首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 187 毫秒
1.
施氮量对不同品种滴灌棉花氮素利用率及产量的影响   总被引:1,自引:1,他引:0  
【目的】研究不同施氮量对不同品种滴灌棉花的氮素利用率及产量的影响,为种植棉花高效合理的施用氮肥和高产量提供理论参考。【方法】供试棉花品种为新陆早50号、新陆早58号、鲁棉研24号,施氮量水平为0、120、240、360 kg/hm2纯氮。【结果】不同品种棉花吐絮期的各器官氮素分配比从大到小分别为:纤维+种子>叶片>铃壳>茎秆;不同施氮处理对不同品种棉花的平均氮累积量为N3>N2>N1>N0,不同品种氮累积量为新陆早58号>新陆早50号>鲁棉研24号;新陆早50号和鲁棉研24号在施氮量240 kg/hm2、新陆早58号在施氮量360 kg/hm2时的氮素利用率和产量达到最优,在获得高产的同时氮素达到有效的利用。【结论】3个品种中以新陆早58号的氮素分配率、氮累积量、生物量和产量达最高,鲁棉研24号的氮素利用率高于另外2个品种;滴灌棉花在360 kg/hm2处理下的生物量、氮素累积量和籽棉产量最高。  相似文献   

2.
【目的】研究新疆北疆滴灌春小麦-青贮玉米种植模式中土壤硝态氮分布规律。【方法】研究前茬春小麦选用新春6号、后茬青贮玉米选用新饲玉13号作为材料,其中前茬设置4个施氮处理(即纯氮量对照0.0、240.0、360.0、480.0 kg/hm2,用代码Nw0、Nw1、Nw2和Nw3表示),后茬设置4个施氮量处理(即对照0.0、225.0、337.5、450.0 kg/hm2,用代码Nc0、Nc1、Nc2和Nc3表示),并于前茬春小麦3个生育时期,后茬青贮玉米5个生育时期,分别取0~20、20~40和40~60 cm三个层次土样,用AA3连续流动分析仪测定土壤硝态氮含量。【结果】土壤硝态氮含量总体随着施氮量的增加而增加,随着生育期的推进先增加后减少,春小麦在开花期达到峰值,青贮玉米在吐丝期达到峰值,且前茬硝态氮残留量的增加对后茬土壤硝态氮含量有提高的作用;前后茬0~20、20~40和40~60 cm三个层次土壤硝态氮含量随着土层的加深而减少,随着施氮量的增加而增加,中、高施氮量(前茬360.0和480.0 kg/hm2,后茬337.5和450.0 kg/hm2)会促进土壤硝态氮向下层土移动。产量及产量构成因素上,前后茬均表现为:随着施氮量的增加,产量及构成因素先增加后减少,春小麦在360.0 kg/hm2施氮处理下产量最高,达6 713.39 t/hm2,青贮玉米在225.0 kg/hm2施氮处理下产量最高,达88.91 t/hm2(鲜重)。随着施氮量的增加,农学利用率和氮肥偏生产力逐渐降低。【结论】在北疆地区春小麦-青贮玉米种植模式下,采用前茬360.0 kg/hm2、后茬225.0 kg/hm2的施氮组合,有利于实现该种植模式的高产和氮素高效利用。  相似文献   

3.
施氮对膜下滴灌棉花生长发育及土壤硝态氮的影响   总被引:2,自引:1,他引:1  
【目的】 研究施氮量对膜下滴灌棉花生长发育及土壤硝态氮的影响,为膜下滴灌棉花的氮肥管理提供理论参考。【方法】 以新陆早52号为材料,设N0(不施氮)、N150(150 kg/hm2)、N250(250 kg/hm2)、N350(350 kg/hm2)、N450(450 kg/hm2)共5个处理,研究膜下滴灌棉花的氮肥运行规律及最佳氮肥施用量。【结果】 不同氮肥处理地上部生物累积量进符合Logistic 曲线模型Y=a/(1+b×exp(-k×t)),最大积累速率出现时间在71~77 d,进入快速积累期在56~60 d。2试验年各处理LAI表现为N450>N350>N250>N150 >N0,最大可达4.51~4.81。0~60 cm土层,硝态氮含量变化表现为随土层深入先增加后降低的趋势,在20~40 cm土层硝态氮含量最高,现蕾阶和铃期消耗土壤硝态氮较多。产量、肥利用率、氮肥贡献率2试验年N350最大,分别在为7 477.5和7 731.7 kg/hm2,40.32%、43.24%,56.09%、57.02%。【结论】 N350(350 kg/hm2)处理效果最佳,施氮量在327.70~340.67 kg/hm2的阈值范围内,有利于棉花形成高产和提高肥料利用率。  相似文献   

