首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
【目的】利用地面遥感和航天遥感数据结合植被指数实现快速调查,研究各数据中植被指数的差异。【方法】用地面高光谱数据和光学影像中分别对梭梭林和柽柳林进行归一化植被指数(NDVI)、重归一化植被指数(RDVI)和土壤调节植被指数(SAVI)3种植被指数的提取,并进行比较。【结果】在高光谱VI中,梭梭林和柽柳林的3种VI的数值大小和变化趋势都很接近,特别是SAVI和RDVI,但NDVI的变化较其他2种大;而在光学影像VI中,梭梭林和柽柳林的NDVI和SAVI的数值基本保持在一定范围内,且变化幅度微小,而RDVI的数值和变化趋势均较大,相对不稳定。【结论】高光谱数据所提取的NDVI和SAVI均大于光学影像,而光学影像所提取的RDVI均大于高光谱数据,RDVI对植被覆盖度更敏感。  相似文献   

2.
【目的】分析遥感影像不同空间分辨率对LAIe估测结果的影响。【方法】基于地面调查的83个20 m×20 m样地和Landsat-8、SPOT-5、Pleiades-1遥感数据,以川西南山地常绿阔叶林为研究对象,运用偏最小二乘回归分析法,估测了2 m、10 m、30 m 3种尺度(粒度)上区域森林有效叶面积指数(LAIe)。【结果】3种分辨率的遥感数据提取的植被指数NDVI、SAVI对LAIe估测最为重要(Landsat-8:NDVI、SAVI的VIP=1.662;SPOT-5:NDVI、SAVI的VIP=1.573;Pleiades-1:NDVI、SAVI的VIP=1.423)。3种传感器的NDVI、SAVI的相关系数大于0.8,均达极显著水平。对LAIe回归估测检验显示,Landsat-8的决定系数R2=0.793,精度P=79.8%;SPOT-5的决定系数R2=0.853,P=84.4%;Pleiades-1的R2高达0.898,估测精度最高,达89.5%。【结论】不同空间分辨率的影像对LAIe估测有显著影响,使用高空间分辨率数据能显著提高LAIe估测精度。  相似文献   

3.
利用MODIS数据提取了7种不同植被指数(LST/VI)作为遥感参数,将其与地面实测含水量进行相关性分析,探索不同植被指数与土壤、植株含水量的关系,旨在为山西省冬小麦农田含水量监测提供科学依据。结果表明:与植被供水指数相比,LST/DVI和LST/RDVI在拔节期进行冬小麦干旱监测较好;而在抽穗期LST/PVI、LST/SAVI可代替LST/NDVI来监测冬小麦干旱;成熟期利用LST/PVI进行干旱监测,其效果明显好于LST/NDVI。  相似文献   

4.
基于机载高光谱端元提取分析棉花生长期光谱变化   总被引:1,自引:0,他引:1  
【目的】棉花在不同生长期的波谱曲线变化具有规律性,研究其时间序列上的反射光谱变化趋势与规律并监测长势,为基于无人机多光谱、高光谱遥感的作物长势监测提供借鉴和参考。【方法】使用多旋翼无人机搭载Rikola高光谱成像仪,获取棉花从花期到后期之间的高光谱影像。使用纯净像元指数算法和最大单形体体积算法进行端元提取,并以SR-3500光谱仪采集的地面光谱曲线为标准,光谱角度为评价指标,依次从端元提取算法效果、不同航高数据对比、光谱相关性、多期光谱曲线变化趋势等分析。【结果】最大单形体体积算法在60、80、100 m航高下波谱角度结果分别为0.065 8、0.065 9、0.067 7,相较于纯净像元指数算法结果更接近地面光谱仪数据,具有较优的相关性(R2均在0.99以上),且能更好地提取小样本端元。航高对端元提取的影响较小,同种算法在不同航高下提取结果差异均在2%以下。不同生长期棉花波谱曲线变化呈规律性,吸收谷与红边值在7月中旬到达峰值。标准植被指数与比值植被指数在7月上中旬达到最大值(0.841 7、11.630 5),增强型植被指数、差值植被指数、优化土壤调节植被指数在7月中下旬达到最大值(0.818 9、0.501 3、0.501 2)。【结论】最大单形体体积算法可较好的从棉花高光谱影像中提取出棉花波谱曲线,且100 m为较优的无人机数据采集航高。棉花在7月光合作用最大,对红光的强吸收、近红外波段强反射现象最为明显。  相似文献   

