首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 46 毫秒
1.
[目的]研究热解温度对滤泥生物炭性质特征的影响,为制糖废弃物处理提供参考依据.[方法]将滤泥置于200~600℃下热解制备生物炭,对生物炭进行工业分析、pH和元素含量测定,以及傅里叶红外光谱、扫描电镜、比表面积和碘值吸附分析.[结果]随着热解温度的升高,生物炭产率和挥发分含量下降、灰分含量上升,pH不断增加,表面的C-O和C-O-C等活性官能团及-CH3和-CH2逐渐消失,H/C、O/C和(N+O)/C的原子比降低,表明生物炭芳香性及稳定性增强,亲水性和极性减弱;生物炭的孔隙结构丰富,随着热解温度的升高,生物炭中孔隙数量增加,比表面积增大,孔径和孔容有所增加,对碘值的吸附能力持续上升,热解温度为500℃时,比表面积、孔容和对碘值吸附量均达最大值,分别为83.71 m2/g、0.027 m3/g和170.38 mg/g.[结论]在500℃下热解制备滤泥生物炭,其产率相对较高,结构更稳定,且比表面积及孔容最大,对碘的吸附效果最佳,可作为一种优异的吸附材料.  相似文献   

2.
运用响应面法优化芦苇基生物炭活化工艺   总被引:1,自引:1,他引:0  
为优化芦苇基生物炭制备工艺,在单因素试验考察热解温度、氨水质量分数和浸渍比(生物质原料与氨水质量之比)等3种参数对芦苇基生物炭吸附性能影响的基础上,利用Box-Benhnken中心组合设计实验,运用响应面法对其活化工艺参数进行优化。结果表明,3个因素均对生物质炭的比表面积产生影响,其影响显著性大小为热解温度氨水质量分数浸渍比。通过模型优化确定了最佳活化工艺参数为热解温度620℃、氨水质量分数8%、浸渍比1∶5;该工艺条件下制备的生物炭比表面积和碘吸附值分别为334.49 m~2/g、585.52 mg/g,均优于未进行优化改性的样品。该值与理论值(335.2 m~2/g、582.288 mg/g)基本相符,表明响应面模型与实际情况拟合良好,验证了模型的有效可行性。  相似文献   

3.
刘岑薇  叶菁  林怡  王义祥 《安徽农学通报》2021,27(6):134-138,151
以大薸(Pistia Stratiotes L.)为原料,在不同温度下烧制成大薸生物炭(BC),采用磁改性方法制得改性生物炭(MBC),研究两者对铜离子(Cu2+)的吸附性能,并采用准一级动力学、准二级动力学模型及Langmuir与Freundlich等温吸附模型对试验数据拟合.结果表明:未改性与改性大薸生物炭对Cu2+的平衡吸附浓度分别从55.49mg/g增加到74.01mg/g,58.87mg/g增加到75.20mg/g;随着烧制温度升高,生物炭比表面积增大,孔径变小,孔隙结构增加;生物炭吸附Cu2+过程更符合Langmuir模型与二级动力学模型,拟合系数R2均大于0.9;热解温度为500℃时,生物炭对Cu2+的吸附效果最佳,改性生物炭对Cu2+的吸附速率大于未改性生物炭.  相似文献   

4.
不同原料及热解条件下农业废弃物生物炭的特性   总被引:1,自引:0,他引:1  
选取浙江省宁波市本地适合制备生物炭的6种农业废弃物原料,采用不同热解条件制备获得生物炭,对自行制备的生物炭及大米加工副产物稻壳炭的成炭率、pH值、元素含量、比表面积和孔结构进行分析。结果表明,不同原料及热解条件下生物炭的产率分布在19.50%~45.40%之间,pH值为8.52~10.85,碳含量在432.50~778.62 g/kg之间,其他元素含量在不同原料之间有所不同。自行制备生物炭的比表面积分布在1.01~7.63 m~2/g之间,微孔面积分布在未检出~4.81 m~2/g,低于稻壳炭的比表面积(48.35 m~2/g)和微孔面积(24.06 m~2/g)。扫描电镜(SEM)图显示自行制备的生物炭为蜂窝状孔隙结构,稻壳炭为网纹孔隙结构。  相似文献   

5.
以三种来源(猪粪便、玉米秸秆和松树木屑)的生物质为原料,分别在250℃和400℃温度条件下制备生物炭,对其理化性质进行表征,并研究菲在所选生物炭上的吸附行为及可能存在的吸附机制。结果显示,生物炭的理化性质随着生物质来源和热解温度条件的不同而有明显的变化;与250℃下制备的生物炭相比,400℃下制备的生物炭极性官能团数量更少,芳香度更高,疏水性更强,比表面积更大,孔结构发育更加完全,灰分含量更高;同一温度下,植物来源的生物炭比动物来源的生物炭的比表面积大,而动物来源的生物炭的灰分含量明显高于植物来源的生物炭。所有生物炭对菲的吸附行为都可以用Freundilich模型进行很好的拟合,且吸附等温线均显示出非线性;在猪粪便和玉米秸秆制备的生物炭中,400℃比250℃条件下制备的生物炭对菲有更强的吸附能力,表明吸附能力与热解温度有关;且同一热解温度下,动物来源的生物炭样品的吸附能力高于植物来源的生物炭样品,可能是由于其含有更多的灰分。Freundlich非线性指数n值与比表面积和芳香度之间均存在负相关关系,说明菲在生物炭上的吸附不仅有疏水效应,可能还存在着孔填充效应和π-π电子供体受体(EDA)反应等吸附机制的贡献。  相似文献   