4.
施氮量对棉花养分吸收利用及产量和品质的影响   总被引:1,自引:0,他引:1  
【目的】研究施氮量对棉花产量、养分吸收与分配、氮肥利用率及纤维品质的影响,为棉花生产合理施氮提供理论基础。【方法】以中棉所60号为材料,于2018和2019年连续2年大田试验。设置4个施氮水平(0、112.5、168.75、225 kg/hm2,分别以CK、N1、N2、N3表示),在吐絮期采集植株茎、叶、生殖器官,测定干物质质量和氮磷钾积累量,计算氮肥利用率和棉花产量等指标。【结果】施氮量在0~225 kg/hm2,棉花产量随施氮量的增加而增加;施用氮肥可提高棉花吐絮期氮、磷、钾吸收量,施氮水平在0~168.75 kg/hm2,棉花氮、磷、钾吸收量随施氮量的增加而增加,过量施用氮肥后棉花氮、磷、钾吸收量下降;氮肥利用率以112.5 kg/hm2施氮量最高;施氮量对棉花纤维品质指标影响差异不显著。【结论】综合产量、氮肥利用率、养分吸收、分配及利用和纤维品质等指标,黄河流域棉区推荐施氮量为112.5~168.75 kg/hm2。  相似文献   

5.
节水减氮对温室土壤硝态氮与氮素平衡的影响   总被引:9,自引:1,他引:8  
【目的】针对日光温室蔬菜生产中肥水超量施用问题,以提高氮肥利用率和实现温室菜田可持续利用为目标,研究节水减氮在温室蔬菜生产中的增效潜力,推荐适宜水氮用量。【方法】采用当地典型种植茬口冬春茬黄瓜-秋冬茬番茄,在沟灌方式下设计农民习惯灌溉(W1,>100%田间持水量)和减量灌溉(W2,75%-95%田间持水量)2个灌水水平;农民习惯施氮(N1)、较农民习惯减氮25%(N2)、减氮50%(N3)和无氮(N0)4个氮肥水平,对应黄瓜季施氮1 200、900、600和0 kg·hm-2,番茄季施氮 900、675、450和0 kg·hm-2,共W1N1、W2N2、W2N3、W1N0和W2N0 5个水氮用量组合处理,3年6季定位研究蔬菜关键生育期0-100 cm土体硝态氮动态变化,分析氮素平衡和经济效益,推荐合理水氮用量。【结果】农民习惯水氮管理W1N1处理土壤硝态氮积累明显,并向土壤深层迁移。节水减氮W2N3处理3年0-60 cm土层硝态氮供应保持在相对适宜水平,平均硝态氮含量为53.3-80.9 mg·kg-1;0-100 cm土体硝态氮未出现明显积累,平均含量较W1N1处理下降13.9%-31.1%;氮素表观损失下降56%,氮肥利用率提高2.4-3.3个百分点,并保持较高的经济效益。依据0-20 cm土层硝态氮含量与产量之间的显著回归关系,获得最佳产量土壤硝态氮含量黄瓜为37.4-72.9 mg·kg-1,番茄应低于90 mg·kg-1。根据蔬菜氮素需求量和关键生长期适宜的土壤硝态氮含量,结合根区土壤水分监测,推荐与供试条件相近的温室,沟灌冬春茬黄瓜产量160-180 t·hm-2下灌水450-550 mm配合施氮600 kg·hm-2较适宜,秋冬茬番茄产量70-80 t·hm-2时灌水170-200 mm配合施氮250 kg·hm-2较适宜。分析水氮减施增效原因为:节水20%-30%使土壤硝态氮趋近根区分布,节氮50%降低土壤剖面硝态氮积累,节水20%-30%配合减氮50%将根区硝态氮供应维持在适宜水平的同时,降低进入损失途径的氮素,从而实现增效。【结论】华北平原沟灌温室黄瓜-番茄农民生产现状节水减氮潜力较大。优化水分管理是实现氮肥减施增效的关键,在合理灌水量下,推荐适宜的施氮量是水氮减施增效的有效措施。较农民习惯管理节水20%-30%配合减氮50%,能有效降低氮素损失,提高氮肥利用率,保持较高经济效益。  相似文献   