5.
【目的】利用2018年5和6月获取的无人机多光谱影像对北京市大兴试验基地的部分农田进行地物类型提取研究。【方法】确定感兴趣地物种类,对影像进行时相与光谱特征分析,然后确定归一化植被指数NDVI、归一化绿蓝差异指数NGBDI、修正型比值植被指数MSR和红边波段反射率可以作为最优分类特征,通过基于光谱变量阈值分割的决策树分类法,实现地物分类,并提取种植面积,选取基于目视解译的地面调查数据进行方法验证。【结果】基于时相与光谱特征的决策树分类方法有较好效果,该方法用于小麦、果树和大棚的提取,误差值分别为10.68%、6.06%和16.48%,面积提取误差在17%以内,对无人机多光谱遥感影像进行地物识别具有一定的适用性。【结论】无人机低成本、高效率的优势为农田信息及时获取提供参考。  相似文献   

6.
几种植被指数探测低盖度植被能力的研究   总被引:2,自引:0,他引:2  
以京津源风沙治理区延庆县为例,利用2002年ETM+数据,对NDVI、RDVI、SAVI和MSAVI四种植被指数探测低盖度植被的能力进行了对比研究。并以NDVI为基础,采用混合像元分解模型,反演出基础盖度,分别建立不同VI与植被覆盖度的相关模型。通过分析不同VI随植被覆盖度增加的反映速率变化及不同覆盖条件下不同VI的取值范围的变化发现,NDVI在各盖度段数值都比较大,对低盖度植被反映最敏感,探测低密度绿色植被的能力最强,MSAVI次之,RDVI和SAVI探测低盖度植被的能力则较差。  相似文献   

7.
【目的】借助多光谱遥感影像和Logistic算法,实现对棉田虫害的田间监测。【方法】以患虫害棉花区域为研究对象,利用无人机获取棉田多光谱遥感影像,并对影像进行预处理;结合受虫害棉花光谱特征,利用虫害敏感波段反射率与植被指数构建Logistic回归模型,开展棉花虫害识别监测研究。【结果】由土壤调节植被指数(Soil adjusted vegetation index,SAVI)模型和归一化植被指数(Normalized vegetation index,NDVI)模型构建的棉蚜虫、棉红蜘蛛、棉铃虫识别模型为最优模型,其训练样本准确率达到93.7%,测试样本准确率达到90.5%,召回率为96.6%,F1值为93.5%,对棉蚜虫、棉红蜘蛛和棉铃虫的识别模型决定系数分别为0.942、0.851和0.663。【结论】该模型可满足棉田中棉蚜虫、棉红蜘蛛和棉铃虫3种虫害的发生区域识别,且可基本满足棉田精准植保作业相关要求。  相似文献   

8.
植被盖度遥感反演模型在稀疏高寒草原的对比研究   总被引:1,自引:0,他引:1  
【目的】基于Landsat8遥感影像数据,反演西藏日喀则地区高寒草原植被盖度。【方法】采用比较常用的3种植被盖度反演模型,即像元二分模型、基于归一化植被指数(NDVI)与土壤调整植被指数(SAVI)的回归模型、改进的三波段梯度差模型,对稀疏高寒草原植被盖度进行反演,并采用照相法实测植被盖度进行反演精度分析。【结果】3种模型对高寒草原植被盖度的反演精度以像元二分模型最高,反演精度为82.02%,其他两种模型均小于80%。【结论】像元二分模型相对于回归模型和改进的三波段梯度差模型更适用于稀疏高寒草原植被盖度的反演。  相似文献   

