶和穗生物量及其氮素含量;重点分析根际土壤特性与小麦籽粒产量和氮素积累量之间的关系。【结果】(1)与CK相比,N150、N240和N300处理2年小麦籽粒产量的平均值分别增加99%、130%和107%,且处理之间差异显著。随施氮量的增加小麦根、茎、叶、穗生物量和地上部氮素积累量均呈增加趋势;氮肥回收率呈下降趋势,且处理之间差异显著。(2)从开花到成熟期,0—20 cm和20—40 cm土层小麦根际和非根际土壤铵态氮、硝态氮含量、土壤蔗糖酶和脲酶(0—20 cm除外)活性均呈下降趋势。处理CK、N150、N240和N300根际土壤铵态氮和硝态氮含量显著低于非根际土壤。4个处理2年0—20 cm根际土壤铵态氮含量平均值比非根际土壤降低29%,硝态氮含量降低22%;20—40 cm根际土壤铵态氮含量比非根际土降低34%,硝态氮含量降低14%。而根际土壤蔗糖酶和脲酶活性显著高于非根际土。4个处理2年0—20 cm根际土壤蔗糖酶活性比非根际土壤提高29%,脲酶活性提高15%;20—40 cm根际土壤蔗糖酶活性比非根际土壤提高33%,脲酶活性提高13%。(3)相关分析结果表明,小麦籽粒产量和籽粒氮素积累量均与0—20 cm和20—40 cm根际和非根际土壤无机氮(铵态氮+硝态氮)、脲酶和蔗糖酶(2016年籽粒氮素积累量除外)呈显著正相关。【结论】小麦根际土壤可利用性氮素含量小于非根际土壤,而酶活性高于非根际土;根际和非根际土壤与籽粒产量和籽粒氮素积累量呈显著正相关。根际和非根际土壤特性显著影响小麦籽粒产量。  相似文献   

18.
为明确尾菜高量埋压带来的土壤氮淋溶风险,本研究设计了不同尾菜埋压厚度和表层覆土厚度的组合试验,分析不同土层水分和无机氮(NH4+-N和NO3--N)时空变化特征。结果表明:埋压尾菜厚度0.2~0.6 m、表层覆土厚度0.1~0.3 m时,试验前10 d,表层土壤水分快速增加,较对照提高了40%~110%,尾菜向深层土壤补水深度最大为1.6 m;试验开始土壤无机氮以NH4+-N增加为主,下移深度仅为0.6 m,试验第83天时,NO3--N快速积累,最大下移深度为0.8 m,土壤无机氮主要集中于耕作层,尾菜层上、下0.1 m土壤无机氮含量是当地高产玉米农田的1.0~3.5倍。当尾菜埋压厚度达到3.0 m、表层覆0.4 m黄土时,尾菜向深层土壤补水深度为5.0 m,NH4+-N下移深度为1.5 m,试验第194天时NO3--N增加不显著,与对照无显著差异,尾菜层上、下0.1 m土壤无机氮含量是高产玉米农田的3.5~4.2倍。研究表明在黄土高原半干旱地区,采用覆土埋压法将尾菜高量还田可以显著增加土壤水分和无机氮固存量,尾菜厚度、表面覆土厚度与土壤水分、土壤无机氮累积量和NH4+-N含量呈正相关,与土壤NO3--N含量呈负相关,无机氮并未随土壤水分向深层土壤淋溶。  相似文献   

19.
【目的】研究黄土性土壤对垃圾渗滤液的净化作用,为黄土地区垃圾填埋场渗滤液的污染控制,以及填埋场覆盖层的选材及厚度设计等提供参考依据。【方法】分别采集耕层(0~25cm)、犁底层(25~60cm)、黏化层(60~120cm)和钙积层(120~175cm)土壤,按不同液土比(体积(mL)质量(g)比,下同;5∶1,10∶1,20∶1,30∶1)加入垃圾渗滤液,采用静态和动态吸附试验,研究不同土层土壤对垃圾渗滤液中COD、NH4+-N的吸附特征及COD去除率随时间的变化规律。【结果】耕层、黏化层、钙积层土壤在振荡4h、犁底层土壤在振荡2h时,对垃圾渗滤液中COD的吸附量达到最大;犁底层、黏化层、钙积层土壤在振荡2h、耕层土壤在振荡1h时,对垃圾渗滤液中NH4+-N的吸附量达到最大;随着液土比的增大,不同土层(除犁底层外)土壤对渗滤液COD、NH4+-N的吸附量逐渐增加。【结论】黄土性土壤对垃圾渗滤液中的COD吸附净化可分为全吸附阶段、部分吸附阶段和基本饱和阶段。综合分析不同土层对垃圾渗滤液中COD、NH4+-N的吸附净化作用,填埋场覆盖层应选择耕层及黏化层土壤,覆盖层厚度以100cm为宜。  相似文献   

20.
黄腐酸改性膨润土对氮素淋失和氮肥利用率的影响   总被引:1,自引:0,他引:1  
为探究黄腐酸改性膨润土在氮减量条件下对棕壤氮素淋溶及氮肥利用率的影响,通过等温吸附试验,研究黄腐酸改性膨润土对NH4+-N和NO3--N的吸附性能。采用土柱淋溶试验和玉米盆栽试验明确不同施氮浓度下配施黄腐酸改性膨润土对氮素淋失和籽粒氮肥利用率的影响,试验设置3个氮肥浓度,分别为农民习惯施肥(CN)、氮肥减量15%(CN1)、氮肥减量30%(CN2),并对3个施氮水平添加土质量0.2%的黄腐酸改性膨润土(XCN、XCN1、XCN2)。结果表明:黄腐酸改性膨润土对土壤NH4+-N和NO3--N的吸附过程可用Langmuir模型较好地拟合,最大吸附量分别为27.28 mg·g-1和43.37 mg·g-1。黄腐酸改性膨润土可有效降低土柱NH4+-N和NO3--N的淋失,与CN处理相比,XCN处理NH4+-N累计淋失量降低13.5%,XCN、XCN1、XCN2处理NO3--N累计淋失量分别降低38.13%、18.56%和35.75%。黄腐酸改性膨润土可显著提高土壤中氮素的留存和玉米籽粒的氮肥利用率,XCN、XCN1、XCN2处理比CN、CN1、CN2处理籽粒氮肥利用率分别提高7.94%、10.07%、79.17%。研究表明,黄腐酸改性膨润土在氮减量条件下可有效降低土壤氮素淋失,提高作物氮肥利用率,具有潜在的农艺价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号