6.
【目的】针对灌区膜下滴灌甜瓜栽培施氮不合理的问题,通过系统分析膜下滴灌条件下不同施氮量对甜瓜产量、土壤硝态氮累积及氮素吸收和平衡的影响,为河西灌区膜下滴灌甜瓜合理施用氮肥提供理论依据。【方法】试验采用膜下滴灌施肥模式,设置5个施氮水平:0(N0)、60(N60)、120(N120)、180(N180)、240 kg·hm -2(N240),在苗期、伸蔓期、膨大期和成熟期测定土壤剖面硝态氮含量,并结合成熟期产量和氮素吸收量,分析不同氮素用量对甜瓜产量、品质以及氮素平衡和土壤中硝态氮分布、累积的影响。 【结果】在施氮量为180 kg·hm -2时甜瓜商品瓜产量达到较高值,果实吸氮量和氮收获指数达到最大,甜瓜氮素吸收利用效率、氮素农学效率和氮素生理利用率变幅分别为39.59%—40.22%、56.61—61.44 kg·kg -1和142.98 —152.76 kg·kg -1;不同深度土壤NO3 --N随施氮量的增加而增加,但同一处理中土层越深NO3 --N含量越低;收获后NO3 --N主要累积在0—40 cm土层,占试验监测土壤范围(0—100 cm)的46.74%—51.84%;施氮量与甜瓜吸氮量、硝态氮残留量和氮素表观损失量呈显著正相关,甜瓜吸收量占氮输出量的41.27%—41.36%,氮素残留量占42.62%—43.41%,表观损失占15.32%—16.02%。 【结论】在河西沙漠绿洲灌区甜瓜膜下滴灌种植中,氮素施入量以180 kg·hm -2为宜,有利于甜瓜氮素吸收利用能力保持在较高水平,降低氮素损失,达到氮素收支动态平衡以及高产优质高效的生产目的。  相似文献   

7.
不同施氮量对棉花产量、养分吸收及氮素利用的影响   总被引:2,自引:0,他引:2  
【目的】覆膜滴灌条件下,研究不同施氮量对棉花产量、养分吸收和氮素利用的影响,为棉花生产合理施氮提供科学依据。【方法】试验于2017~2019年设在新疆阿瓦提县,共5个施氮水平(0、110、220、330、440 kg/hm2),于棉花吐絮期采集植株样品,测定棉花产量、生物量、养分吸收和氮素利用。【结果】当施氮量在0~220 kg/hm2时,棉花产量、生物量和产值随着施氮量的增加显著增加,棉花对氮、磷、钾的吸收也显著增加,当施氮量大于220 kg/hm2时影响不显著。棉花氮素偏生产力和农学效率随施氮量增加显著降低。当施氮量大于220 kg/hm2时,氮素表观利用率显著降低,氮素贡献率差异不显著。【结论】当施氮量在0~220 kg/hm2时,随着施氮量的增加,棉花产量、生物量、产值和氮、磷、钾养分的吸收显著增加,当施氮量大于220 kg/hm2时,氮素表观利用率显著降低。综合棉花产量、经济效益、养分吸收和氮素利用,供试棉田推荐施氮量为220 kg/hm2。当施氮量为220 kg/hm2时,形成100 kg籽棉,需吸收N 4.25 kg、P2O5 1.14 kg、K2O 3.61kg。  相似文献   

8.
【目的】研究配施不同用量的黄腐酸对新疆拜城县膜下滴灌玉米产量及氮肥利用率的影响,筛选出适宜拜城县膜下滴灌玉米的黄腐酸的用量。【方法】以新玉31号品种为研究对象,在施用相同氮磷钾(N 240 kg/hm2、P2O5 150 kg/hm2、K2O 90 kg/hm2)的基础上,以单施氮肥处理为对照,分析施不同用量的黄腐酸对玉米产量及氮肥利用率的影响。【结果】相对于单施氮肥处理,合理施黄腐酸(180~270 kg/hm2)能显著增加玉米的产量,增产率为10.2%~12.6%,玉米氮肥利用率提高8.0~10.5个百分点,但收获后土壤中的硝态氮和铵态氮的含量没有显著增加。大量施用黄腐酸(450 kg/hm2)能显著增加玉米的生物量、氮肥利用率以及收获后土壤中的硝态氮和铵态氮的含量,但是产量降低,减产率为3.5%。【结论】对玉米产量和氮肥利用率与黄腐酸用量进行综合分析,适宜的黄腐酸用量为180~270 kg/hm2。  相似文献   