9.
以山西省闻喜县冬小麦为研究对象,通过野外实地调查,利用便携式光谱辐射仪测定冠层反射率,提取8种植被指数(RVI,TSAVI,RDVI,NDVI,PVI,RDVI,SAVI,OSAVI),并与冬小麦不同生育时期土壤硝态氮、铵态氮、速效磷及速效钾等养分指标进行相关性分析,建立相应的预报模型,实现对麦田土壤养分的监测。结果表明,冬小麦生育期内,不同的土壤养分含量变化不一,水浇地的土壤硝态氮、速效磷以及速效钾含量均略高于旱地,铵态氮则相反;冬小麦拔节期、灌浆期以及成熟期,旱地土壤耕层养分与植被指数相关性较差;水浇地的硝态氮和速效磷含量与植被指数的相关模拟效果达到显著水平,而铵态氮和速效钾含量与植被指数的模拟程度较差。因此,在冬小麦拔节期、灌浆期与收获期,可通过植被指数来模拟监测土壤硝态氮与速效磷含量的变化。  相似文献   

10.
【目的】伊犁绢蒿荒漠草地是新疆草地生态系统的重要组成部分,研究其主要植物地面光谱和植被指数特征是实现物种识别的基础,准确而实时获得群落物种组成变化、提高草地监测的质量和效果。【方法】借助SOC710 VP成像光谱仪,采集4月伊犁绢蒿荒漠草地群落高光谱影像,提取伊犁绢蒿(Seriphidium transiliense)、角果藜(Ceratocarpus arenarius)、叉毛蓬(Petrosimonia sibirica)和群落的原始光谱数据,通过反射率(REF)、吸收率(ABS)及其一阶微分(GREF和GABS)的变换提高光谱辨析度,分析并筛选敏感波段;通过各波段之间的相互组合计算NDVI值和DVI值,并以全波段计算的NDVI值和RVI值作为参考,筛选出优于全波段且差值最大植被指数。【结果】(1)3种主要植物光谱曲线相近,差异主要体现在光谱值的大小,在可见光400~780 nm和近红外波段780~820 nm的反射率均表现出角果藜>伊犁绢蒿>叉毛蓬>群落的特征;(2)通过反射率REF、吸收率ABS、一阶微分反射率GREF和一阶微分吸收率GABS的变换能够进一步扩大其光谱特征,相对稳定的波段有蓝光波段490~530 nm,绿光波段510~560 nm,红光波段620~760 nm,近红外波段780~820 nm。(3)GABS和ABS变换下490~530 nm和780~820 nm波段组合计算的NDVI’和RVI’在3种主要植物间的差异大于全波段和其它波段计算的NDVI’和RVI’。【结论】对敏感波段的反射率和吸收率进行一阶微分处理,并用于改进植被指数,能够提高伊犁绢蒿荒漠3种主要植物的识别效果。  相似文献   

11.
利用花生生物物理参数和冠层高光谱数据,基于光谱一阶微分技术,选取对生物量敏感的波段组成高光谱植被指数,建立花生叶鲜生物量的高光谱遥感估算模型。结果表明,花生叶鲜生物量在绿峰525~556 nm、红谷645~689 nm和近红外710~900 nm波段范围反射光谱与花生叶鲜生物量有极显著相关关系。高光谱反射率与叶鲜生物量在大部分可见光区和近红外波段呈显著相关,并且在可见光红光波段呈负相关,在近红外波段呈极显著正相关。花生光谱反射率与花生叶鲜生物量相关的近红外、红光波段的敏感波段分别为770、673 nm,用这2个波段构建植被指数,组成高光谱归一化植被指数(NDVI)、比值植被指数(RVI)、差值植被指数(DVI)和再次归一化植被指数(RDVI),并构建生物量反演模型;相对于NDVI、DVI、RDVI建立的简单线性函数估测模型,RVI所构建的花生叶鲜生物量估测模型的预测精度较高。  相似文献   

