首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
土壤矿质氮分析方法的影响因素研究   总被引:5,自引:0,他引:5  
为探明土壤矿质氮分析方法的影响因素,应用采自果园、菜园、麦田、麦田休闲地和草地的5种土样,研究了土样预处理方式、KCl浸提液的保存方式对用连续流动分析仪测定土壤矿质氮具体测定方法的影响。结果表明,土样预处理方式和浸提液保存方式都不同程度地影响土壤中矿质氮的测定结果。方差分析结果进一步表明各种影响因子对土壤硝态氮含量测定值的影响较铵态氮大。采用鲜土直接测定、KCl浸提液不保存直接用连续流动分析仪测定能更准确地反映出土壤矿质氮的实际含量。  相似文献   

2.
土壤铵态氮、硝态氮是作物吸收氮素的最主要的2种形式。近年来,随着土壤铵态氮、硝态氮检测量的增加,土壤样品采集的集中性与检测时间分散性的矛盾日益凸显。为了能合理地安排工作,确保土壤中铵态氮、硝态氮含量检测结果的准确性,特对土壤及浸提液中铵态氮、硝态氮浸提液在恒温、常温下的流失性状况进行研究,探索出对于土壤中铵态氮、硝态氮的测试过程中处理及测试过程中适宜的储藏条件。  相似文献   

3.
为了对FIAstar 5000流动注射分析仪和传统方法(氧化镁浸提.扩散法、酚二磺酸比色法和镀铜镉还原-重氮化耦合比色法)的分析结果进行比较,分别采用此两种方法测定了同一流域内不同利用类型土壤中铵态氮、硝态氮和亚硝态氮的含量,通过样品均值、测试误差、回收率和标准偏差等指标对两种方法进行了比较研究.结果表明,流动注射分析仪在测定土壤中铵态氮和硝态氮时,分析速度快且仪器具有较好的稳定性(5次平行次数内结果RSD<5%).从分析结果的准确性看,采用流动注射分析仪分析土壤中铵态氮、硝态氮时,与传统方法也具有可比性,样品回收率分别为98.5%~102.0%和96.7%~98.3%.在测定土壤亚硝态氮时,流动注射分析法仪器稳定较差(5次平行次数内结果RSD>6%),且分析结果普遍偏低,需要进行必要的校正.因此,在大批量测定土壤样品铵态氮、硝态氮时,用流动注射分析法是可行的,但测定亚硝态氮含量时,存在较大的误差,需要进行校正.  相似文献   

4.
[目的]研究振荡浸提时间对土壤NO3-N、NH4-N测定结果的影响,为土壤氮素研究提供分析测定的理论依据.[方法]采集高、中、低三种肥力灰漠土,2 mol/L KCl溶液作浸提剂,以不同振荡的时间浸提鲜土、冷藏土和冷冻土,用连续流动注射分析仪测定浸提液中NO3-N、NH4-N含量.[结果]不同肥力土壤以不同方式保存后,振荡浸提时间对土壤硝态氮、铵态氮测定结果有明显的影响,鲜土、冷冻土测定结果比冷藏土稳定.振荡浸提30 ~ 60 min时,NO3-N和NH4-N的测定值相对稳定.[结论]从经济、可靠的角度衡量,无论是新鲜土壤,还是冷藏或冷冻土壤,测定土壤矿质氮含量的振荡浸提时间为30 min即可.对于土壤矿质氮含量极高的土壤,振荡浸提时间应延长至60 min.  相似文献   