9.
水氮耦合对滴灌冬小麦氮素吸收、 转运及产量的影响   总被引:1,自引:1,他引:0  
【目的】 研究南疆滴灌冬小麦氮素吸收和利用特征,为揭示滴灌冬小麦氮素高效利用机制打下基础。【方法】 以新冬22号为材料,开展水氮裂区设计试验,滴施纯氮为主区,设N1(138 kg/hm2)、N2(207 kg/hm2)、N3(276 kg/hm2)和N0(对照,不施氮肥)4个水平;滴水量为副区,在统一冬灌900 m3/hm2的基础上,起身期以后设W1(1 800 m3/hm2)、W2(3 150 m3/hm2)、W3(4 500 m3/hm2)3个滴灌水平,共12个处理。【结果】 (1)适当增加水氮供应量有利于提高冬小麦植株氮素积累量,其中N3W2、N3W3、N2W2和N2W3处理的积累量显著高于其他处理。(2)开花前是氮素积累量的主要时期,其平均积累量占总积累量的78.28%,拔节-扬花期是氮素吸收速率高峰期,并以N3W2、N2W3和N2W2处理最高,分别达6.38、5.81和5.01 kg/(hm2·d)。(3)各器官氮素转运量及对籽粒氮素积累的贡献率大小为叶片>茎鞘>颖壳+穗轴;N3W2和N2W3处理的营养器官氮素转移量显著高于其他处理,达158.34和147.49 kg/hm2;N3W2、N2W2和N2W3处理的籽粒蛋白质含量及蛋白质产量显著高于其他处理,分别达15.73%、15.41%和14.18%及1 475.94、1 256.97和1 217.78 kg/hm2。(4)滴灌冬小麦的产量构成及水、氮利用效率具有显著的水氮耦合效应,N3W2、N2W3和N2W2处理的产量较高,其氮肥农学利用率、氮肥利用效率及灌溉水利用效率也最大。【结论】 207~276 kg/hm2的施氮量和3 150~4 500 m3/hm2的春季滴水量是该地区较合适的水氮供应范围,当施氮量为275.08 kg/hm2和滴水量为4 457.89 m3/hm2包括冬灌900 m3/hm2时,产量可达最大为8 558.73 kg/hm2。  相似文献   

10.
【目的】 通过在有机肥基础上增施不同量无机氮,研究滴灌水肥一体化条件下温室番茄土壤N2O排放和脲酶(UR)、硝酸还原酶(NR)、亚硝酸还原酶(Ni R)以及羟胺还原酶(Hy R)活性的动态变化,分析各处理土壤N2O排放特征及土壤UR、NR、Ni R和Hy R活性对土壤N2O排放的影响,揭示在滴灌水肥一体化下N2O排放过程机制。【方法】 试验共设CK(不施氮)、N1(200 kg·hm -2有机氮)、N2(200 kg·hm -2有机氮+ 250 kg·hm -2无机氮)、N3(200 kg·hm -2有机氮+ 475 kg·hm -2无机氮)4个处理。采用静态箱-气相色谱法,对番茄生育期内土壤N2O排放、土壤酶活性、土壤温湿度等进行监测。【结果】 滴灌水肥一体化,各施氮处理均在施肥+灌溉后第1天出现N2O排放高峰,随着时间推移不断下降,不同处理番茄整个生育期N2O排放通量在0.98—1 544.79 μg·m -2·h -1。土壤N2O排放总量差异显著,依次为N3((7.13±0.11)kg·hm -2)>N2((4.87±0.21)kg·hm -2)>N1((2.54±0.17)kg·hm -2)>CK((1.56±0.23)kg·hm -2),与N3相比,处理N1、N2土壤N2O排放总量分别降低了64.38%、31.70%。番茄生育期内N2O季节排放特征明显,秋季高,冬季低。土壤氮素转化相关酶活性大致随施氮量的升高而增高。土壤N2O排放通量与5 cm土壤温度、0—10 cm土层硝态氮含量、土壤NR活性及土壤Hy R活性均呈极显著正相关(P<0.01)。【结论】 滴灌水肥一体化下,土壤微生物处于好气环境,土壤N2O主要来自于硝化过程,减少了由反硝化过程所产生的N2O排放。综合考虑番茄产量、品质、N2O排放等因素,推荐北方温室秋冬茬番茄施用200 kg·hm -2有机氮+250 kg·hm -2无机氮,75 kg·hm -2 P2O5,450 kg·hm -2 K2O较为适宜。  相似文献   