12.
基于人工神经网络的大豆叶面积高光谱反演研究   总被引:26,自引:0,他引:26  
【目的】探索不同高光谱模型监测大豆叶面积指数LAI的精度。【方法】实测不同水肥耦合作用下,大豆冠层的高光谱反射率与叶面积指数(Leaf Area Index)数据,对二者进行相关分析;采用敏感波段(801nm,670nm)构建RVI, NDVI, SAVI, OSAVI 和MTVI2植被指数,建立大豆LAI估算模型;最后采用相关系数较大的波段作为神经网络模型的输入变量进行大豆LAI的估算。【结果】大豆LAI与光谱反射率在可见光波段呈负相关、近红外波段呈正相关、红边处相关系数由负变正;微分光谱在三边处与大豆LAI关系密切,在红边处取得最大回归确定性系数(R2 = 0.86)。植被指数可以较为精确反演大豆LAI,确定性系数R2>0.84。人工神经网络模型可以大大提高大豆LAI的估算水平,当隐藏层节点数为2时,R2为0.92,随着隐藏层节点数的增加,R2可高达0.96;在没有黄熟期数据干扰的情况下,神经网络可以进一步提高大豆LAI的反演精度,R2可高达0.99。【结论】与基于植被指数建立的模型相比,神经网络模型可以有效避免因LAI过高而出现的过饱和现象,大大提高了LAI的反演精度。  相似文献   

13.
【目的】验证无人机机载高光谱传感器S185,并基于其获得的影像探讨无人机高光谱遥感反演叶面积指数的新方法。【方法】以东北玉米为研究对象,在吉林省公主岭市开展了玉米氮肥梯度试验,共设5处理,每个处理3次重复。分别在玉米的V5-V6,V11,R1-R2等生育期(Ritchie生育期)进行无人机飞行试验和地面光谱及叶面积指数测定,共获得数据45组。为验证S185影像数据,在相同尺度下提取S185影像信息与地面光谱信息,一方面从测定同一目标地物两者光谱反射率间的相关性进行分析,另一方面筛选15种常用的各类光谱指数,从整个生育期通过影像数据计算的各光谱指值与地面光谱仪计算的相应值变化趋势的一致性进行分析;将45组样品随机选择30组,基于人工神经网络算法利用S185数据建立反演叶面积指数的模型,剩下15组样品作为外部验证样品,用来验证神经网络模型的预测效果。另外,基于相同的分组数据,利用前面筛选的各光谱指数分别建立叶面积指数的反演模型,以与人工神经网络建模结果进行比较。【结果】在各个生育时期,同种目标地物S185测定数据与地面光谱仪测定数据间具有很强的相关性,相关系数在0.99以上;在玉米整个生育期,S185数据计算的各光谱指数与地面光谱仪计算的各光谱指数变化趋势相同,相关系数在0.88以上;在构建基于人工神经网络法反演叶面积指数的模型中,建模时的决定系数为0.96,均方根误差为0.42,相对均方根误差为13.15%;外部验证时的决定系数为0.95,均方根误差为0.54,相对均方根误差为16.74%,这一结果优于基于各光谱指数建立的叶面积指数反演模型。【结论】无人机搭载S185传感器可用于准确获取玉米冠层高光谱信息,且可利用人工神经网络法基于这一数据建立玉米叶面积指数的反演模型。  相似文献   

14.
高效、无损的监测作物长势是现代精准农业的核心环节,无人机平台因具有成本低、数据获取效率高、测试高度及测试时间可按需调节等优点,在监测作物长势中发挥着地面平台和高空平台无法比拟的优势。本研究以小麦为研究对象,应用无人机搭载RedEdge-M多光谱相机获取主要生育时期的小麦冠层多光谱影像,并同步取样测量小麦叶片SPAD、地上部鲜重和干重,进一步探索基于无人机平台获取多光谱影像的预处理方法,提取小麦冠层反射率并筛选出适合作物长势监测的植被指数,构建基于无人机平台的小麦长势监测模型,结果表明,基于NDVI、SAVI、CCCI构建的多元线性回归模型精度更高、稳定性更好。预测小麦SPAD值的最佳模型为y=19.765+7.522NDVI+18.362SAVI+25.629CCCI,R~2为0.965;预测小麦地上部干重的最佳模型为y=-0.508+0.603NDVI+0.325SAVI+0.032CCCI,R~2为0.951;预测小麦地上部鲜重的最佳模型为y=-2.217+2.923NDVI+2.213SAVI-1.417CCCI,R~2为0.766。本研究结果可为园区和农场尺度小麦长势的实时监测提供有效技术支撑。  相似文献   