5.
【目的】探明不同质量浓度铵态氮浇灌下城市森林土壤淋滤液铵态氮与硝态氮及土壤氮素的变化。【方法】本文选择哈尔滨市城市林业示范基地内代表性的3种人工林(蒙古栎、黄檗、水曲柳)的土壤作为研究对象,以其邻近的裸地土壤作为对照,通过野外采集土柱和室内土柱模拟法,使用硫酸铵配制不同质量浓度铵态氮溶液(100、50、25、0 mg/L)进行室内模拟浇灌,对土柱淋滤液中铵态氮和硝态氮及处理后的土柱土壤氮素进行测定与分析。【结果】3个林型和对照原状土柱对铵态氮去除效果显著,去除率均达到95%以上;不同质量浓度铵态氮负荷下各林型土壤对其去除效果差异不显著;3个林型及对照原状土柱淋滤液硝态氮质量浓度较高,均为4.41~5.53 mg/L;进水铵态氮质量浓度为100 mg/L时,除对照外,3个林型土柱中铵态氮含量均增加;低于100 mg/L时,除蒙古栎人工林外,其他两个林型土柱土壤中铵态氮含量降低;各林型和对照的土柱土壤硝态氮含量显著增加,而全氮含量差异不显著;利用不同质量浓度铵态氮浇灌后,土柱淋滤液中铵态氮的变化受林型和进水铵态氮质量浓度及其两者的交互影响不显著,但对硝态氮的影响达到显著水平,以上3者对浇灌后土柱土壤中氮素的影响均达到显著水平。【结论】在3个林型及裸地原状土柱中,蒙古栎人工林土壤对铵态氮的去除效果及硝态氮淋失最显著,其次为黄檗人工林土壤、水曲柳人工林土壤和裸地土壤。  相似文献   

6.
【目的】气候变化下降水模式改变对自然生态系统的影响已成为生态学研究的热点,本研究旨在探究降水模式改变下干湿交替强度和频率对土壤无机氮及氮矿化的影响。【方法】以香菇草为试验材料开展温室控制试验。试验设置了高、中和低3种干湿交替强度和频率共9种处理,测定了土壤铵态氮、硝态氮含量,分析了土壤净氮矿化和硝化速率。【结果】(1)干湿交替强度对香菇草—土壤系统的无机氮含量有极显著影响。干湿交替强度最低时,土壤铵态氮含量最高,而硝态氮含量最低;随干湿交替强度增加,土壤铵态氮含量下降,硝态氮含量增加。(2)干湿交替频率对香菇草—土壤系统的无机氮含量有极显著影响。随干湿交替频率增加,土壤铵态氮含量下降,而硝态氮含量增加。(3)干湿交替强度和频率对土壤无机氮及净氮矿化有显著的交互作用。【结论】干湿交替强度和频率的改变导致了香菇草—土壤系统无机氮含量、净氮矿化速率和硝化速率的变化,影响了土壤中氮素养分的有效性,进而影响植物—土壤系统氮循环。  相似文献   

7.
【目的】为摸清氮肥与作物产量之间的关系,明确冬小麦/夏玉米轮作体系氮肥投入阈值范围,从污染源头控制氮肥的迁移、流失,提高氮肥吸收利用效率和减少环境污染提供理论依据。【方法】采用大田小区试验,设置不施肥对照、优化减氮25%、优化施肥、优化增氮125%、优化增氮150%、优化增氮200%等6个处理,研究黄壤坡耕地土壤中硝态氮、铵态氮及可溶性氮累积、迁移规律及作物产量的影响。【结果】施氮均能提高土壤硝态氮、铵态氮和可溶性氮的含量及其累积量;各处理硝态氮、铵态氮的垂直迁移趋势不同,且土壤硝态氮、铵态氮主要集中在0~40 cm土层,分别占总硝态氮含量的37.3%~55.1%、29.3%~45.1%,2种作物可溶性氮的垂直迁移趋势基本一致;与优化施肥相比,优化增氮处理对硝态氮、铵态氮向土壤深层迁移趋势影响作用明显,但对土壤可溶性氮向土壤深层迁移趋势影响不明显;施肥各处理的硝态氮、铵态氮和可溶性氮含量及小麦和玉米产量较不施肥处理均有显著增加。【结论】合理施用氮肥可降低土壤硝态氮、铵态氮和可溶性氮及提高作物产量。优化减氮(OPT-N)措施较其他施肥处理的经济效益和环境效益有显著提高,是值得推荐的施氮措施。  相似文献   