11.
【目的】研究新疆“宽早优”模式下施氮量对棉田碳足迹的影响。【方法】采用生命周期评价法(LCA),设置不同施氮水平(0、120、240、360 kg/hm2),分析施氮量对棉田碳足迹、碳足迹构成及产量的影响。【结果】当氮肥施用量( 360 kg/hm2)减少33.3%( 240 kg/hm2)和66.7%( 120 kg/hm2)时,碳足迹分别下降了8.4%和17.6%。在N360处理下籽棉产量为8 035.4 kg/hm2,在N240处理下籽棉产量为7 797.2 kg/hm2,且N240、N360处理棉花籽棉产量差异不显著。灌溉用电、农膜及化肥引起温室气体排放对碳足迹贡献最大,分别占47.4%、25.2%和24.3%。随着施氮量的增加,棉田N2O排放总量随之增加,N360分别比CK、N120和N240显著高221.9%、123.1%和 33.1%。【结论】随着施氮量的减少,棉花单位面积碳足迹也随之减少,在不影响产量的情况下,降低氮肥用量可以减少“宽早优”棉田碳足迹,在新疆地区实现以较少的碳足迹来获得较高的产量。  相似文献   

12.
目的】研究棉花秸秆还田配施不同氮肥处理对棉秆腐解及土壤理化性质的影响。【方法】以干旱区典型农业土壤-灰漠土为研究对象,采用随机区组设计,以不添加秸秆与氮肥(CK)为对照,设置无氮(0 kg/hm2)、低氮(N1: 112.5 kg/hm2、N2: 225 kg/hm2)、中氮(N3: 450 kg/hm2)、高氮(N4: 750 kg/hm2)5种氮处理水平。于2019年10月中旬将棉花秸秆打断为3~5 cm,以中等还田量施入18个小区。在1年的棉秸秆腐解期间,定期测定还田棉秆纤维素、半纤维素、木质素含量,土壤有机碳、全氮含量、pH、电导率。分析随着还田腐解时间的延长,棉秸秆主要成分含量与相应土壤理化性质的演变特征。【结果】添氮处理在腐解前期(第256 d)显著降低了还田棉秆木质素含量,而纤维素、半纤维素则在后期显著降低,木质素在腐解前期对氮肥添加更为敏感;棉秆在腐解前期,所有添氮处理的土壤有机碳含量显著增加,腐解后期降低,低氮处理(N1、N2)的有机碳含量最高;各处理间土壤全氮含量差异不显著;氮添加处理显著降低了土壤pH值与盐分;土壤有机碳含量与棉秆的木质素、半纤维含量呈显著负相关关系(P<0.05,P<0.01)。【结论】秸秆还田配施氮肥能加速棉秸秆腐解,而低氮处理(N1、N2)在加速秸秆降解的同时,有利于增加土壤有机碳含量,培肥土壤。  相似文献   

13.
【目的】 研究减氮调控对滴灌春小麦光合特性、荧光参数和产量的影响,为提高新疆滴灌春小麦产量和氮肥利用效率提供科学依据。【方法】 采用裂区设计,施氮量为主区,品种为副区;新春31号和新春6号为材料,设置全生育期所施用的氮肥用量:0 kg/hm2(N0,不施氮)、225 kg/hm2(N1)、250kg/hm2(N2)、275 kg/hm2(N3)、300 kg/hm2(N4),5个不同施氮量,N4为常规施氮处理。【结果】 在小麦整个生育期中,随着氮肥施用量的减少,2个品种小麦的叶面积指数(LAI)均在抽穗期达到最大值,且趋势都是先增后减;SPAD值发生的变化也为先升高后降低;小麦旗叶净光合速率(Pn)、蒸腾速率(Tr)、气孔导度(Gs)先增后降,而胞间CO2浓度(Ci)先降后增,与PnTrGs的趋势相反;最大光化学效率(Fv/Fm)与实际光化学效率(ΦPSⅡ)在开花期均出现最大值且变化趋势都先增后减;2个品种小麦的产量变化趋势先增后减,穗数和每穗粒数随氮肥使用量的增加呈不断增加趋势,但千粒重却表现为先增后减的趋势,其中新春31号在N3处理下产量最高,新春6号在N2处理下产量最高;经通径分析,产量三因素中穗数、穗粒数对产量都有较大的影响,千粒重对产量影响不大。【结论】 新春31号的最佳施氮量为275 kg/hm2,新春6号的最佳施氮量为250 kg/hm2。  相似文献   