15.
选用江西省余干县多角度高光谱遥感数据CHRIS/PROBA,提取了5种植被指数(VI),即归一化植被指数(NDVI)、垂直植被指数(PVI)、调整土壤植被指数(MSAVI)、比值植被指数(RVI)、大气阻抗植被指数(ARVI),与地面实测的植被叶面积指数进行了回归分析,建立300个LAI-VI关系模型。结果表明:在所有的模型中,从5个角度来看,0°提取叶面积指数效果最好,R2=0.591,RMSE=0.650;-55°提取叶面积指数效果最差,R2=0.551,RMSE=0.821;从植被类型来看,针阔林最好,其次为阔叶林、灌木、针叶林和草地;从植被模型种类来看,指数模型好于一次回归模型;从植被指数来看,PVI最好,其次为MSAVI、NDVI、RVI、ARVI。在LAI-VI关系建模过程中,基于多角度高光谱遥感数据提取植被指数,有利于充分挖掘遥感影像信息,能够提高LAI估算精度。  相似文献   

16.
【目的】分析不同水分处理下棉花冠层植被指数与吸收光合有效辐射截获量(FAPAR)和叶片净光合速率(Pn)之间的相关性,并通过植被指数反演FAPAR和Pn,以实现非接触、非破坏、快速、实时、大面积监测棉花的生长状况。【方法】用美国ASD Fieldspec Pro FR 2500高光谱辐射仪、LI-190SA线性光量子传感器和LI-6400便携式光合测试系统,分别测定棉花新陆早33号不同水分处理关键生育时期的冠层高光谱数据、光合有效辐射(PAR)和叶片净光合速率。【结果】不同水分处理的棉花新陆早33号冠层FAPAR与Pn均在开花结铃期达到最大值,在吐絮期达到较低值。建立重归一化植被指数(RDVI)、差值植被指数(DVI)、增强型植被指数(EVI)、光化学反射植被指数(PRI)与FAPAR、Pn的函数模型都达到极显著性相关。其中EVI与FAPAR,PRI和Pn的相关性最高(rEVI-FAPAR=0.686 3**,RMSE=0.04,rPRI-Pn=0.644 7**,RMSE=3.39,n=20),利用它们相关性最高的函数模型方程分别估算FAPAR和Pn,实测值和估测值都达到极显著(r实测FAPAR-估测FAPAR=0.805 4**,r实测Pn-估测Pn=0.760 9**,n=20)。【结论】可以用高光谱植被指数无损的提取棉花光合生理参数信息。  相似文献   

17.
【目的】为实现快速无损地监测水稻叶绿素含量,采用大疆M600 Pro无人机搭载SENOP RIKOLA高光谱仪获取水稻分蘖期冠层高光谱影像。【方法】利用相关性分析筛选出光谱指数的特征波长,构建DSI、RSI、NDSI、MSR、OSAVI和RDVI 6种植被指数,并利用一阶光谱导数计算其红边面积和红边幅值,分析8种光谱参数参与水稻叶绿素含量之间的相关性分析。将这些光谱参数作为CatBoost回归模型的输入变量,分析8种光谱参数对水稻叶绿素含量的估算能力。【结果】基于红边参数的反演模型中红边幅值拟合效果最好,其R2为0.952 4,RSME为0.638 1;基于植被指数的反演模型中OSAVI指数拟合效果最好,其R2为0.941 6,RSME为0.588 5。2种模型均能有效预测水稻叶绿素含量信息,可以作为水稻叶绿素含量监测的依据。【结论】将无人机高光谱遥感影像与机器回归算法相结合,可以实现对水稻冠层叶绿素含量的精准预测,从而对水稻的生长和健康状况进行实时监测,进而实现对水稻的精准施肥和精准灌溉,对水稻的增产增收以及精准农业的发展具有重要意义。  相似文献   