8.
西双版纳橡胶林土壤氮的分布特征及与橡胶树生长的关系   总被引:2,自引:0,他引:2  
【目的】研究不同品系橡胶树在西双版纳不同生态区种植对土壤氮的影响及其土壤氮变化与橡胶树生长的关系。【方法】分别采集了西双版纳州景洪、勐腊、勐海3个植胶区土壤、橡胶树叶片,并分析了不同割龄RRIM600、GT1、云研-774橡胶树土壤中不同形态氮和橡胶树叶片氮分布特征及关系。【结果】西双版纳州3个植胶地区中不同品系橡胶林土壤中氮的变化差异较大,景洪橡胶林土壤中全氮含量最高,勐腊、勐海相对较低;橡胶林土壤铵态氮和硝态氮较低,硝态氮变异最大;GT1品系橡胶林土壤中全氮含量较高,RRIM600、云研-774相对较低。土壤中全氮含量随割龄的增加而升高,碱解氮、铵态氮、硝态氮随割龄和品系不同而变化,并且土壤铵态氮和硝态氮以低割龄橡胶园相对较高,老割龄橡胶园相对较低;橡胶树叶全氮以景洪最高,勐腊、勐海相对较低,且随割龄的增加而降低。橡胶林保护带土壤全氮、碱解氮、铵态氮与橡胶树叶全氮含量呈显著正相关,而硝态氮与橡胶树叶全氮含量呈极显著正相关;种植带铵态氮和硝态氮与橡胶树叶片氮呈显著正相关。【结论】橡胶树及土壤氮含量随橡胶树品系、割龄、生长环境而变化,不同割龄、不同品系橡胶树对土壤氮具有显著的影响。  相似文献   

9.
交替隔沟灌溉和施氮对玉米根区水氮迁移的影响   总被引:10,自引:1,他引:9  
 【目的】研究交替隔沟灌溉条件下作物根区土壤水氮迁移和累积。【方法】利用小区试验,对供试玉米采取不同的水分和氮素处理,测定交替隔沟灌溉条件下玉米根区土壤硝态氮、铵态氮和水分的变化。【结果】施氮后沟中硝态氮含量增长很快,大多集中在地表下0~30 cm处。随着时间的推移,上层土壤水分携带氮素养分下渗,造成下层土壤硝态氮含量的上升。收获时低水高氮处理的整个剖面上硝态氮的累积量最大,是高水高氮处理的1.2倍,低水低氮处理的是高水低氮的1.27倍。施氮后表层0~30 cm土壤铵态氮含量和累积量达到高峰,30 cm以下变化不明显。收获时各处理的铵态氮在剖面上的分布和累积基本相同。高水处理的土壤水分累积量明显大于低水处理,氮素水平的高低对土壤水分的累积影响不大。【结论】施氮量和灌水量是影响土壤硝态氮、铵态氮和土壤水分分布和累积的最主要因素。高水处理造成根区硝态氮淋失,降低了氮肥的利用。施氮量与硝态氮在根区剖面上的累积呈正相关。与硝态氮含量相比,铵态氮含量较低并且变化不大。最佳的水氮耦合形式为低水高氮(施氮量240 kgN•ha-1,灌水量1485.71 m3•ha-1)。  相似文献   

10.
【目的】探讨石灰性土壤中亚硝态氮的累积机理和条件,为氮素管理和环境保护提供依据。【方法】采用室内培养的方法,探讨了不同氮肥种类、氮肥用量、土壤水分含量和温度对土壤亚硝态氮产生和累积的影响。【结果】在培养条件下(土壤水分含量为田间持水量(WHC)的60%,温度为25℃),硝态氮肥处理的土壤中几乎未检测到亚硝态氮;3种铵态氮肥处理均有不同程度的亚硝态氮累积,土壤中亚硝态氮含量依次为硫酸铵>尿素>硝酸铵;土壤中亚硝态氮含量与铵态氮含量呈极显著正相关,与硝化速率呈极显著负相关。土壤中亚硝态氮含量随氮肥施用量的增加而增大;随土壤水分含量的增加而上升。培养温度为45℃时,土壤亚硝态氮含量最小;培养温度为25℃和35℃时,土壤亚硝态氮含量差异较小,且均高于45℃时。土壤中亚硝态氮累积总量与氮肥用量和土壤水分含量均呈显著直线正相关;亚硝态氮最大含量与土壤水分含量呈显著直线正相关,出现在硝化作用5~10 d后。【结论】在该试验培养条件下,硝化过程是石灰性土壤亚硝态氮的来源,土壤亚硝态氮累积量随氮肥施用量和土壤水分含量的增加而增大,其最适宜累积的温度为25℃。  相似文献   