6.
[目的]探讨热解温度对制备不同类型秸秆生物炭及其吸附去除Cu~(2+)的影响。[方法]以玉米、水稻、芝麻3类秸秆为原料于400~700℃热解炭化制备生物炭,探讨热解温度对秸秆生物炭的结构官能团、比表面积、孔径分布等结构及理化性质的影响,并评价生物炭对Cu~(2+)的吸附性能。[结果]生物炭的pH和比表面积随热解温度的升高而逐渐增大,而产率却逐渐稳定,其中热解温度的变化对水稻和芝麻秸秆生物炭的影响更为明显;此外,生物炭对Cu~(2+)的吸附效率与生物炭的种类和热解温度有关,升高热解温度有利于提高生物炭对Cu~(2+)的吸附去除率,且水稻和芝麻秸秆生物炭的吸附效率明显高于玉米秸秆生物炭,其中700℃下热解所制备的水稻和芝麻秸秆生物炭对Cu~(2+)的去除率可达100%。[结论]该研究可为控制农业环境污染提供科学依据。  相似文献   

7.
高铁酸钾/高锰酸钾改性生物炭对Cd2+的吸附研究   总被引:1,自引:1,他引:0  
为增强生物炭对Cd的吸附性能,以600℃制备的酒糟生物炭(BC)为原料,采用K_2FeO_4和KMnO_4氧化活化的方式制备改性生物炭,分别标记为BCFE和BCMN,采用全自动比表面积和孔隙度分析仪(BET)、电子显微镜-能谱仪(SEM-EDS)对改性前后酒糟生物炭的性质进行分析,并探究改性生物炭对Cd~(2+)的吸附效果。结果表明,添加K_2FeO_4和KMnO_4可有效地将Fe和Mn负载到生物炭上,分别在生物炭表面生成铁氧化物与锰氧化物。BCFE的总官能团含量分别是BC和BCMN的1.8倍和1.5倍,BCFE的含氧官能团与芳香性结构更为丰富。K_2FeO_4和KMnO_4改性显著提高了生物炭的比表面积,3种材料比表面积表现为:BCFE(2 302.0m~2·g-1)BCMN(521.3 m2·g-1)BC(245.9 m2·g-1)(P0.05),BCFE的比表面积分别是BC和BCMN的9.4倍和4.4倍。吸附试验结果显示,当达到吸附平衡时,3种材料对Cd~(2+)的吸附量大小表现为BCFE(7.46 mg·g-1)BCMN(5.61 m2·g-1)BC(1.46 m2·g-1)(P0.05)。3种生物炭对Cd~(2+)的吸附动力学模型均符合准二级动力学模型,吸附速率由快至慢排序为:BCFEBCMNBC;吸附等温模型均符合Langmuir模型,吸附过程为单分子层吸附,最大吸附量(Qm)表现为:BCFEBCMNBC。因此,K_2FeO_4和KMnO_4改性处理显著改善了生物炭的结构,提高了对Cd的吸附能力,且K_2FeO_4改性效果明显优于KMnO_4。可见,经K_2FeO_4改性的生物炭具有较好的吸附潜力,可作为Cd废水处理的有效材料。  相似文献   

8.
以木质纤维素为原料,采用限氧热解法制备木质纤维素生物炭,以亚甲基蓝和四环素为目标污染物,通过批试验方法考察了生物炭热解温度和溶液初始pH值条件等对吸附的影响,以及吸附的动力学和热力学.研究结果发现,热解温度为300℃时木质纤维素生物炭对2种污染物的吸附能力最强.酸化和未酸化处理木质纤维素生物炭对2种污染物的吸附能力有明显的差异,溶液初始pH值条件对吸附过程有较大影响.吸附动力学研究表明,2种污染物在木质纤维素生物炭上的吸附可能以化学吸附为主.由Langmuir吸附等温方程知,298 K时木质纤维素生物炭对亚甲基蓝和四环素的最大吸附量分别达到437.6 mg/g和1090.1 mg/g.热力学分析证明生物炭对2种污染物的吸附过程均为自发和吸热过程.  相似文献   

9.
以酚醛树脂为原料、KOH为活化剂制备双电层电容器用高比表面积活性炭.考察KOH与酚醛树脂炭的质量比对所制得的活}生炭的吸附性能、孔径分布和比电容的影响.实验结果表明,随着碱炭比的增大,所得活性炭的BET比表面积、总孔容积和中孔容积不断增大,碘吸附值和亚甲基蓝吸附值也不断增大,比电容则先增大后减小并在碱炭比为4时达到最大值74.2F/g.以这种高比表面积活性炭组装成的电容器具有良好的充放电性能和循环性能,既能在大电流下快速充放电也能在小电流下缓慢充放电。  相似文献   

10.
玉米秸秆生物炭对Cd(Ⅱ)的吸附机理研究   总被引:43,自引:20,他引:23  
以玉米秸秆为原料,在350℃和700℃热解温度下分别制备了两种生物炭(BC350和BC700),并对其理化性质进行了表征.在700℃下制备的生物炭芳构化程度更高,疏水性更强,比表面积更大,孔结构发育更加完全.研究Cd(Ⅱ)在两种生物炭上的吸附发现,Two-site Langmuir吸附等温模型比One-site Langmuir吸附等温模型能更好描述Cd(Ⅱ)在生物炭表面的吸附.BC700对Cd(Ⅱ)的吸附容量大于BC350,解吸率远小于BC350,吸附效果更好;离子交换和阳离子-π作用两种吸附机理同时存在并共同作用,前者分别占BC350和BC700总吸附容量的13.7%和1.1%,后者分别占86.3%和98.9%,阳离子-π作用是最主要的吸附机理.红外光谱FTIR分析表明,生物炭表面的含氧官能团和π共轭芳香结构分别提供不同机理的吸附位点.由于具有更多的离子交换位点,BC350对Cd(Ⅱ)吸附受pH影响较BC700更大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号