18.
受稀疏植被与明亮土壤背景影响,干旱地区植被覆盖精确遥感估测难度较大。以Hyperion影像为数据源,选取甘肃省民勤绿洲-荒漠过渡带为研究区,系统比较了利用不同类型高光谱及多光谱植被指数估测干旱地区稀疏植被覆盖度的能力,以期确定干旱地区稀疏植被覆盖度估测的最佳植被指数。不同植被指数估测稀疏植被覆盖度的能力利用线性回归R2及留一交叉验证的均方根误差进行比较,结果表明:高光谱植被指数估测稀疏植被覆盖度的能力显著优于相应的多光谱植被指数,抗大气植被指数(ARVI)及抗土壤和大气植被指数(SARVI)表现明显优于归一化植被指数(NDVI)与土壤调节植被指数(SAVI),其中以基于833.3nm/640.5nm波段组合的ARVI表现最佳,R2可达0.7294,均方根误差(RMSE)仅为5.5488。  相似文献   

19.
【目的】建立棉花高光谱数据与光合特征参数的相关模型,有效、快速、非破坏的对棉花生长过程进行诊断与监测,为大面积应用高光谱遥感监测棉花的生长状况提供科学依据。【方法】利用ASD高光谱辐射仪和Li-6400光合仪分别获取5水分处理条件下,棉花新陆早13号、新陆早33号两品种关键生育期的高光谱数据和光合特征参数:净光合速率(Pn)和气孔导度(Gs),利用高光谱数据计算得到棉花两品种归一化植被指数(NDVI)、比值植被指数(RVI)和修改型二次土壤调节植被指数(MSAVI2),分别建立与两品种Pn和Gs的线性、对数和幂函数的相关方程。【结果】三种模型方程均达到显著和极显著的相关性,两品种RVI与Pn和Gs的三种相关模型方程的r值较高,其中,利用新陆早33号RVI与Pn,Gs幂函数方程分别对Pn和Gs估算,并将预测Pn、Gs与实测Pn,Gs进行相关分析,R值均达到极显著水平(r_(实测Pn-估测Pn)=0.827**,RMSE=1.089,r_(实测Gs-估测Gs)=0.586**,RMSE=0.138,n=20,P0.01),模型方程的估测精度均大于80%。【结论】不同水分处理下新陆早13号和新陆早33号的光谱植被指数与光合参数间存在着显著的相关性,可以利用相关模型对Pn和Gs进行遥感估测,实时监测棉花的生长状况。  相似文献   

20.
【目的】寻找最能真实反映南方地区植被变化状况的遥感数据,并将其用于评价土地覆被变化及其带来的影响.【方法】通过分析韩江流域2001—2006年间AVHRR、SPOT-VGT和MODIS 3种归一化植被指数(NDVI)遥感数据,比较它们对不同植被响应特征的异同,并采用线性回归方法分析它们的相关关系.【结果和结论】3种NDVI遥感空间分布总体格局大体一致,且MODIS和SPOT-VGT的NDVI空间分布吻合良好.MODIS传感器波段宽度窄、空间分辨率高,对地物分辨能力高,NDVI在流域内的变化范围大,数值分布分散.3种NDVI的季节变化步调基本一致,幅度相当.MODIS NDVI最能精确反映地面植被覆盖的变化,而AVHRR NDVI反映的流域地面植被变化情况与实际不相符.3种NDVI反映的各种植被季节变化情况基本一致,MODIS NDVI与SPOT-VGT NDVI的相似度更高.MODIS NDVI能够明显区分农作物、郁闭灌木林和草地的季节变化与其他植被的不同,比SPOT-VGT NDVI和AVHRR NDVI能更好地反映地面植被的多样性和植被覆盖的变化.在全流域和各种植被类型上,3种NDVI两两间都表现出一定的线性关系,其中MODIS NDVI与SPOT-VGT NDVI间的线性关系最强.由MODIS NDVI与AVHRR NDVI的线性回归关系预测的韩江流域2000年的NDVI与实测值吻合良好,为MODIS NDVI时间序列向历史年份拓展提供了思路.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号