11.
不同水氮处理对棉田氮素平衡及土壤硝态氮移动的影响   总被引:7,自引:1,他引:6  
 【目的】探讨不同水氮管理策略对高产棉田氮素平衡及氮素移动的影响。【方法】设置田间小区试验,研究了常规灌水+常规施氮、优化灌水+优化施氮、常规灌水+优化施氮、优化灌水+优化施氮、常规灌水+不施氮处理条件下的棉田氮素平衡和土壤硝态氮动态。【结果】在常规水氮管理条件下,收获后表观损失量高达163—294 kg?hm-2,60—200 cm土层中硝态氮含量较播前有大幅增加,增量与表观损失的比值达到0.39—0.69;优化水氮管理条件下表观损失量仅为19—87 kg?hm-2;常规水氮处理不同层次土壤剖面上均呈现出硝态氮的积累,而且随灌水量加大累积峰下移,优化水氮管理土壤剖面硝态氮累积程度较小。【结论】在常规施氮体系中氮素的表观损失率达52%—68%,氮素随水移动到根层以下是重要的损失途径之一;本试验中采用的优化水氮管理方法显著减少了硝态氮的淋移损失。  相似文献   

12.
【目的】研究冬小麦生育期内土壤溶液中硝态氮及铵态氮的时空变化特征及变量追肥对其含量变化的影响,以期为田间作物的栽培与管理提供参考依据。【方法】以国家精准农业研究示范基地2013-2014年小麦试验为例,采用常规统计分析与地统计分析两种方法分别探索土壤溶液中硝态氮与铵态氮在时间序列上的变化特征及空间结构特征,并采用普通克里金插值法获取硝态氮与铵态氮空间分布图,最终比较分析了冬小麦生育期内硝态氮与铵态氮的空间变化规律。【结果】通过常规统计分析发现冬小麦起身期至收获期内,土壤溶液中铵态氮含量受追肥影响不明显,整体呈降低趋势,而硝态氮含量受追肥影响,呈先降低后升高又降低的趋势;在起身、拔节、开花与灌浆期,不同追肥处理间铵态氮的变化没有显著差异,在收获期,D、S处理与其他不同处理间有显著或极显著差异;硝态氮的变化在起身与开花期,不同处理间没有显著差异,在拔节期,BH处理与其他各处理间均有极显著差异;在灌浆期,CK处理与T处理、D处理、S处理间均有极显著差异;在收获期,D处理与其他各处理间有显著或极显著差异。通过地统计分析发现起身、拔节、收获期的铵态氮空间分布均一度较高,连续性强,空间自相关性好,而开花、灌浆期其空间分布差异较大,受随机因素影响严重;拔节、灌浆、收获期的硝态氮空间分布连续性强,均一度高,空间自相关性好,而起身、开花期其空间分布差异较大,空间自相关性较弱。分析对比硝态氮与铵态氮的空间插值图发现硝态氮在起身与拔节期,试验区北部含量低于南部,到开花与灌浆期整个试验区硝态氮含量普遍较高,到收获期变为北部含量高于南部;铵态氮在起身期,试验区北部含量低于南部且由北往南含量逐渐升高呈条带状分布,到开花与灌浆期其空间分布差异较大,到收获期北部含量明显高于南部。【结论】变量追肥对于铵态氮的变化趋势没有影响,提高了硝态氮含量且主要发生在开花期,同一生育期内不同处理之间对于它们含量的变化是有差异的。  相似文献   