14.
【目的】研究种植密度和施氮量对棉花干物质积累与分配及产量等的影响。【方法】以鲁棉研24号为材料,设置6.9×104 、13.8×104和24×104/株hm2(D1、D2、D3)3个种植密度,设195.5、299、402.5、和506 kg/hm2(N1、N2、N3、N4) 4个施氮量,研究增密减氮对棉花干物质积累、产量及其构成因素的影响。【结果】与D1相比,D2和D3处理的植株总干物质在盛花期至盛铃前期平均分别提高了31%和36%,而D3较D2处理仅提高了6%,种植密度和氮素互作表现为,D3N1>D3N4>D2N2。D3N1处理下的群体干物质较大,D2N2处理群体干物质最大,最大值25 010 kg/hm2。在盛花期,D3N1处理主茎叶面积占比较高,而果枝叶面积占比却最低,到吐絮期主茎叶面积与果枝叶面积和叶枝叶面积的占比接近1∶1∶1。LAI随着生育进程的推进先逐渐增大,至盛铃后期达到最大,而后又逐渐下降,4种施氮水平下LAI,均有D3>D2>D1。产量最高的是D3N1处理,D3N2处理也获得较高产量。【结论】增加种植密度减少施氮量后也能获得较高的产量,种植密度从常规的13.8×104株/hm2增加到24×104株/hm2,施氮量从常规的402.5 kg/hm2减少为195.5 kg/hm2,可增产2.7%。增密减氮后铃数显著增加是棉花获得高产的重要保证。  相似文献   

15.
【目的】研究施氮棉花花铃期冠层光分布和光合日变化的规律及对产量的影响。【方法】连续2年定点定量设置3个施氮处理,分别为未施氮0(N0)、中等施氮270(N270)、高量施氮450(N450)kg/hm2,研究定点定量施氮对棉花农艺性状、花铃期冠层光空间分布、花铃期冠层光合日变化、棉铃空间分布及产量的影响。【结果】连续施氮处理的棉花株高、果枝数、单铃重、单株成铃数相均高于未施氮处理,且存在显著性影响,但施氮处理间无显著性差异。花铃期10:00~19:00各个时段,不同处理棉花冠层PAR截获率均以行距中心为谷底呈现“V”字形。当棉花群体PAR截获率均为0.75~0.9时,未施氮处理的光分布位点在1~4果枝所处的高度,PAR透射率依然有0.25~0.1,N450处理位于7果枝以上的高度,7果枝以下部位获得的光资源很少,导致棉铃脱落严重;N270处理在7果枝及以上高度的PAR光截获仍达0.5~0.9,且在第1果枝处在0.9~1,棉花群体呈现出了良好的光环境。花铃期棉花光合日变化蒸腾速率(Tr)、胞间二氧化碳浓度(Ci)均表现为施氮处理高于未施氮处理,施氮处理间差异不显著,气孔限制值(Ls)刚好与之相反。增加施氮量明显可以减缓光合“午休”现象,但高量施氮处理棉花光合午休现象减缓的力度反而下降,且在达到第2个峰值之后净光合速率(Pn)下降趋势与N270处理几乎呈一致。叶片水分利用率(WUE)16:00之后未施氮处理的WUE随时间迅速呈线性下降变化,且逐渐低于施氮处理,实收籽棉产量以N270最高为4 835.67 kg/hm2,较N0、N450分别高出7.25%、5.44%。【结论】连续施氮270 kg/hm2,可以获得较优的棉花群体冠层结构,有利于冠层光分布结构,提高光能利用效率,获得较高的产量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号