13.
【目的】研究配施不同用量的黄腐酸对新疆拜城县膜下滴灌玉米产量及氮肥利用率的影响,筛选出适宜拜城县膜下滴灌玉米的黄腐酸的用量。【方法】以新玉31号品种为研究对象,在施用相同氮磷钾(N 240 kg/hm2、P2O5 150 kg/hm2、K2O 90 kg/hm2)的基础上,以单施氮肥处理为对照,分析施不同用量的黄腐酸对玉米产量及氮肥利用率的影响。【结果】相对于单施氮肥处理,合理施黄腐酸(180~270 kg/hm2)能显著增加玉米的产量,增产率为10.2%~12.6%,玉米氮肥利用率提高8.0~10.5个百分点,但收获后土壤中的硝态氮和铵态氮的含量没有显著增加。大量施用黄腐酸(450 kg/hm2)能显著增加玉米的生物量、氮肥利用率以及收获后土壤中的硝态氮和铵态氮的含量,但是产量降低,减产率为3.5%。【结论】对玉米产量和氮肥利用率与黄腐酸用量进行综合分析,适宜的黄腐酸用量为180~270 kg/hm2。  相似文献   

14.
景博  牛宁  张文龙  刁明 《新疆农业科学》2020,57(10):1830-1838
【目的】 研究不同施氮量对加工番茄生长及土壤氮素平衡的影响。【方法】 基于临界氮浓度模型的施肥方案,设置不施氮(N0)、施氮200 kg/hm2(N1)、施氮300 kg/hm2(N2)和施氮400 kg/hm2(N3)4个处理,测定加工番茄各生育期的生长、产量和土壤氮素等指标。【结果】 (1)在苗期阶段,各处理对加工番茄的生长无显著差异;坐果期后,N2处理较其他处理可有效促进加工番茄的生长。2018年,红熟期N2处理下的加工番茄株高为85.5 cm,显著高于其他处理,同期N2处理下的茎粗为18.40 mm,显著高于N0处理,但与其他施氮处理无显著差异,且2019年有同样变化趋势。(2)各处理土壤硝态氮主要分布在20-40 cm土层中,各土层中硝态氮含量随施氮量的增加而增加;2018年在拉秧期N3处理下的硝态氮含量主要残留在40 cm以下土层中,占总硝态氮含量的54.72%,且2019年有同样趋势,淋洗风险较大;N2处理下的土壤硝态氮分布较均衡,可以有效降低土壤氮素的残留,提高氮肥利用率。(3)土壤剖面中硝态氮盈余量随施氮量的增加呈增加趋势;N0、N1、N2处理下的氮素主要以作物吸收的方式带出土壤,N3处理下的氮素主要残留在土壤中;N1处理可降低氮素在土壤中的残留量,但也降低了氮素的利用率,N2处理有利于提高氮肥表观利用率,降低氮肥表观残留率,N3处理促进了作物对氮素的吸收,但加大了氮素在土壤中的残留,降低了氮素利用率。【结论】 在基于加工番茄临界氮浓度模型的氮素运筹方案下,加工番茄苗期阶段,按N1处理施44 kg/hm2减氮施肥,在开花期以后,施氮按N2处理施234 kg/hm2的氮运筹可促进植株生长,且土壤氮素残留相对较少,保证了较高的氮肥利用率和经济效益。  相似文献   

15.
【目的】本研究探讨干旱区棉田土壤氮素转化过程及对棉花根系生物量的影响,明确棉田土壤氮素有效性对农业管理措施的响应,为棉田制定高产高效管理措施,实现棉花高产优质低成本及环境友好生产服务。【方法】在定位试验条件下,采用裂区设计,以秸秆不还田(S0)与秸秆还田(S1)为主区,4种施肥处理(不施肥(F0)、施氮磷钾化肥(F1)、施有机肥(F2)、施氮磷钾化肥+有机肥(F3))为副区,分析了秸秆还田和施肥对土壤氮素有效性的影响,探讨了棉田土壤氮素转化过程,包括净矿化速率、净硝化速率、总硝化速率和反硝化速率的变化,明确了土壤有效氮含量和棉花根系生物量对秸秆还田和施肥措施的响应。【结果】(1)秸秆还田和施肥显著增加了土壤净矿化速率、总硝化速率和反硝化速率,棉花不同生育时期不同施肥处理间各指标的变化不同,但秸秆还田下施肥处理间差异不显著,在盛花期均有最大速率;(2)秸秆还田和施肥显著增加了土壤铵态氮、硝态氮和无机氮含量,但秸秆还田下施肥处理间差异不显著,棉花盛花期和盛铃期土壤无机氮含量显著高于收获期;(3)秸秆还田显著降低了棉花根冠比,对根系生物量、细根/粗根比影响不显著,施肥显著增加了根冠比、根系生物量及细根生物量,施肥处理之间差异不显著。综上所述,秸秆还田能增加土壤净矿化速率、净硝化速率、总硝化速率、反硝化速率、硝态氮、铵态氮和可吸出无机氮含量以及根系生物量。有机肥无机肥配施有最大的土壤净矿化速率、净硝化速率、总硝化速率、反硝化速率、硝态氮和可吸出无机氮含量。有机肥无机肥配施也有最大的根系生物量和粗根细根比。【结论】秸秆还田和施肥有利于促进土壤氮素转化过程,增加土壤有效氮含量,对根系生长及生物量产生影响。在干旱区实施秸秆还田,结合有机无机肥配施技术有利于加速土壤养分转化,提高肥料利用效率,增加有效养分含量,促进作物根系生长和地上部碳同化能力。  相似文献   

16.
施氮量对旱地小麦氮素吸收转运和土壤硝态氮含量的影响   总被引:24,自引:1,他引:23  
【目的】在黄淮冬麦区,研究施氮量对旱地小麦氮素利用规律的影响,为该区旱地小麦合理的氮肥运筹提供理论依据。【方法】于2009-2010和2010-2011两个小麦生长季,在大田条件下设置6个施氮量处理(0、90、120、150、180和210 kg•hm-2),研究施氮量对旱地小麦氮素吸收转运和土壤硝态氮含量的影响。【结果】在150 kg•hm-2及以下的处理增加施氮量,小麦各生育时期植株氮素积累量、成熟期籽粒氮素积累量、开花前吸收氮素向籽粒的转运量和开花后氮素吸收量显著增加;在150 kg•hm-2基础上增加施氮量,小麦各生育时期植株氮素积累量、开花前吸收氮素向籽粒的转运量和开花后氮素吸收量与150 kg•hm-2处理无显著差异,成熟期籽粒氮素积累量及分配比例降低,营养器官氮素积累量及分配比例升高。施氮量为180 kg•hm-2和210 kg•hm-2,成熟期0-140 cm土层土壤硝态氮含量显著高于150 kg•hm-2处理,深层土壤硝态氮含量增加。施氮150 kg•hm-2处理小麦籽粒产量最高,氮素利用效率和氮肥生产效率较高。【结论】本试验条件下,施氮量为150 kg•hm-2,是兼顾产量和氮肥利用效率的适宜施氮量。  相似文献   

17.
施氮对膜下滴灌棉花生长发育及土壤硝态氮的影响   总被引:2,自引:1,他引:1  
【目的】 研究施氮量对膜下滴灌棉花生长发育及土壤硝态氮的影响,为膜下滴灌棉花的氮肥管理提供理论参考。【方法】 以新陆早52号为材料,设N0(不施氮)、N150(150 kg/hm2)、N250(250 kg/hm2)、N350(350 kg/hm2)、N450(450 kg/hm2)共5个处理,研究膜下滴灌棉花的氮肥运行规律及最佳氮肥施用量。【结果】 不同氮肥处理地上部生物累积量进符合Logistic 曲线模型Y=a/(1+b×exp(-k×t)),最大积累速率出现时间在71~77 d,进入快速积累期在56~60 d。2试验年各处理LAI表现为N450>N350>N250>N150 >N0,最大可达4.51~4.81。0~60 cm土层,硝态氮含量变化表现为随土层深入先增加后降低的趋势,在20~40 cm土层硝态氮含量最高,现蕾阶和铃期消耗土壤硝态氮较多。产量、肥利用率、氮肥贡献率2试验年N350最大,分别在为7 477.5和7 731.7 kg/hm2,40.32%、43.24%,56.09%、57.02%。【结论】 N350(350 kg/hm2)处理效果最佳,施氮量在327.70~340.67 kg/hm2的阈值范围内,有利于棉花形成高产和提高肥料利用率。  相似文献   

18.
【目的】研究76 cm等行距机采棉种植模式下,土壤硝态氮分布和氮素利用对密度和灌溉定额调控的响应机制,为优化76 cm等行距机采棉栽培模式提供理论依据。【方法】在大田试验基础上,设置3个种植密度(低密度M1,13.5×104株/hm2;中密度M2,18×104株/hm2;高密度M3,22.5×104株/hm2)和灌溉定额[重度亏缺W1(50%ETC),3 150 m3/hm2;轻度亏缺W2(75%ETC),4 050 m3/hm2;充分灌溉W3(100%ETC),4 980 m3/hm2]。研究其对76 cm等行距机采棉田土壤无机氮...  相似文献   

19.
【目的】 研究天山云杉林不同更新方式对土壤碳氮的影响,了解碳、氮的生物地球化学循环。【方法】 采用典型样方法,研究新疆天山云杉林不同更新方式对土壤碳氮含量的影响。【结果】 不同更新方式下林地土壤有机碳、全氮含量均随着土层加深呈逐渐下降的趋势。不同更新方式间土壤有机碳含量的差异主要在0~25 cm土层。与老龄云杉林相比,更新后,天然更新林、人促更新林和人工更新林0~10 cm土层土壤有机碳含量分别下降21.08、27.83 和53.2 g/kg, 10~25 cm土层分别比老龄云杉林下降9.09、13.88和13.83 g/kg,且与老龄云杉林差异均达到显著水平(P < 0.05);而不同更新方式间全氮含量的差异主要在0~10 cm土层,分别比老龄云杉林下降0.44、0.71和0.98 g/kg,且与老龄云杉林差异均达到显著水平(P < 0.05)。不同更新方式对林地土壤有机碳及全氮储量的影响不同,75 cm深土壤有机碳及全氮储量的大小顺序依次为,天然更新林>人促更新林>人工更新林。【结论】 不同更新方式对林地土壤碳氮影响程度不同,人工更新林土壤碳氮含量比天然更新林土壤下降的更为明显,其中表层土壤反映最为敏感,下降最快。  相似文献   

20.
供应铵态和硝态氮对苹果幼树生长及15N利用特性的影响   总被引:1,自引:0,他引:1  
【目的】揭示大田栽培条件下,苹果矮化中间砧幼树生长及对不同形态15N的利用、分配特性。【方法】以1年生宫藤富士/SH6/平邑甜茶幼树为试材,采用15N同位素示踪法,研究硝态氮和铵态氮对苹果幼树生长及15N利用和分配的影响。【结果】施肥46 d后,15NO3-15N利用率为3.43%,显著高于15NH4-15N利用率(1.19%)。施用NO3--N后树体生物量、根冠比显著高于NH4+-N,根系中15NO3-15N分配率为27.91%,显著高于15NH4-15N分配率(25.13%)。施肥118 d后,NO3--N肥效降低,表现为树体生物量显著低于NH4+-N处理,15NO3-15N利用率为4.08%,与15NH4-15N利用率相比差异不显著;根系15NO3-15N分配率为31.19%,显著高于根系15NH4-15N分配率(25.10%)。【结论】大田栽培条件下,硝态氮肥效快于铵态氮,利于树体生长和根冠比的迅速提高,但随着生长期的延长铵态氮与硝态氮肥效无显著差异。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号